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1. Presentation of the workshop

1.1. Objectives. The workshop has been dedicated to problems where there is
strong interplay between analysis (in particular harmonic analysis and complex
analysis) and geometric measure theory (in particular rectifiability and variational
methods).

Topics to be covered include

(i) Analytic capacity and rectifiability
The classical Painlevé problem consists in finding a geometric characterization for
compact sets of the complex plane which are removable for bounded analytic func-
tions. The methods used to study this problem come from complex analysis (an-
alytic capacity), harmonic analysis (Cauchy singular integral operator) and geo-
metric measure theory (rectifiability). In 1998, G. David solved the Vitushkin
conjecture which provides an answer to Painlevé’s question for sets with finite 1-
dimensional Hausdorff measure. His work relied on the ideas of many mathemati-
cians among others M. Christ, P. Jones, P. Mattila, M. Melnikov and J. Verdera.
Recently, X. Tolsa proposed a solution for the Painlevé problem in terms of Menger
curvature.

Problems to be discussed during the workshop include:
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- Discussion of Tolsa’s conditions;

- Bilipschitz invariance of the class of removable sets for bounded analytic functions
in the complex plane;

- Relationship between analytic capacity and Favard length;

- Harmonic analysis in nonhomogeneous spaces;

- The higher dimensional case, namely the study of removable sets for Lipschitz
harmonic functions in Rn (the main problem is that although there exist analogs
of the Menger curvature for n − 1-dimensional sets, they are not adapted to the
study of the Riesz transforms. Hence, only a few basic things about this problem
are known).

(ii) Analysis and rectifiability in singular metric spaces
Partially motivated by questions arising in classical differential geometry, several au-
thors have begun developing theories of analysis and rectifiability in metric spaces.
To this effect basic tools of geometric function theory, for example Poincaré in-
equalities or quasi-conformal mappings, have been introduced and studied in gen-
eral metric spaces. Counterparts to the classical theorems in Euclidean spaces have
been proved in metric spaces with bounded geometry. For instance, in 1999 J.
Cheeger proved a version of Rademacher’s theorem on the differentiability of Lips-
chitz functions on metric spaces where Poincaré inequalities hold. The tools from
non-smooth analysis play a crucial role in understanding limiting phenomena aris-
ing from smooth geometry.

Problems to be discussed during the workshop include:

- Geometric analysis (Poincaré inequalities, Sobolev spaces, ..) and applications to
PDE and geometry;

- Basic tools of geometric measure theory (Sets of finite perimeter, area and co-area
formulas, ..) in metric spaces;

- The Kakeya problem;

- Definitions of rectifiability in metric spaces (for instance, in Carnot groups).

(iii) Mumford-Shah functional
This functional was introduced in connection with image segmentation. Let Ω
be a bounded domain in the plane and let g be a bounded function on Ω. The
Mumford-Shah functional is given by

J(u, K) =

∫ ∫

Ω∼K

|u − g|2 +

∫ ∫

Ω∼K

|∇u|2 + H1(K).

The existence of minimizers (u, K) (in a reasonable sense) is known, but the main
problem consists in studying the geometric properties of the set of singularities K.
The Mumford-Shah conjecture states that K should be the finite union of C1 arcs.
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Recent progress have been made by G. David, A. Bonnet, L. Ambrosio, S. Solimini,
N. Fusco among others, but the conjecture is still open.
The study of the Mumford-Shah functional in higher dimensions is a vibrant new
question which seems to be related to the theory of minimal surfaces.

Problems to be discussed during the workshop include:

- Complete classification of the global minimizers of the 2-dimensional Mumford-
Shah functional;

- Study of cracktips (C1 regularity, calibration,... ) for the 2-dimensional Mumford-
Shah functional;

- Study of the 3-dimensional Mumford-Shah functional, in particular connexions
with minimal surfaces, complete classification of global minimizers.

1.2. List of participants. The following mathematicians

T. Adams (Stanford University, USA)
S. Choi (UCLA, USA)
G. David (University of Paris-Sud, France)
T. De Pauw (University of Paris-Sud, France)
B. Franchi (University of Bologna, Italy)
J. Garnett (UCLA, USA)
F. Germinet (University of Lille I, France)
M. J. Gonzalez (University of Cadiz, Spain)
R. Hardt (Rice University, USA)
S. Keith (University of Helsinki, Finland)
B. Kirchheim (Max Planck Institute Leipzig, Germany)
P. Koskela (University of Jyväskylä, Finland)
I. Laba (University of British Columbia, Canada)
V. Magnani (Scuola Normale Superiore Pisa, Italy)
J. Mateu (Universitat Autonoma de Barcelona, Spain)
P. Mattila (University of Jyväskylä, Finland)
D. Meyer (University of Washington, USA)
T. O’Neil (The Open University, USA)
H. Pajot (University of Grenoble I, France)
S. Pauls (Darmouth College, USA)
C. Rios (Mc Master University, Canada)
R. Serapioni (Universita de Trento, Italy)
N. Shanmugalingam (University of Cincinnati, USA)
Q. Shi (Tsinghua University, China)
J. Tyson (University of Illinois, USA)
Q. Xia (University of Texas at Austin, USA)
N. Zobin (College of William and Mary, USA)
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1.3. Programme.

