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Abstract

Reject inference is the process of estimating the risk of defaulting
for loan applicants that are rejected under the current acceptance pol-
icy. In this survey article we show how the problem of reject inference
can be viewed as one of statistical inference with incomplete data.
We use a well known classification of missing data mechanisms into
ignorable and nonignorable to organize the discussion of different ap-
proaches to reject inference that have been proposed in the literature.
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1 Introduction

Learning from nonrandom samples is a problem that is of considerable im-
portance to data mining in general, and to its application to credit scoring in
particular. In credit scoring, loan applicants are either rejected or accepted
depending on characteristics of the applicant such as age, income and marital
status. Repayment behaviour of the accepted applicants is observed by the
creditor, usually leading after some time to a classification as either a good



or bad (defaulted) loan. As repayment behaviour of rejects is for obvious rea-
sons not observed, complete data is available only for accepted applicants.
Since the creditor does not accept applicants at random, this constitutes a
nonrandom sample from the population of interest. Construction of a new
decision rule based on accepted applicants only may therefore lead to incor-
rect results. In particular, one should be careful in using such a rule to assess
the default risk of rejected applicants. This is, in a nutshell, what is called
the reject inference problem in the credit scoring literature.

It is fairly evident that the problem sketched here is not unique to credit
scoring, but occurs in many different variations whenever some form of se-
lection is performed and one or more additional characteristics are observed
only for objects that were selected into the sample. Thus the methods dis-
cussed here are in fact relevant to such diverse problems as insurance policy
acceptance, personnel selection and medical diagnosis.

We give an overview of model based reject inference methods that have
been proposed in the literature. We do not discuss methods that require the
collection of supplemental information concerning the rejected applicants. It
should be clear however that if reliable information can be obtained somehow,
this can lead to an improvement of the new scoring model. On the other hand,
it may be impossible or very costly to obtain such information. Therefore
the model based methods discussed here remain highly relevant.

In section 2 we formulate the reject inference problem as one of learning
with missing data. We use the classification of missing data mechanisms into
ignorable and nonignorable to organize the material. In section 3 we discuss
two reject inference methods that are applicable if the missing data mech-
anism is ignorable: function estimation and density estimation respectively.
In section 4 we discuss a a bivariate probit model that has been applied in
the nonignorable case. Finally, we draw a number of conclusions and indicate
possible directions for further research.

2 Reject inference as a missing data problem

In order to structure the following discussion, we distinguish between the
selection mechanism that determines whether an applicant is rejected or ac-
cepted by the creditor, and the outcome mechanism that determines the
response (good or bad loan) of the applicant. We also refer to selection as
the missing-data mechanism, since it determines for which applicants the



outcome is observed. In credit scoring, the primary objective is to model the
outcome mechanism. The creditor is interested in using historical data to
learn an updated rule that can be used to make acceptance decisions for new
applicants.

We start by introducing some useful notation. We assume some vector of
variables x = (z1,...,xx) is completely observed for each applicant. It con-
tains the information that is filled in on the loan application form, typically
supplemented with information concerning the credit history of the applicant
that is obtained from a central credit bureau.

The class label y is observed for the accepted applicants, but missing for
the rejected applicants. Without loss of generality we assume y € {0,1},
with the convention that a bad loan is labeled 0, and a good loan is labeled
1. Furthermore, we define an auxiliary variable a, with a = 1 if the applicant
is accepted and a = 0 if the applicant is rejected. Note that y is observed if
a = 1 and missing if @ = 0. Following the classification used in [LR87], we
distinguish between the cases discussed in section 2.1, 2.2, and 2.3.

2.1 Missing completely at random

The class label y is missing completely at random (MCAR) if the probability
that y is observed (i.e. a = 1: the loan is accepted) does not depend on the
value of y, nor on the value of x, i.e.

