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Enumerative algebraic geometry concerns questions about how to count cer-
tain objects. A classic example is an old nineteenth century question; given four
general lines in three dimensional space, how many lines are there that meet all
four.

Many such questions were answered by Hermann Schubert, but his answers
depend on rather dubious assertions; for example, the solution to the question
above goes as follows. Suppose two of the lines are coplanar; then we can see
two lines – the line from the intersection of these lines meeting the other two
and the line connecting the intersections of the other two lines with the plane
containing the first two. Therefore there are two lines which meet all four lines.

While it turns out that the answer is correct, it is not clear why the answer
should be the same when two of the lines are coplanar; indeed other nineteenth
century mathematicians attempted to make similar answers, and were frequently
wrong (Schubert himself appears to have had remarkable intuition). Therefore
we need more sophisticated techniques for answerig such questions. To do this
we use cohomology.

For simplicity we compactify everything and ask about lines in projective
three space; the space of lines is then a well studied space (the Grassmannian of
two-planes in four space, denoted G(2, 4)). In particular the space is a smooth
closed manifold of dimension 4 (one way to count this is that there are three
degrees of freedom for the closest point to the origin and then one for the
direction of the line).

Cohomology comes in when we want to talk about the intersections with the
other four lines; to do this we introduce a space of decorated lines M which
parametrizes a choice of a line in three space together with points x1, x2, x3, x4

on the line. The choice of each point gives one degree of freedom so M is eight
dimensional. We also have evaluation maps evi : M → P

3 which pick out the
four special points.

Now consider the class of a line l ∈ H1(P
3; Z), and it’s Poincaré dual L ∈

H2(P3; Z). Then the number

〈[M], ev∗1(L) · ev∗2(L) · ev∗3(L) · ev∗4(L)〉 ∈ H0(P
3; Z) ∼= Z

should count the number of lines passing through four general lines (the condi-
tion imposed by the cohomology class ev∗

1(L) should be thought of as imposing
the condition that the point x1 should lie in a specified general line). It is possi-
ble to do this calculation explicitly, and it does indeed yield Schubert’s answer
of two.

Gromov-Witten invariants provide a nonlinear version of this procedure.
They turn out to be deformation invariants of smooth projective varieties (or
complex manifolds). The technical definition is rather difficult, but the basic
idea can be outlined as follows.
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Fix a smooth complex variety X and a class β ∈ H2(X ; Z). We can define
a space Mg,n(X, β) which parametrizes triples {C, f, (x1, . . . , xn)}, where C is
a Riemann surface of genus g, f : C → X is a holomorphic map and the xi are
points of C. An expected dimension of (1− g)(dim X − 3) + β · c1(TX) + n can
be computed using some version of an index theorem. Then if we choose classes
γ1, . . . , γn ∈ H∗(X ; Z) so that the sum of the codimensions is the expected
dimension of Mg,n(X, β), we can define the Gromov-Witten invariant

〈γ1, . . . , γn〉
X
g,β =

∫
[Mg,n(X,β)]

ev∗1(γ1) · · · · · ev
∗
n(γn) ∈ H0(Mg,n(X, β); Z) ∼= Z.

The Gromov-Witten invariant should then count curves of genus g in X repre-
senting the class β and intersecting cycles dual to the gamma classes.

In practice the invariants are more complicated (they can be rational num-
bers and even negative), but also turn out to have a very rich structure (much
of which is inspired by superstring theory) which turns out to be deeply related
to the theory of singularities. If X is a Calabi-Yau threefold the invariants
are conjectured to be related to certain gauge-theoretic invariants of real three
manifolds; my principal research interest is in investigating this connection.
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