Sunday, 27 July 2003

9-10 am, J. Garnett, Analytic Capacity, Cantor Sets, Menger Curvature, and Bilip-

schitz maps

10-10:30 am, Coffee break
10:30-11-30 am, T. De Pauw The Plateau problem is not yet solved...we’re working

at it

11:40-12:40 am, R. Hardt Rectifiable Scans

*Lunch and free discussions*
3:30-4 pm, Coffee break
4-5 pm, T. O’Neil Dimension of Visible Sets

5:10-5:40 pm, J. Tyson Polar Coordinates in Carnot Groups

Monday, 28 July 2003

9-10 am, G. David Open Problems on the Mumford-Shah Functional

10-10:30 am, Coffee break
10:30-11:30 am, F. Germinet Generalized Fractal Dimensions: Properties and Ap-

plications to Quantum Dynamics

11:40-12:40 am, B. Kirchheim Rectifiability in The Metric Context and Density of

Measures

*Lunch and free discussions*
3:30-4 pm, Coffee break
4-4:30 pm, S. Choi Lower Density Theorem for Harmonic Measure

4:40-5:10 pm, D. Meyer Quasiymmetric Embedding of Self-Similar Surfaces

5:20-5:50 pm, V. Magnani, TBA

Tuesday, 29 July 2003

9-10 am, P. Mattila Uniqueness of Tangent Measures and Rectifiability in Metric

groups

10-10:30 am, Coffee break
10:30-11:30 am, J. Mateu Signed Riesz Capacity

11:40-12:40 am, N. Shanmugalingam An Introduction to the Dirichlet Problem for

the p-Laplacian on Certain Metric Measure Spaces.

*Lunch and free discussions*
3:30-4 pm, Coffee break

Wednesday, 30 July 2003

9-10 am, I. Laba TBA
10-10:30 am, Coffee break
10:30-11:30 am, P. Koskela Sobolev Inequalities in Metric Measure Spaces

11:40-12:40 am, M. J. Gonzalez Geometry of Curves and Beltrami-Type Operators

*Lunch and free discussions*
3:30-4 pm, Coffee break
4-4:30 pm, N. Zobin Fourier Analysis on Fock Spaces and Extension Problems for

Smooth Functions

4:40-5:10 pm, S. Pauls Rectifiability Modeled on Carnot Groups
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5:20-5:50 pm, C. Rios The Lp-Dirichlet Problem and Nondivergence Harmonic Mea-

sure

Thursday, 31 July 2003

9-10 am, R. Serapioni Rectifiability in the Heisenberg group

2. Geometric Function Theory (written by J. B. Garnett)

1. Sunhi Choi: Lower Density Theorem for Harmonic Measure

Let Ω be a simply connected domain in C and let ω(w, · , Ω) denote the harmonic
measure on ∂Ω for w ∈ Ω. If f is a conformal mapping from the unit disk D onto
Ω with f(0) = w, then the angular limit f(ζ) exists at almost every ζ ∈ ∂D

and the harmonic measure of a set E ⊂ ∂Ω is the normalized linear measure of
f−1(E) ⊂ ∂D. We have the following theorem:

Theorem 1: ω � Λ1 on the set

{x ∈ ∂Ω | lim inf
r→0

ω(B(x, r))

r
> 0}.

Theorem 1 was conjectured by C. J. Bishop in 1991. It has several corollaries.

Corollary 1: Let F be a subset of ∂Ω and assume that there exists a constant
M(F ) such that ∑

rad(Bi) ≤ M(F ) < ∞

for every disjoint collection of balls {Bi} with center(Bi) ∈ F and rad(Bi) <
diam(∂Ω). Then, ω � Λ1 on F.

Conversely, Theorem 1 can be easily derived from Corollary 1.
The next corollary, first proved by Bishop and Jones by much different methods,

resolves a conjecture of ∅ksendal.

Corollary 2: Let F be a subset of a rectifiable curve Γ, then for any simply
connected domain Ω, ω � Λ1 on F ∩ ∂Ω.

The last corollary was also conjectured by Bishop.

Corollary 3: At ω-almost every McMillian twist point x ∈ ∂Ω,

lim inf
r→0

ω(B(x, r))

r
= 0.

The corollaries follow from the theorem by covering lemmas, Lebesgue density
arguments and theorems of Makarov and Pommerenke relating harmonic measure
to linear measure. The proof of the theorem uses extremal length and some explicit
constructions of Lipschitz domains.

2. John Garnett: Analytic Capacity, Cantor Sets, Menger Curvature
and Bilipschitz Maps

The talk was a survey of the theory of analytic capacity, emphasizing the im-
portant recent work of Melnikov and Verdera, of Tolsa and of Volberg.

The analytic capacity of a compact plane set E is
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γ(E) = sup
{
|a1| : f(z) =

a1

z
+ · · · ∈ H∞(C ∼ E), ||f ||∞ ≤ 1

}
.

Thus γ(E) = 0 if and only if there are no non-constant bounded analytic functions
on C ∼ E. The main question is to give a geometric necessary and sufficient
conditions for γ(E) > 0. In particular if T is a bilipschitz homeomorphism of the
plane, is there a constant C = C(T ) such that

C−1γ(E) ≤ γ(T (E)) ≤ Cγ(E)? (1)

It is classical that γ(E) = 0 if the Hausdorff measure Λ1(E) = 0 and γ(E) > 0
if Λα(E) > 0 for some α > 0, i.e. if the Hausdorff dimension of E exceeds 1.

For sets of dimension 1, more recent work of Calderón, Mattila-Melnikov-Verdera,
and David, using some ideas of Christ and Jones, show that if 0 < Λ1(E) < ∞ then
the following three conditions are equivalent:

(i) γ(E) > 0

(ii) there is a rectifiable curve Γ such that Λ1(E ∩ Γ) > 0

(iii) there is F ⊂ E, Λ1(F ) > 0 and the Cauchy integral

Cf(z) = p.v.

∫

Γ

f(ζ)

ζ − z
dΛ1(ζ),

is bounded L2(F, ds) → L2(Γ, ds).
The proof that (iii) implies some local rectifiability hinges on the notion of

Menger curvature. For three complex numbers named x, y, and z, let c(x, y, z) be
the reciprocal of the radius of the circle through x, y and z, and take c(x, y, z) = 0
if the points are co-linear. Let µ be a finite positive Borel measure of linear growth:

µ(B(z, R) ≤ R, ∀z, ∀R. The Menger curvature of µ is defined to be

c2(µ) =

∫ ∫ ∫
c2(x, y, z)dµ(x)dµ(y)dµ(z).