Pla=1|x,y) =Pla=1). (1)

This situation applies when applications are accepted at random, e.g. by
tossing a coin. This way of “buying experience” has been used to a certain
extent by credit institutions, although there are obvious economic factors
that constrain its use [Hsi78]. Most credit institutions have a somewhat more
sophisticated acceptance policy. In any case, if MCAR applies there really
isn’t a reject inference problem in the first place. Analysis of the accepted
applicants (complete-case analysis) will give reliable results.

2.2 Missing at random

The class label is missing at random (MAR) if acceptance depends on x but
conditional on x does not depend on y, i.e.

Pla=1|x,y) =Pla=1|x). (2)
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This situation frequently occurs in practice, since many creditors nowadays
use a formal selection model. In that case, y is observed only if some function
g of variables occurring in x exceeds a threshold value, say g(x) > ¢, where
c is some constant, usually called the cut-off value.

Note that it follows from 2 that

Ply=1|x,a=1)=Ply=1|x,a=0)=P(y=1|x), (3)

i.e. at any fixed value x, the distribution of the observed y is the same as
the distribution of the missing y. In section 3.1 we will see that this is an
important property following from the MAR assumption.

2.3 Missing not at random

The class label is missing not at random (MNAR) when acceptance still
depends on y, even when we condition on x, i.e.

Pla=1]|x,y) # Pla=1|x). (4)

This typically occurs when acceptance is partly based on characteristics that
are not recorded in x, for example the “general impression” that the loan
officer has of the applicant. It may also occur when a formal selection model
is used, but is sometimes overruled by a loan officer on the basis of character-
istics that are not recorded in x. If these other (unobserved) charateristics
have an additional influence on y, then

Ply=1[x,a=1)#Ply=1|x,a=0), (5)

i.e. at any particular x, the distribution of the observed y differs from the
distribution of the missing .

2.4 Ignorable and nonignorable missing data
mechanisms

The missing data mechanism is said to be ignorable if

1. The MAR condition applies.

2. The parameters of the missing data mechanism are unrelated to those
of the outcome mechanism.



Since the second condition is almost always satisfied, we may treat MAR and
ignorability as equivalent conditions for all practical purposes. The missing
data mechanism is called ignorable, because there is no need to include it in
the model in case we are only interested in the outcome mechanism.

If MAR does not apply, the missing data mechanism is called nonignor-
able. In that case the missing data mechanism must be included in the model
to get good estimates of the parameters of the outcome mechanism.

In section 3 and 4 we discuss methods that are applicable in the ignorable
and nonignorable case respectively.

3 Reject inference with ignorable missing data

In this section we assume that the acceptance/rejection decision depends only
on the observed attributes of the applicant, recorded in the feature vector
x = (21,...,2x). In other words, we assume that the class label y is missing
at random.

We are interested in modeling the outcome mechanism, i.e. the depen-
dence of the probability of a good loan on feature vector x. We write

Py =1x) =1—- Py =0[x) = f(x).

Here f(x) is a single-valued deterministic function that at every point x
specifies the probability that y = 1. The goal of a classification procedure is
to produce an estimate f (x) of f(x) at every point in the feature space.

There are two basic approaches to producing such an estimate, sometimes
called function estimation and density estimation respectively [Fri97]. We
give a short description of the two approaches because, as noted by Hand
and Henley [HH93, HH94|, they have quite different implications for handling
reject inference.

3.1 Function estimation

In the function estimation setting one only models the conditional distribu-
tion of y given x. For binary classification problems we may write in general

y ~ B(1, f(x)),

i.e. y is a Bernoulli random variable with “probability of success” f(x), and
variance o7 (x) = f(x)(1 — f(x)). The most popular technique that uses this
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approach is logistic regression, where
f(x) = Alxa) = (1 +e &),

where A(-) denotes the logistic cumulative distribution function. The goal is
to obtain an estimate f(x|T") using training set 7.

It is important to notice that no assumptions are made concerning the
probability distribution of x. Under the MAR assumption, at any particular
point x, the distribution of the observed y is the same as the distribution of
the missing y (see section 2.2, equation 3). Clearly then, using a function
estimation technique on just the accepted loans (complete case analysis)
yields unbiased estimates of P(y = 1|x).

