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The goal of this project is to derive and analyze mathematical models for stream
ecosystems, to explore different mechanisms and biological hypotheses that lead
to spatial patterning of the stream population distribution and composition,
and to compare the model outcome with field experiments.

Biological background

Data show that species composition, distribution, and abundance vary along the
length of a stream ecosystem, even where there are no major changes in river
morphology or seasonal patterns in flow rates among stream sections. The major
ecological question is what controls the upstream distribution of individuals and
species? More specifically, can these distributions be explained from individual
behavior and interaction?

Processes governing changes in species composition along the length of a
river involve the interaction of food web processes, competition, stream flow,
and (species and stage specific) dispersal. Understanding this interplay is a key
factor in predicting effects of natural or human changes such as disruption of
the food web (through pollution or introduction of exotic species) or changes in
stream flow (dam building). Observed impacts for the stream ecosystem are ex-
tinctions, species replacement, or invasion. The linkage between human impacts
and the response of aquatic systems in Southern Alberta is being investigated in
a major project funded by NSERC Networks of Centres of Excellence in Clean
Water.

Abstract for the presentation: Solutions for the drift paradox

In this talk, I will present model and possible solutions for the “drift paradox” as
a first step in modeling and understanding stream ecosystems. This is joint work
with M.A. Lewis (Alberta) and E. Pachepsky (UCSB). Individuals in streams
are constantly subject to predominantly unidirectional flow. The question of
how these populations can persist in upper stream reaches is known as the
“drift paradox”. We employ a general mechanistic movement-model framework
and derive dispersal kernels for this situation. Thin- as well as fat-tailed kernels
are derived. Then we introduce population dynamics and analyze the resulting
integrodifferential equation. In particular, we study how the critical domain size
and the invasion speed (see below) depend on the velocity of the stream flow.
We give exact conditions under which a population can persist in a finite domain
in the presence of stream flow, as well as conditions under which a population
can spread against the direction of the flow. We find a critical stream velocity
above which a population cannot persist in an arbitratily large domain. At
exactly the same stream velocity, the invasion speed against the flow becomes
zero; for larger velocities, the population retreats with the flow.
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Mathematical background

Mathematical models for spatially distributed populations have a rich and di-
verse history. Spatially explicit models have been formulated as reaction dif-
fusion equations, integro-difference equations, cellular automata, and related
systems. The model we derive and study falls in the category of integrodiffer-
ential equations (reaction-dispersal equations) and is of the form

∂

∂t
u(t, x) = f(u(t, x)) − µu(t, x) + µ

∫
k(x, y)u(t, y)dy.

In this equation, u(t, x) denotes the density of individuals at time t at location
x. Population growth and death are modeled by the function f. Individuals leave
their site x with rate µ and settle at x according to the probability of moving
from y to x, given by the dispersal kernel k(x, y).

We derive two classes of dispersal kernels from mechanistic movement mod-
els. These dispersal kernels are not symmetric due to the advection velocity of
the stream. As this velocity increases, the skewness of the kernel increases.

The critical domain size and the invasion speed are two mathematical quan-
tities closely related to ecological indicators. The critical domain size stems from
the fact that the total reproductive rate of the population scales with habitat
area, the dispersal loss scales with boundary length. Since surface area scales
with the square of the linear dimension, boundary loss dominates dynamics of
small patches but plays a diminished role in the dynamics of larger patches. The
assumption that a small population grows in the absence of boundary loss leads
to the existence of a critical size for the habitat, below which the population
cannot persist, and above which populations can grow. Mathematically, one lin-
earizes the governing equation around the zero solution and analyzes conditions
for which this solution is unstable so that small perturbations grow. For the
above equation, this amounts to finding the leading eigenvalue of the integral
operator. For a certain class of kernels, we are able to do that explicitly, for
other kernels, we use numerics.

The invasion speed is one of several measures of how fast a population
spreads into previously uninhabited territory. Mathematically, one assumes
that there is a solution of the govering equation in the form of a traveling wave
and computes the minimal speed of that wave. For the equation above, we need
to know the moment generating function of the dispersal kernel to compute the
invasion speed.

A slightly different measure is the asymptotic spreading speed. Its definition
is that an observer who travels slightly faster will eventually see no individu-
als whereas an observer traveling slightly slower will see the population at its
carrying capacity. Mathematically, the asymptotic spreading speed involves the
construction of appropriate sub- and supersolutions to the govering equation.
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