The connection between Menger curvature and the theorem rests on a remarkable
discovery of Melnikov and Verdera: If µ is a positive measure of linear growth, then

c2(µ)

6
=

∫ ∣∣∣
∫

dµ(w)

w − z

∣∣∣
2

dµ(z) + O(1).

Hence by (iii) µ = χF Λ1 has c2(µ) < ∞, and an argument using the P. Jones
β-numbers shows there is some rectifiable curve Γ such that Λ1(F ∩ Γ) > 0.

The assumption (2) was later removed by G. David, and later by Nazarov, Triel
and Volberg by a different method.

The remaining case, E of Hausdorff dimension 1 but Λ1(E) = ∞ was recently
resolved by X. Tolsa, who proved that γ(E) > 0 if and only if E supports a positive
measure of linear growth and finite Menger curvature and if and only if E supports

a positive measure of linear growth and bounded Cauchy potential
∫ dµ(w)

z−w .

The speaker described his result with Verdera that (1) holds for all bilipschitz
images of planar Cantor sets, a new stronger theorem of Tolsa that proved (1) for all

compact plane sets, and the generalizations by Volberg (without Menger curvature!)
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to the case of Lipschitz harmonic capacity in Rn. In particular, Volberg has proved
that for E ⊂ Rn compact, if

Γn(E) = sup
{
| < ∆f, 1 > | : f is harmonic off E, ||∇f ||∞ ≤ 1

}

and

Γ+
n (E) = sup

{
µ(E) : µ > 0,

∫

E

dµ(y)

|x − y|n−2
= f(x) ∈ Lip1, ||∇f ||∞ ≤ 1

}
,

then Γ+
n ≤ Γn ≤ CnΓ+

n .

3. Marie Jose Gonzalez: Geometry of Curves and Beltrami-Type Oper-
ators

A rectifiable plane curve Γ is called a chord-arc curve (or Lavrientiev curve) if
each sub-arc γ ⊂ Γ with endpoints a and b has length

`(γ) ≤ C|b − a|.

We assume that ∞ ∈ Γ, and that Γ is chord-arc. Then Γ = ϕ(R) where ϕ is a
bilipschitz homeomorphism of the plane to itself and if Φ is a conformal map from
the upper halfplane to either component of C ∼ Γ, then log(Φ′) ∈ BMO.

This talk gives the latest news on three related problems:
Problem 1: If ε > 0 and if f is a bilipschitz homeomorphism of the plane, can f
be factored

f = f1 ◦ f2 ◦ · · · ◦ fn

where each fj and f−1
j has Lipschitz constant bounded by 1 + ε?

Problem 2: If Γ is a chord-arc curve, is there a deformation from Γ to R through
which log(Φ′) varies continuously in BMO?

Problem 3: Is the subset
{

log(Φ′) : Γ chord − arc
}
⊂ BMO connected?

A combination of theorems by Astala and Zinsmeister, MacManus, and Bishop
and Jones shows that when Γ is a quasicircle the following are equivalent:

(i) log(Φ′) ∈ BMO;

(ii) Γ = ρ(R) where ρ is a quasiconformal map for which |µ2|
y is a Carleson

measure in the upper half plane and µ = ρz

ρz
is the Beltrami coefficient of ρ.

(iii) Γ contains big pieces of chord-arc curves.
Because of (iii) such curves are called “BJ curves”. It follows from (ii) that the
set of BJ curves is connected in the log Φ′ −BMO topology. An important related

result is the 1988 theorem of Semmes: The quasicircle Γ is chord-arc if |µ2|
y has

small Carleson measure constant.
The speaker discussed her two recent theorems with K. Astala.

Theorem 1: Γ is a BJ curve if and only if there exists a quasiconformal map ρ such
that Γ = ρ(R), ρ has Beltrami coeffecient µ and I − µS is bounded on L2(dxdy

y ),

where S is the Beurling transform

Sf(z) =
1

π

∫ ∫
f(w)

(w − z)2
dA(w).

Theorem 2: Γ is chord arc if and only if there exists such ρ and µ such that I−µS
is invertible on L2(dxdy

y ).
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The speaker also discussed further connections between I −µS and the Semmes
result above.

4. Pekka Koskela: Metric Sobolev Spaces

This talk gives an approach to Sobolev spaces in metric spaces based on point-
wise Lipschitz constants. The point-wise Lipschitz constant of u is

Lipu(x) = lim sup
r→0

sup
d(y,x)<r

|u(y) − u(x)|

r
.

(X, d, µ) is a doubling space if (X, d) is a metric space and µ is a Borel measure on
X such that for constant Cd,

µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

We say X supports a p−Poincaré inequality if there exist constants Cp and λ ≥ 1
such that ∫

B

|u − uB | dµ ≤ Cp diam(B)

(∫

λB

(Lipu(x))p dµ

)1/p

, (1)

for all balls B and for each Lipschitz function u.
This should perhaps be called a weak Poincaré inequality, but it turns out that

the Poincaré inequality always improves itself to a (p, p)-inequality, perhaps with
larger C and λ. Indeed, even a (q, p)-inequality follows with an optimal q > p.
Also, the constant λ can often be taken to be 1 by enlarging C. This holds if the
metric d is a path metric (i.e. infimum of lengths of paths joining the points) and
geodesic: in this case the geometry of balls can be controlled and one can iterate
the Poincaré inequality so as to decrease λ. We call such a metric a length metric

and the corresponding space a length space. If we assume that X is proper (i.e. all
closed balls are compact), then it follows from the Poincaré inequality that we can
replace the metric d with a bi-Lipschitz equivalent length metric.

In Rn every Sobolev function has a gradient almost everywhere. In our general
situation a version of this persists, if we use the concept of upper gradient.