Furthermore we observe that the rejects do not provide any information
concerning P(y = 1]x), and so it is useless to include them in the estimation
process. This is quite clear if we consider the contribution of the different
observations to the likelihood function. Under the usual assumption that
observations are independent, the likelihood L of n observations is simply
L =TI}, Lj, with

1ol Ply=ilx))ify; =i (i=0,1)
T Z%:oP(ZU:HXj) if y; is missing.

Clearly, if y; is missing it contributes a factor 1 to the likelihood leaving
it unchanged. Thus including the rejects results in the same likelihood as
ignoring them altogether. Including the rejects in an iterative reclassification
procedure as proposed in [Joa93] therefore seems less appropriate in this case.
If the missing data mechanism is ignorable, the rejects do not provide any
information and if it is nonignorable the model discussed in section 4 is more
appropriate.

3.2 Density estimation

An alternative paradigm for estimating f(x) in the classification setting is
based on density estimation. Here Bayes’ theorem

_ m1p1(X)
)= Topo(X) + m1p1 (X) (6)

is applied where p;(x) = p(x|y = i) are the class conditional probability den-
sity functions and m; = P(y = ) are the unconditional (“prior”) probabilities
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of each class. The training data are partioned into subsets 7" = {1y, T} with
the same class label. The data in each subset are separately used to estimate
the class-conditional densities p;(x|7;), and prior probabilities #;. These es-
timates are plugged into (6) to obtain an estimate f(x|T). Examples of this
approach are linear and quadratic discriminant analysis [McL92].

Now let T4 = {T;*, T} denote the training data of the accepted loans.
Because the sampling fraction depends on x, p;(x|T) is distorted, and if the
probability of a bad loan depends (as we hope) on x then #;|T4 is biased as
well [Ave81].

To illustrate these effects, we consider a simple example where selection
is based on a single variable z. Suppose that po(z) is N(u,0?) and we accept
all applicants with x > b, then

Elz|z > bl = p+ oA(a)
where oo = (b — u) /o and

¢(a)

Ma) = 1_7(1)((1);

is called the inverse Mills ratio or hazard function for the distribution [Gre93].
In this expression ¢(-) denotes the standard normal density function, and ®(-)
the standard normal cdf. For the variance of the truncated variable we get

Var[z|r > b] = 02(1 — §(a))

where 0(a) = AMa)(AMa) — ).

As an illustrative example, suppose po(z) = N(2,1) and p;(z) = N(6,1),
mo = m; = 1/2 and suppose an applicant is accepted if z > 3 (i.e. b=3). Then
Elzo|ze > 3] ~ 3.53 and E[z1|x1 > 3] ~ 6.00. Likewise, Var[zq|zy > 3] ~ 0.2
and Var[zi|z; > 3] = 0.99. We observe that the distribution of the bads
is extremely distorted by the truncation: the mean has increased from 2 to
3.53, whereas the variance has decreased from 1 to 0.2. On the other hand,
the distribution of the goods is hardly affected since only a small proportion
of the goods is rejected. Furthermore my|z > 3 ~ 0.14 and 7|z > 3 ~ 0.86,
i.e. the proportion of good loans in the population is of course overestimated
if the selection mechanism is any good.

How do all these distortions influence the estimated probability of a good
loan? On the basis of the true distributions we would compute the probability

7



of a good loan at x = 4 to be 0.5; using a normal model but based on the mean
and variance after truncation we compute a probability of 0.39. In figure 1
we show the computed probability of a good loan at different values of x
on the basis of the true distribution (solid line) and the normal distribution
with mean and variance after truncation (dashed line). We can see that
the truncated version is way off in the reject region (r < 3) whereas it is
reasonably close in the accept region (z > 3). It is however very hard to
draw any general conclusions concerning the bias caused by truncation since

this of course critically depends on the parameters of the true distributions
as well as the selection rule.

