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Assumptions and Notation

For each applicant, we observe a vector of
variables/attributes x = (x1, . . . , xk).

The outcome y ∈ {0, 1} of the loan is observed for the
accepted applicants, but missing for the rejected
applicants.

We define an auxiliary variable a, with a = 1 if the
applicant is accepted and a = 0 if the applicant is
rejected. Note that y is observed if a = 1 and missing if
a = 0.
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Observed data

x1 x2 . . . . . . xk a y
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Missing Completely at Random

Acceptance does not depend on characteristics of the
applicant, nor on the outcome of the loan:

P (a = 1 | x, y) = P (a = 1).

For example:

I Toss a coin.

I Accept (or reject) all applicants.
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Missing at Random (MAR)

Given the characteristics of the applicant, acceptance
does not depend on the outcome of the loan:

P (a = 1 | x, y) = P (a = 1 | x).

For example: reject if g(x) < c, otherwise accept.
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Missing Not at Random (MNAR)

Given the characteristics of the applicant, acceptance
still depends on the outcome of the loan:

P (a = 1 | x, y) 6= P (a = 1 | x).

For example: reject if g(x) < c, otherwise accept, but
sometimes override this decision on the basis of
attributes that are not in x.
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Why is this distinction important?

In credit scoring we are primarily interested in modelling
the outcome mechanism, i.e. the relation between
probability of default and characteristics of the applicant.

When MAR applies, we don’t have to include the missing
data mechanism (accept/reject decision) into the model
to obtain valid results with respect to the outcome
mechanism.

The missing data mechanism is ignorable.
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The Ignorable Case

For example: reject if g(x) < c, otherwise accept.

The real problem here is that the acceptance rule is
deterministic. We have no observation at all of y in the
reject region (g(x) < c). Therefore we have to
extrapolate into the reject region.

Better would be: reject with probability 0.95 if g(x) < c,
otherwise accept. Bit expensive perhaps?
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The Ignorable Case: function estimation

Complete case analysis is not generally valid under MAR,
but will work if we use a function estimation approach
(e.g. logistic regression). Why?

If MAR applies, then y ⊥⊥ a | x so

P (y = 1 | x, a = 1) = P (y = 1 | x, a = 0)

= P (y = 1 | x),

Hence we can use P (y = 1 | x, a = 1) to estimate
P (y = 1 | x).
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The Ignorable Case: density estimation

Complete case analysis is not generally valid under MAR,
and will not work if we use a density estimation approach
(e.g. linear discriminant analysis). Why not?

We use Bayes’ rule:

P (y = 1 | x) =
P (y = 1)p(x | y = 1)

P (y = 0)p(x | y = 0) + P (y = 1)p(x | y = 1)

These quantities will all be distorted when estimated
from the accepted loans only, because acceptance
depends on x and (marginally) on y as well.
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Density Estimation: Example

Suppose p(x | y = 0) = N(2, 1) and
p(x | y = 1) = N(6, 1), P (y = 0) = P (y = 1) = 1/2

Applicant is accepted if x > 3.

E[x|y = 0, x > 3] ≈ 3.53, E[x|y = 1, x > 3] ≈ 6.00.

Var[x|y = 0, x > 3] ≈ 0.2, Var[x|y = 1, x > 3] ≈ 0.99.

P (y = 0|x > 3) ≈ 0.14 and P (y = 1|x > 3) ≈ 0.86.
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Density Estimation: Example

x

2 3 4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

p(x|y=0,x>3)

p(x|y=1,x>3)



13 JJ J I II J • X

Density Estimation: Example
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The Ignorable Case: density estimation

I We can avoid this bias, by including the rejected
applicants into the estimation process.

I Use a mixture distribution formulation of the problem.

I Estimate with EM-algorithm.
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Function estimation vs density estimation

Total Accept Reject

QDAri .249 .250 .233

QLRri .256 .253 .287
QDA .245 .249 .209
QLR .247 .251 .221

QDAri/QLRri .97 .99 .81
QDA/QLR .99 .99 .94

Relative performance of quadratic discriminant analysis
(QDA) and quadratic logistic regression (QLR), with
n = 150 and 10% rejects
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Function estimation vs density estimation

Total Accept Reject

QDAri .239 .243 .201

QLRri .241 .244 .221
QDA .238 .243 .196
QLR .239 .244 .197

QDAri/QLRri 0.99 1.00 0.91
QDA/QLR 1.00 1.00 0.99

Relative performance of quadratic discriminant analysis
(QDA) and quadratic logistic regression (QLR), with
n = 500 and 10% rejects
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Ignorable case: function estimation
or density estimation?