Let u : A → R, A ⊂ X . Any Borel function g : A → [0,∞] such that for each
rectifiable path γ : [0, l] → A

|u(γ(l)) − u(γ(0))| ≤

∫

γ

gds

is called an upper gradient of u on A. We now define, for given 1 ≤ p ≤ ∞,

N1,p(X) = {u ∈ Lp(X) : u has an upper gradient g ∈ Lp(X)},

where the Lp-spaces are taken with respect to our measure µ and the concept of
an upper gradient is with respect to our metric d. The norm on N 1,p is

||u||1,p = ||u||p + inf
gu

||gu||p,

where the infimum is taken over all upper gradients of u, and as usual one needs
to consider equivalence classes in order to obtain a normed vector space. In the
Euclidean setting

N1,p(Rn) = W 1,p(Rn)

when both the metric and the measure are the usual Euclidean ones.
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Theorem 1: Suppose that (X, d, µ) is a doubling length space that supports a
p-Poincaré inequality. Let B be a ball and u ∈ N 1,p(B). Suppose that µ(B(x, r)) ≥
Cb(r/ diam(B))sµ(B) whenever B(x, r) ⊂ B.

(1) If p < s, then

||u − uB||Lp∗ (B) ≤ C diam(B)µ(B)1/p∗−1/p‖g‖Lp(B), (2)

where p∗ = ps/(s − p).
(2) If p = s, then

∫

B

exp

(
C1µ(B)1/s|u − uB|

diam(B)‖g‖Ls(B)

)s/(s−1)

dµ ≤ C2.

(3) If p > s, then |u(x) − uB| ∈ L∞(B) and

‖u− uB‖L∞(B) ≤ C diam(B)µ(B)−1/p‖g‖Lp(B).

Here Ci = Ci(λ, s, Cp, Cb, Cd).

Theorem 2: Let X be a proper doubling space that supports a p-Poincaré in-
equality, p ≥ 1. Then N1,p(X) consists precisely of those functions in Lp(X) that
are Lp-limits of sequences of Lipschitz functions for which also the sequence of the
point-wise Lipschitz norms converges in Lp(X). Moreover, when p > 1, the space
N1,p(X) is reflexive.

The approximation result here is essentially due to Shanmugalingam and the
reflexivity is due to Cheeger.

It is often convenient to know that the Poincaré inequality can be characterized
by a point-wise inequality. We recall that for every R > 0 the restricted maximal

operator is

MRu(x) = sup
0<r<R

∫

B(x,r)

|u(x)|dµ,

where u is a measurable function. Because the proof of the point-wise inequality
is somewhat easier when p > 1 and works for pairs of functions, not only pairs of
functions and upper gradients, we first only state this case.

Lemma 1: Let (X, d, µ) be a doubling space, u be locally integrable and g ≥ 0
measurable. If p > 1, then the following conditions are quantitatively equivalent:

(1) There exist C > 0 and λ ≥ 1 such that

∫

B

∣∣u − uB

∣∣ dµ ≤ C diam(B)

(∫

λB

gp dµ

)1/p

(3)

for every ball B.
(2) There exist C > 0 and τ > 0 such that

|u(x) − uB| ≤ C diam(B)
(
Mτ diam(B)g

p(x)
)1/p

for every ball B and a.e. x ∈ B.
(3) There exist C > 0 and σ > 0 such that

|u(x) − u(y)| ≤ Cd(x, y)
(
Mσd(x,y)g

p(x) + Mσd(x,y)g
p(y)

)1/p

for almost every x, y ∈ X .
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Moreover, even when p = 1, condition 1 implies condition 2 which yields condition
3.

Lemma 2: Let (X, d, µ) be a proper doubling space. Then the three conditions of

Lemma 2. are quantitatively equivalent for functions u ∈ N 1,p
loc (X) and their upper

gradients.
We say that X is quasiconvex if there exists a constant C ≥ 1 such that each

pair x, y ∈ X can be joined with a rectifiable curve γ such that

length(γ) ≤ Cd(x, y).

Lemma 3: Assume that (X, d, µ) is a doubling space that supports a p-Poincaré
inequality and that X is proper. Then X is quasiconvex.

The previous result allows one to replace the metric of a proper space that
supports a Poincaré inequality with a bi-Lipschitz equivalent path metric.

Corollary: Suppose that (X, d, µ) supports a p-Poincaré inequality and that X is

proper. Define d̂(x, y) = infγ length(γ), where the infimum is taken over all curves

that join x and y. Then d̂ is a geodesic metric and there exists a constant C so that

d(x, y)/C ≤ d̂(x, y) ≤ Cd(x, y)

for all x, y ∈ X.
There is yet another way to characterize the Poincaré inequality. Following

Semmes we define, for given ε > 0 and measurable u : X → R,

Dεu(x) = sup
y∈B(x,ε)

|u(x) − u(y)|

ε
,

for every x ∈ X. The following result is due to Keith and Rajala.

Theorem 4: Let X be a proper doubling space. Then X supports a p-Poincaré
inequality if and only if there are constants C and λ so that

∫

B

|u − uB | dµ ≤ C diam(B)

(∫

λB

(Dεu)p dµ

)1/p

, (4)

for each ε and each ball B ⊂ X of diameter at least 2ε and all u.
We have mentioned that the Poincaré inequality is not destroyed by by bi-

Lipschitz changes of the metric. The Poincaré inequality turns out also to persist
under convergence of spaces. if we use the notion of (pointed) measured Gromov-
Hausdorff convergence.

Theorem 5: Suppose that (Xi, xi, µi, di)i is a sequence of geodesic, pointed, proper
doubling spaces so that each space is doubling with the same constant Cd and so
that each of them supports a p-Poincaré inequality with fixed constants CP , λ. If this
sequence converges in the pointed, measured Gromov-Hausdorff sense to a proper
space (X, x, d, µ), then (X, d, µ) is a doubling space that supports a p-Poincaré
inequality. Moreover, (X, d, µ) is geodesic.