1|x)
1 1 1 1 1 1 1

Py
00 01 02 03 04 05 06 07 08 09 10

Figure 1: P(y = 1|z) for true distribution (solid line) and truncated distri-
bution (dashed line).

There are however ways to avoid this bias, by including the rejected ap-
plicants into the estimation process. A straightforward way to do this is by
using a mixture distribution formulation of the problem. Mixture distribu-
tions [EH81, MB88]| are distributions which can be expressed as “weighted



averages” of a number of component distributions.
In general, a finite mixture can be written as

p(x) = éﬂzpi(xs 0;) (7)

where ¢ is the number of components, 7; the mixing proportions and #6;
the component parameter vectors. Henceforth we assume that the number
of components equals the relevant number of classes, so each component
models a class-conditional distribution. For the credit scoring problem, all
observations are assumed to be drawn from the two-component mixture

p(x) = mopo(x; 0o) + mipi(x;61), (8)

where we observe the component from which an observation was drawn for
the accepted loans but not for the rejected loans. We consider the contri-
bution to the likelihood of cases with y observed (component known) and y
missing (component unknown) respectively

T p(x)) = Sio mipi(x;) if y; is missing.
If there are m rejected loans and n accepted loans, the observed-data
likelihood may be written

Lops () = ﬁ{ loﬁipi(xj;ei)} Trﬁn {21: zijﬂ'ipi(xj;ei)}

j=1 Ui= j=m+1 Li=0

where ¥ = (7',6')" denotes the vector of all unknown parameters, and z;;
equals 1 if observation j has class-label 7, and zero otherwise.

For computational convenience one often considers the loglikelihood L., =
log Lobs

m 1
'Cobs(\Il) = Z IOg {Z 71-ipi(xj; 0@)} +
Jj=1 1=0
m+n 1

>0 zijlog(mipi(x;; ;)

j=m+11=0

In general this tends to be a rather complicated function of ¥, and finding
maximum likelihood estimates may require special computational algorithms.



One can use the Expectation-Maximization (EM) algorithm [DLR77] for this
purpsose. The general strategy is based on optimizing the complete-data
loglikelihood

m+n c

QY |V = %" sz log(mipi(xj; 6;))
j=1 =1

by repeated application of the E-step and M-step until convergence of the pa-
rameter estimates. In the first E-step, one uses some initial estimate ¥©
calculate the expectation of the complete-data loglikelihood. For the problem
under consideration, this can be done by calculating the posterior probabil-
ities of groug) membership for the unclassified cases, and entering these as
values of z in the complete-data loglikelihood. In the M-step, the algo-
rithm chooses Wt+1) that maximizes the complete-data loglikelihood that
was formed in the last E-step. In case of normal components one can find
closed-form solutions for the M-step [MB88]. The E and M steps are al-
ternated repeatedly until convergence. It has been shown that, under very
weak conditions, this algorithm will yield a local maximum of the likelihood
Lqps of the observed data. For a more detailed and rigorous account of the
application of EM to this problem, the reader is referred to [McL92|, pages
39-43.

3.3 Function estimation or density estimation?

We have discussed two methods that are applicable in the case of ignorable
missing data. Which, if any, is to be preferred?

The attractive property of the function estimation approach is that we
can use a standard method of analysis, e.g. logistic regression, using just
the accepted cases. The downside is that this is not fully efficient, since not
all information can be used: the information on the rejected applicants is
ignored.

A density based approach allows the use of information available in the
rejects, but requires more complicated computational techniques. Further-
more one has to specify an appropriate probability model for the component
distributions. As remarked by Hand [HH93], credit scoring problems tend to
contain many discrete variables and non-normal marginal distributions. An
interesting alternative might be to use the general location model [Sch97],
which allows for the occurrence of discrete variables but is still based on
normality for the continuous part. Feelders, Chang and McLachlan [FCM98|

10



discuss a method for modelling non-normal distributions, based on mod-
elling the class-conditional distributions as mixtures as well. They show how
the evidently non-normal distributions of a number of financial ratios can be
modelled as mixtures of two normal components. Unfortunately this resulted
in only a marginal improvement in classification accuracy.