Function estimation:

I Can use complete case analysis (no bias).

I Not fully efficient.

Density estimation:

I Rejects can (must!) be included in estimation process.

I How to specify component densities?
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The nonignorable case

Distribution of outcome can be written as:

P (y | x) = P (y | x, a = 1)P (a = 1 | x)

+ P (y | x, a = 0)P (a = 0 | x).

Sampling process identifies:

I Acceptance/Rejection probability: P (a | x)

I Outcome conditional on acceptance: P (y | x, a = 1)

but is uninformative on

I Outcome conditional on rejection: P (y | x, a = 0)
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Ignorability assumption

Assume that

P (y | x, a = 1) = P (y | x, a = 0)

Now P (y | x) coincides with the observable distribution
P (y | x, a = 1).

We already looked at this case.
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Bounds on P (y = 1 | x)

Without making any assumptions, we can compute
bounds on P (y = 1 | x):

P (y = 1 | x, a = 1)P (a = 1 | x) ≤
P (y = 1 | x) ≤
P (y = 1 | x, a = 1)P (a = 1 | x) + P (a = 0 | x).

The width of the interval is equal to the rejection
probability at x.
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Bounds on P (y = 1 | x): Example

Suppose

P (a = 1 | x) = 0.8, P (a = 0 | x) = 0.2
P (y = 1 | x, a = 1) = 0.75

Then 0.8× 0.75 ≤ P (y | x) ≤ 0.8× 0.75 + 0.2

So P (y | x) ∈ [0.6, 0.8]



22 JJ J I II J • X

Can we tighten the bounds?

Assume

P (y = 1 | x, a = 0) ≤ P (y = 1 | x, a = 1)

(begging the question?)

Then

P (y = 1 | x, a = 1)P (a = 1 | x) ≤
P (y = 1 | x) ≤
P (y = 1 | x, a = 1)

So P (y | x) ∈ [0.6, 0.75]
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Bivariate Probit Model with Sample Selection

Consists of

I selection equation (models the accept/reject decision)

I Outcome equation (models the outome of the loan)

Model:

a∗i = xiα + εi

y∗i = xiβ + υi for i = 1, 2, . . . , n

a∗i and y∗i are unobserved numeric variables.
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Bivariate Probit Model with Sample Selection

We do observe:

ai =

{
0 if loan rejected (a∗i < 0)
1 if loan accepted (a∗i ≥ 0)

yi =

{
0 if bad loan (y∗i < 0)
1 if good loan (y∗i ≥ 0)

yi is only observed if ai = 1.
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Bivariate Probit Model with Sample Selection

The disturbances (εi, υi) are assumed to follow a
bivariate normal distribution:(

εi
υi

)
∼ N (µ, Σ) µ =

(
0
0

)
Σ =

(
1 ρ
ρ 1

)
If ρ = 0 then

P (y = 1 | x, a = 1) = P (y = 1 | x, a = 0),

and MAR applies after all.
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Bivariate Probit Model with Sample Selection

On the other hand, if ρ > 0 then

P (y = 1 | x, a = 1) > P (y = 1 | x, a = 0),

i.e. at any point x, the probability of a good loan is
higher among the accepts than among the rejects.
If ρ < 0, then

P (y = 1 | x, a = 1) < P (y = 1 | x, a = 0),

i.e. at any point x, the probability of a good loan is
lower among the accepts than among the rejects.
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Bivariate Probit: empirical results and theoretical
properties

I Boyes et al.; Greene; Jacobson and Roszbach found
negative values for ρ !

I Ash and Meester; Banasik, Crook and Thomas: only
marginal improvement of predictive performance.

I Relies on (and is highly sensitive to) untestable
assumption of normality.

I Parameters poorly identified.
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Opinions/Discussion

I You control the missing-data mechanism:
make sure it’s ignorable.

I Avoid bivariate probit model with sample selection
(at least perform a sensitivity analysis).

I Sample from the reject region to avoid complete
extrapolation.

I If data is sufficient, use function estimation approach
rather than density estimation approach.