5. Joan Mateu: Signed Riesz Capacities

This talk represents joint work with Laura Prat and Joan Verdera. If K ⊂ R
n

is a compact set and 0 < α < n we define

γα(K) = sup |T (1)|,
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where the supremum is over all distributions T supported on K such that for
1 ≤ i ≤ n,

||T ∗
xi

|x|1+α
||L∞(Rn) ≤ 1.

For n = 2 and α = 1, γ1 is essentially the same as analytic capacity, and for n ≥ 2
and α = n − 1 it is essentially Lipschitz harmonic capacity.

Prat had showed in her thesis that if 0 < α < 1 then every set K with finite
α-dimensional Hausdorff measure has γα(K) = 0. The case α > 1 is not so well
understood, but here Prat also showed that γα(K) = 0 if K is α Ahlfors-David
regular.

The Riesz capacity is

Cs,p(K) = inf
{
||ϕ||pp : ϕ ∗

1

|x|n−s
≥ 1 onK, ϕ ∈ C∞

0

}
,

where 1 < p < ∞ and 0 < s < p
n .

Theorem: For every n and 0 < α < 1 there is a constant C depending only on n
and α such that for all compact K ⊂ Rn,

C−1C 2
3 (n−α), 32

(K) ≤ γα(K) ≤ CC 2
3 (n−α), 3

2
(K).

The Prat result about sets of finite α measure follows from the theorem and
known estimates for Cs,p. It is also known that Cs,p is subadditive, and hence the
theorem implies that

γα(K1 ∪ K2) ≤ Cγα(K1) + γα(K2),

with constant C depending only on n and α. Moreover, since Cs,p is bilipschitz
invariant, the theorem also implies that

C−1γα(K) ≤ γα(T (K)) ≤ Cγα(K)

for every bilipschitz homeomorphism T of Rn, where the constant C depends only
on n, α and the Lipschitz constants of T and T−1.

The proof of the Theorem has two main steps. The first step is to compare
γα with the corresponding “positive” capacity γα,+. Here γα,+(K) = sup µ(K),
where the supremum is over all positive measures µ supported on K such that for
1 ≤ i ≤ n, ||µ ∗ xi

|x|1+α ||L∞(Rn) ≤ 1, and the first step of the proof is to show

C−1γα(K) ≤ γα,+(K) ≤ Cγα(K).

The proof of this somewhat resembles Tolsa’s proof of the corresponding result
for analytic capacity, and uses Prat’s earlier proof of the positivity of the sym-
metrization of the Riesz kernel kα and a localization result for the kernel kα. This
localization result for α < n is non-trivial and constitutes the main technical dif-
ficulty of the proof. The second step of the proof is to use Wolff potentials to
compare γα,+(K) to C 2

3 (n−α), 32
(K).

6. Daniel Meyer: Quasisymmetric Embeddings of Self Similar Surfaces
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A quasiconformal map f : X → Y is a homeomorphism of metric spaces (distance
written as |x − a|) such that for all x ∈ X

lim sup
ε→0

max|z−x|<ε|f(z) − f(x)|

min|z−x|<ε|f(z) − f(x)|
≤ K

with K independent of x. If K = 1 f is conformal. The homemorphisms f : X → Y
is η-quasisymmetric if there is an increasing homeomorphism η : R

+ → R
+ such

that for all x, a, and b ∈ X ,

|f(x) − f(a)|

|f(x) − f(b)|
≤ η

( |x − a|

|x − b|

)
.

Every quasisymmetric map is quasiconformal and every quasiconformal self map of
Rn is quasisymmetric.

In dimension 2, the images of the unit circle under a global quasiconformal
mappings are characterized by the Ahlfors three point condition: if ζ lies on the
smaller diameter arc with endpoints z and w, then

|z − ζ| ≤ C|z − w|.

The von Koch snowflake curve is an example. However, for n ≥ 3 no characteriza-
tion of the images of Sn−1 under quasiconformal self maps of Rn.

The speaker gives explicit constructions of quasiconformal maps from S2 to cer-
tain 2-dimensional topological surfaces, analogous to the snowflake curve, known
as “snowball” surfaces. These maps are constructed by iterating specific rational
maps. The speaker also proves that the maps constructed above have extensions
to quasiconformal self maps of R3, again by explicit construction.

7. Cristian Rios: The Lp Dirichlet problem and nondivergence harmonic
measure

For k = 0, 1 let Ak(x) = {ai,j
k (x)} be a symmetric n×n complex matrix function

on Rn for which there exists 0 < λ < Λ < ∞ such that for all x, ξ ∈ Rn,

λ|ξ|2 ≤ ξ · Ak(x)ξ ≤ Λ|ξ|2,

and let D ⊂ Rn be a bounded Lipschitz domain. Consider the Dirichlet problem

Lku =
n∑

i,j=1

ai,j
k (x)∂i,ju(x) = 0, x ∈ D;

u = g, x ∈ ∂D.

Let σ be surface measure on ∂D and let 1 < p < ∞. Say that Dp holds for L = Lk

if the solution u has nontangential maximal function N(u) satisfying

||N(u)||Lp(σ) ≤ Cp||g||Lp(σ)

for all g ∈ C(∂D). Define

a(x) = max
1≤i,j≤n

||ai,j
1 − ai,j

0 ||
L∞

(
B(x,dist(x,∂D)

2

).
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Theorem: Assume there is ρ > 0 such that Ak ∈ BMOρ where BMOρ is the
Sarason class

inf
c

1

(σ(∂D ∩ B(x, r))

∫

∂D∩B(x,r)

|f(y) − c|dσ(y) ≤ ρ
(
σ(∂D ∩ B(x, r)

)

for all x ∈ ∂D, and assume that L0 satisfies Dp. Then L1 satisfies Dp if

sup
Q∈∂D

sup
r>0

1

σ(∂D ∩ B(Q, r))

∫

D∩B(Q,r)

a2(x)

dist(x, ∂D)
dx < ∞.