Feelders [Fee99| performs a small simulation study to compare the func-
tion estimation and density estimation approach to reject inference. The
data were drawn from two normal distributions, one for each class, with dif-
ferent means and covariance matrices. Hence the optimal classification rule
is a quadratic function. Then selection was performed by taking a linear
combination of the variables, and rejecting all cases with a score below a cer-
tain cutoff level for this linear combination. The experiments indicate that
for moderate sample size the predictive performance of the density based
approach is better, especially in the reject region. As the sample size gets
larger, the bias component of prediction error becomes dominant over the
variance component. Since the correct specification was used for both mod-
els, the difference in predictive performance disappeared as the sample size
increased.

4 Reject inference with nonignorable
missing data

In this section we review an approach that has been proposed in the litera-
ture for cases where the missing-data (selection) mechanism is nonignorable.
Recall that this situation is characterized by

Ply=1|x,a=1)#Ply=1|x,a=0).

The selection mechanism may be nonignorable when not all the relevant
decision variables are recorded in the dataset, and the variables that are
not recorded do have an additional (i.e. additional to the variables that are
recorded) influence on the outcome.

The model that has been used in the literature for this case is a bivariate
probit model with sample selection [BHL89, Gre98, Gre92, JR98]. It consists
of two equations, one for the selection mechanism (i.e. the accept/reject
decision) and one for the outcome (good/bad loan):
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al = xa+teg; 9)
yr = x;f+v fori=1,2,...)n (10)
In these equations a; and y; are unobserved numeric variables.

The binary variable a; takes value 1 if the loan was accepted and 0 if the
application was rejected:

o — 0 if loan rejected (af < 0)
* ] 1ifloan accepted (a} > 0)

Likewise, the binary variable y; takes the value 0 if the loan is classified
as bad, and the value 1 otherwise:

~_ | 0ifbad loan (y; < 0)
* ] 1if good loan (y; > 0)

Furthermore, y; is only observed if a; = 1.
The disturbances are assumed to be bivariate normally distributed

(o) =vwn =) == (5 1)

According to this model, there are three types of observations, rejected
loans, accepted bad loans and accepted good loans with respective probabil-
ities:

a=0 : Pla=0)=1-d(xa)
a=1y=0 : Pla=1,y=0) = d(xa) — P3(xa, x0; p)
a=1y=1 : Pla=1y=1) = Dy(xa,x0;p) (11)

where ®(-) represents the univariate standard normal cdf and ®,(-,-; p) the
bivariate standard normal cdf with correlation coefficient p.
The appropriate log-likelihood function is readily derived from (11):

InL(e, B,p) = Zn;{(l —a;) In(1 — &(x;0))

+ ai(1 — y;) In(@(x;00) — Po(x500, X85 p))
+ ayi In @o(x,0, %65 p) }
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This model is identified except for some pathological cases [MS85], and
can be estimated with maximum likelihood.

The correlation coefficient of the disturbances provides the link between
the two equations. If this is the correct specification (a big if), and p = 0
then we are back to

Ply=1|x,a=1)=Ply=1|x,a=0),
and MAR applies after all. On the other hand, if p > 0 then
Ply=1|x,a=1)>Ply=1]|x%,a=0),

i.e. at a fixed point x, the probability of a good loan is higher among the
accepts than among the rejects. This is what you would expect when the
decision of the model is overruled by loan officers for “good reasons” that are
however not recorded in x. Finally if p < 0, then

Ply=1|x,a=1)<P(ly=1]|x,a=0),

i.e. at a fixed point x, the probability of a good loan is lower among the
accepts than among the rejects.