A similar result for elliptic operators of divergence form was proved by Fefferman,
Kenig and Pipher in 1991.

8. Nages Shanmugalingam; The Dirichlet Problem for Domains in Met-
ric Measure Spaces

Let Ω be a domain in the Euclidean space Rn. For 1 ≤ p < ∞ the classical
W 1,p(Ω) is the collection of all u ∈ Lp(Ω) with distributional derivatives ∂iu, i =
1, ..., n, in Lp(Ω), under the norm

‖u‖W 1,p = ‖u‖Lp +

n∑

i=1

‖∂iu‖Lp.

Some classical properties of Sobolev functions u ∈ W 1,p(Rn) include:

(1) Poincarè inequality: For each ball B, radius r,
∫

B

|u − uB | dx ≤ Cr

(∫

B

|∇u|p dx

)1/p

.

where C depends only on n and p.
(2) If p > n, it is Hölder continuous with exponent α = 1 − n/p.
(3) If p < n, u ∈ Lp∗

, where p∗ = np
n−p .

(4) the weak upper gradient inequality: there exists a zero p-modulus (defined
below) curve family Γ so that if γ 6∈ Γ,

|u(x) − u(y)| ≤

∫

γ

|∇u| ds.

(5) The Haj lasz Inequality:

|u(x) − u(y)| ≤ C|x − y| (Mp|∇u|(x) + Mp|∇u|(y)) , a.e.

Let X be a metric space equipped with metric d and measure µ, and
1 ≤ p < ∞. We say a function u is in the Haj lasz space H1,p(X) if
u ∈ Lp(X) and there exists g ≥ 0 g ∈ Lp(X) such that

|u(x) − u(y)| ≤ d(x, y) (g(x) + g(y)) .

The definition of Haj lasz space has three advantages: when p > 1 it yields the
same space as classical Sobolev space on Rn; it is defined by a pointwise inequality;
and the Poincaré inequality holds:

∫

B

|u − uB | ≤ Cr

(∫

B

gp

)1/p

whenever B a ball in X of radius r. It has has two disadvantages: for general
domains in Rn it is not the same as the classical Sobolev space, and the Haj lasz
gradient g may not have the truncation property.
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Now let X have metric d and measure µ. The p-modulus of a path family Γ is

ModpΓ = inf
ρ
‖ρ‖p

Lp ,

where the infimum is taken over all non-negative Borel-measurable functions ρ such
that for each rectifiable γ in Γ ∫

γ

ρds ≥ 1.

Fuglede proved that modulus is an outer measure on the collection of all curves
in X , and Fuglede and Koskela-MacManus proved that a curve family Γ has zero
p-modulus if and only if there exists Lp(X) 3 ρ ≥ 0 such that for each rectifiable
γ ∈ Γ, ∫

γ

ρ ds = ∞.

Any property holding on all compact curves except for a zero modulus family of
curves is said to hold on p-almost every curve, or p-a.e.
Definition: A Borel function ρ ≥ 0 on X is an upper gradient if u : X → [−∞,∞]
if on all curves γ,

|u(x) − u(y)| ≤

∫

γ

ρ. (5)

If ρ satisfies (1) only p-a.e., it is called a p-weak upper gradient of u.
We say (X, µ) has the truncation property if whenever u is constant on a closed

(or open) set E, and ρ ∈ Lp(X) is a p-weak upper gradient of u, then

ρnew(x) =

{
ρ(x) if x 6∈ E

0 if x ∈ E

is a p-weak upper gradient of u.
We say a function u is in the Newtonian space N 1,p(X) if u ∈ Lp(X) and if u

has an upper gradient ρ ∈ Lp(X), and we define its ”norm” by:

‖u‖N1,p = ‖u‖Lp + inf
ρ
‖ρ‖Lp ,

where we identify u and v if ‖u− v‖N1,p = 0.
Koskela and MacManus proved that every p-weak upper gradient in Lp(X) can

be approximated to desired accuracy by upper gradients in Lp(X). We use p-
weak upper gradients rather than upper gradients because minimal p-weak upper
gradients exist and are unique, and if ||fn − f ||p → 0, if fn has upper gradient gn

and if and ||gn − g||p → 0, then g is a weak upper gradient of f .

Properties of Newtonian Spaces:

• If u is in N1,p(X), it is absolutely continuous on p-a.e. curve.
• N1,p(X) is Banach.
• Every Cauchy sequence in N 1,p(X) has a subsequence that converges uni-

formly outside arbitrarily small p-capacity sets, where Capp(E) = infu ‖u‖p
N1,p ,

the infimum being over all u ∈ N1,p(X) s.t. u
∣∣
E

= 1.

• If X is any domain in Rn and 1 ≤ p < ∞, then N1,p(X) is isometrically
the classical Sobolev space.
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We say µ is doubling if there exists C > 0 such that for all x ∈ X and all r > 0

µ(B(x, 2r)) ≤ Cµ(B(x, r)),

and we say X supports (q, p)-Poincaré inequality if there is C > 0 such that for all
balls B ⊂ X and for all u :∈ N1,p(X) and all weak upper gradients ρ of u,

(∫

B

|u − uB |q dµ

)1/q

≤ Crad(B)

(∫

B

ρp dµ

)1/p

.

Semmes has proved that if µ is doubling and X supports (1, p)-Poincaré inequal-
ity, then Lipschitz functions are dense in N 1,p(X), and X is a quasiconvex space.
Haj lasz–Koskela and Shanmugalingam proved that if µ is Ahlfors regular and if
X supports a (1, q)-Poincaré inequality for some q < p, then N 1,p(X) satisfies the
Sobolev embedding theorems. Cheeger proved that if µ is doubling and if X sup-
ports a (1, p)-Poincaré inequality, then N 1,p(X) is reflexive and admits a natural
derivation.

Ohtsuka showed that for every Lp(Rn) 3 ρ ≥ 0 there is a set Gρ such that
|Rn\Gρ| = 0, and for all x 6= y ∈ Gρ there is a rectifiable curve γ connecting x to
y with ∫

γ

ρ ds < ∞.

Suppose Lp(Rn) 3 ρ ≥ 0. Then ρ partitions X into equivalence classes via the
following equivalence x ∼ y if and only if x = y or there exists a rectifiable γx,y

such that
∫

γx,y
ρ ds < ∞. X is said to have the MECp property if for each such ρ

there exists an equivalence class Gρ with µ(X\Gρ) = 0. For example Rn is MECp

for all 1 ≤ p < ∞, Rn with the snowflake metric (d(x, y) = |x − y|ε, 0 < ε < 1
fixed) is not MECp for any p, and if X supports local (1, p)-Poincaré then X is
MECp. The Dirichlet Problem: Given a domain V ⊂ Rn and f ∈ W 1,p(Rn),

we seek u ∈ W 1,p(Rn) so that:
(i) ∇ · (|∇u|p−2∇u) = 0 on V , and

(ii) f − u ∈ W 1,p
0 (Rn).

Condition (i) is equivalent to:

∫

V

|∇(u + h)|p ≥

∫

V

|∇u|p,

for all h ∈ W 1,p
0 (Rn). Known results on the Dirichlet problem include:

• If 1 < p < ∞ µ doubling, and if X is proper and supports the (1, p)-
Poincaré, and E ⊂ X is open with Capp(X\E) > 0, then minimizing u

exists for boundary data f ∈ N 1,p(X) and satisfies Harnack.
• If 1 < p < ∞ E ⊂ X is a bounded open set, and f ∈ N 1,p(X) is bounded,

then minimizing u exists.
• Cheeger (1998): If X is MECp, then given the ”boundary value” f , the

solution u is unique.
• If X is MECp, such solutions satisfy the maximum principle: If u, v are

solutions on E to two problems involving (possibly) different boundary
functions, and u ≥ v p-q.e. on X\E, then u ≥ v p-q.e. on E.

Definitions: u : E → (−∞,∞] is p-superharmonic if u is lower semicontinuous,
u 6≡ ∞, and if for all Ω ⊂⊂ E and all v ∈ N 1,p(X) p-harmonic in Ω: v ≤ u in
E ∼ Ω =⇒ v ≤ u on Ω.
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u : E → R is a p-superminimizer if u ∈ N1,p
loc (E) and for all Ω ⊂⊂ E, and all

φ ∈ N1,p
0 (Ω)+, ∫

Ω

gp
u+φ dµ ≥

∫

Ω

gp
u dµ.

Given Borel f : ∂E → R, define the Perron families

Uf := {u : E → (−∞,∞] : u p-superharm. on E,

u bdd below on E, lim inf
E3x→y∈∂E

u(x) ≥ u(y)},

and

Lf := −U−f ,

the Upper Perron solution

Pf(x) := inf
u∈Uf

ũ(x),

and the Lower Perron solution

Pf(x) := sup
u∈Lf

û(x) = −P (−f)(x).

Say f is resolutive if Pf = Pf .

Theorem (Björn-Björn-Shanmugalingam): If µ is doubling and X supports
the (1, p)-Poincaré, then the following are resolutive:

• f ∈ N1,p(X) (Pf ∈ N1,p(X)).
• continuous functions.
• If E is p-regular, then bounded semicontinuous functions.
• If K ⊂ ∂E is compact and F zero p-capacity set containing all p-irregular

boundary points, then χK∪F (PχK∪F = PχK).

3. The Mumford-Shah Problem and Minimal Surfaces (written by G.
David, T. De Pauw and B. Hardt)

1. The Mumford-Shah functional in dimension 3

Guy David’s lecture focused mainly on open problems connected too the Mumford-
Shah functional. This functional was introduced in image processing, and is a ref-
erence tool in image segmentation, but the main concern here is the study of its
minimizers. It is given by

J(u, K) =

∫

Ω∼K

|∇u|2 +

∫

Ω∼K

|∇u − g|2 + Hn−1(K),

where Ω is a simple bounded domain in Rn, g is a given bounded function on Ω, and
the competitors are pairs (u, K) such that K is closed in Ω, with finite Hausdorff
measure Hn−1(K) of codimension 1, and u is, say, locally of class C1 away from
K.

A rapid account of recent results of regularity for K was given (C1 regularity in
many places by Ambrosio, Fusco, Pallara, Rigot; blow-up techniques and regularity
for the isolated components of K, recent work by Léger and David), but the main
point of the lecture was open questions on the functional itself and on its global
version on Rn obtained by blow-up.
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The most the well-known problem is the conjecture of Mumford and Shah, which
concerns minimizers in dimension 2, and says that if (u, K) is a reduced minimizer
for J , then the singular set K is a finite union of curves of class C1, which may
only meet by sets of 3 and with 120 degrees angles. But David mostly wanted to
convince the audience that there are other, equally interesting and perhaps easier
questions, mainly in dimension 3.

Of course many of the known theorem in dimension 2 become questions in higher
dimensions, because Bonnet’s monotonicity argument and Léger’s magic formula
do not seem to have counterparts, but let us name a few.

First, is the function u essentially determined by K when we know that (u, K)
is a global minimizer in space?

Also, a perturbation result of Ambrosio, Fusco, and Pallara says that of in a
small ball B, K is very flat (i.e., close to a hyperplane) and

∫
B∼K |∇u|2 is very

small, then K is a nice C1 surface in half the ball. It would be interesting to know
whether in this result, planes can be replaced with the other minimal sets in R3,
like the product of a Y and a line.