Somewhat surprisingly perhaps, Jacobson and Roszbach [JRI8] Boyes
et al. [BHL89] and Greene [Gre98, Gre92| found negative values for p of
—0.9234, —0.353 and —0.1178 respectively '. Jacobson and Roszbach con-
clude that the bank involved does not appear to be minimizing the default
risk. This follows not only from the negative correlation found, but also from
the fact that many of the variables that make the bank approve loans are not
among those that reduce the probability of default (i.e. are significant in the
selection equation but not in the default equation, or appear with opposite
signs). Boyes et al. [BHL89] make similar observations, and explain these
findings by the hypothesis that the bank follows a lending policy where they
pick out loans with higher default risk because they have higher returns due
to the size of the loan. The findings of Jacobson and Roszbach contradict
this hypothesis because they find that the size of the loan does not affect
default risk. They come to the conclusion that the results bear evidence of a
lending institution that has attempted to minimize default risk or maximize
a simple return function, but without success.

!The correlations reported in [BHL89, Gre98, Gre92)] are in fact positive, but the the
value of y was defined the other way around
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The ultimate question from a practical viewpoint is whether modeling the
selection mechanism leads to a better default equation in terms of predic-
tive accuracy. Unfortunately this question is hard to answer with real credit
data because the true class label of the rejected applicants is unknown. Nei-
ther of the studies [JR98, BHL89, Gre98] attempted to answer this question.
Banasik et al. [BCT02] report on a study that did compare the predictive
performance of the single equation model and the bivariate probit model.
They conclude that the adoption of a bivariate probit model only marginally
improves predictive performance. This observation is confirmed by [AM02],
but there clearly is scope for further empirical study in this direction.

5 Summary and conclusions

We have given an overview of model based methods for reject inference in
credit scoring, based on the distinction between ignorable and nonignorable
selection mechanisms. If the selection mechanism is ignorable, we can use
function estimation (e.g. logistic regression) on accepted loans only and
obtain unbiased estimates (provided of course the model assumptions are
correct). Furthermore, we cannot do better than that since the rejects contain
no information at all concerning the model parameters in this case. Therefore
function estimation is not fully efficient.

Alternatively one may use a density estimation approach such as linear
or quadratic discriminant analysis. In that case, ignoring the rejects leads to
distortion of the class-conditional densities and class prior probabilities. It
is however possible to include the rejects in the estimation process by using
a mixture model formulation of the problem. The parameters can then be
reliably estimated with the EM-algorithm.

If the selection mechanism is nonignorable, we have to include it in our
model to obtain valid inferences. Several authors have proposed to use a bi-
variate probit model with sample selection in this case. Preliminary studies
show however that the gains of this approach in terms of predictive perfor-
mance are only marginal. Furthermore, the results tend to be rather sensitive
to departures from the normality assumption.

The foregoing observations give rise to a number of interesting directions
for further research. In case the selection mechanism is ignorable, the mixture
modelling approach is more efficient than the function estimation approach.
On the other hand, the normality assumption of the standard discriminant
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analysis model is not very realistic for credit scoring, where usually both
numeric and categorical variables occur. Therefore, it would be interesting
to look at different component distributions in the mixture model, that allow
for a combination of numeric and categorical variables, and for non-normal
numeric data. We have suggested the general location model as an interesting
alternative.

For the nonignorable case the bivarate probit model with sample selec-
tion has been applied in a number of studies. Because of the sensitivity of
this model to departures from normality, it would be interesting to investi-
gate semi-parametric alternatives in order to relax the normality assumption.
As a general strategy, it is advisable to compare several plausible nonignor-
able mechanisms and analyse how much the conclusions differ between them,
and how much they differ from those obtained by ignoring the missing data
mechanism altogether.

From a practical viewpoint, it might be preferrable to avoid nonignorable
selection mechanisms. Usually the creditor knows the rule that was used to
accept credit in the past, and in the case of overrules it might be worth the
effort to find out the reasons for overruling and recording them in the dataset.
In any case, ignorability is a question of degree, and the more variables we
include that are predictive for acceptance, the closer we get to ignorability.

Our final conclusion is that there is still much scope for further research
in this area, that might benefit not only credit risk modeling, but many other
data mining problems that involve similar sample selection mechanisms.
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