Finally, we are lacking a precise analogue of the Mumford-Shah conjecture in
3-space: we know precisely a few global minimizers, but we are probably missing a
last basic one.

There are connections between this and other lectures of the conference (such
as Thierry De Pauw and Robert Hardt’s), not only because the techniques mostly
belong to Geometric Measure Theory, but also because a good understanding of the
minimal sets in 3-space, for instance, will almost surely help with the perturbation
results. Conversely, one can hope that Mumford-Shah techniques will be used in
other parts of Geometric Measure Theory.

Some references:
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free

discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, Ox-
ford 2000.

A. Bonnet, On the regularity of edges in image segmentation, Ann. Inst. H.
Poincaré, Analyse non linéaire, Vol 13, 4 (1996), 485-528.

G. David and J.-C. Léger, Monotonicity and separation for the Mumford-Shah
functional, Annales de l’I.H.P., Analyse non linéaire 19, 5, 2002, 631-682.

G. David, Singular sets of minimizers for the Mumford-Shah functional, book in
preparation, some parts can be found at http://www.math.u-psud.fr/ gdavid/

2. On minimizing Scans

For two integers 1 ≤ m ≤ n the problem of Plateau can be stated as follows.
Given an m − 1 dimensional boundary B ⊂ Rn, we seek an m dimensional surface

S ⊂ Rn, spanning B, having least area among all such surfaces. Solving the problem
consists partly in making sense of the italicized words.

H. Federer and W. Fleming introduced the integral currents in Rn (the surfaces),
their mass (the area) and their boundary. We now briefly review their theory. An
m dimensional rectifiable current consists in the following data:

(1) a Borel Hm rectifiable set M ⊂ Rn;
(2) a Borel map ξ : M → ∧mRn such that for Hm almost every x ∈ M a

simple m vector ξ(x) associated with the approximate tangent space to M
at x, of length |ξ(x)| = 1;
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(3) a Borel function θ : M → {1, 2, 3, . . .}.

We moreover assume that this triple (M, ξ, θ) is such that its mass
∫

M

θdH
m < ∞ .

Therefore we can associate with this data an m current T (in the sense of de Rham)
in the following way:

T : D
m(Rn) → R : φ 7→

∫

M

〈φ, ξ〉θdH
m .

Now the boundary of a current T of degree m ≥ 1 is the m− 1 dimensional current
∂T defined by 〈∂T, ζ〉 := 〈T, dζ〉 whenever ζ is a compactly supported differential
form of degree m − 1 with smooth coefficients. An m dimensional integral current
T is an m dimensional rectifiable current such that also ∂T is rectifiable.

The Theorem of Federer and Fleming proves the existence of a mass minimizing
current T among all those having boundary ∂T = B for some m − 1 dimensional
compactly supported rectifiable current B with ∂B = 0. These mass minimizers
model some but not all soap films when n = 3 and m = 2.

Given 0 < q < 1 we let the q mass of a triple (M, ξ, θ) as above be
∫

M

θqdH
m

Requiring that the q mass be finite does not imply that the mass is finite. Therefore
one cannot interpret anymore the triple (M, ξ, θ) as a current, and we simply call it
a scan. Nevertheless it is still possible to define an appropriate notion of boundary
for these objects. We prove that given B as before there exists a q mass minimizing
scan (M, ξ, θ) whose boundary is B. In case B is associated with a smooth embed-
ded submanifold of Rn (without boundary) then the minimizing scan we obtain is
in fact a current (that is it has finite mass). In general we prove that its underly-
ing set M enjoys the following regularity: there exists an m dimensional properly
embedded C1,α submanifold W ⊂ Rn such that the Hausdorff dimension of the
symmetric difference M4W is at most m − 1.

4. Geometric Measure Theory in Singular Metric Spaces

There are several totally different approaches of the notion of rectifiability in sin-
gular metric spaces, in particular Carnot groups (for instance, Heisenberg groups).
Three talks were about possible definitions:

- by B. Kirchheim (joint work with L. Ambrosio) in the setting of general metric
spaces. For them, a Borel subset S of a metric space E is d-rectifiable if there
exists a (countable) sequence of Lipschitz mappings fj : Aj ⊂ Rd → E such
that Hd(S/ ∪j fj(Rd)) = 0. From this, they develop a rather complete theory of
rectifiable sets. As applications, they get a version of the Rademacher theorem
(differentiability of Lipschitz functions), area and co-area formulas, ... They also
developed a theory of currents supported on rectifiable sets in metric spaces.

- by R. Serapioni (joint work with B. Franchi and F.Serra-Cassano) in the case of
Heisenberg groups (and some special Carnot groups). For them, rectifiable sets in
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the Heinsenberg group are defined modulo a set of zero measure as subsets of the
union of C1-manifolds (with respect to the Carnot-Caratheodory structure of the
group). As application, they get a version of the famous theorem of E. De Giorgi
about sets of finite perimeter.

- by S. Pauls in the case of Carnot groups. In his definition, he replaces Lipschitz
images of subsets of Euclidean spaces by Lipschitz images of some fixed subgroup
of the original Carnot group.

In their talks, V. Magnani, P. Mattila J. Tyson discussed classical tools in (eu-
clidean) geometric measure theory (as weak tangent measures, area and co-area
formulas, ...) in the setting of Carnot groups.

It should be mentioned that there was a lot of discussions about this subject
between the talks. This area of research is quite new and most of the definitions
are not totally satisfactory.

Other classical problems of geometric measure theory (in Euclidean spaces) have
been discussed by F. Germinet (comparison of dimensions), T. O’Neil (Visible sets),
I. Laba (The Kakeya problem and related topics), N. Zobin (Whitney-type exten-
sion theorems for functions).


