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1 Introduction
Representation theory studies the symmetries arising from algebraic objects. It began with the study of the
actions of symmetric groups on regular polygons, and its modern treatment encompasses automorphic forms,
invariant theory, harmonic analysis, as well as applications to mathematical physics. In this program we
delved into quantum symmetries, namely the representation theory of Hopf algebras, and its ramifications.

The purpose of this program was to study the deformations arising from tensor products of Hopf algebras,
and understanding their relation with the deformations arising from tensor products of Frobenius algebras, at
a categorical level. These algebras have had a major impact in the modern approach to quantum symmetries,
arguably the most imortant one being their uses to construct topological invariants. This first appeared in
work of Majid [5], where he employed quantum groups to construct 3-dimensional topological quantum
field theories. The modern incarnation of these applications is exemplified in Turaev–Virelizier [8], where
they use spherical fusion categories instead. The symmetric monoidal equivalence between commutative
Frobenius algebras and 2-dimensional topological quantum field theories is well known by Abrams [1] and
Ocal [6], but the topological meaning of noncommutative Frobenius algebras remains elusive. A natural way
of introducing this noncommutativity in a controlled way is to consider the deformations of tensor products
of algebras proposed by Čap–Schichl–Vanžura [3], known as twisted tensor products, as well as their dual,
which deserve the name cotwisted tensor products.

Understanding twisted and cotwisted tensor products of Frobenius algebras was pioneered by Ocal–
Oswald [7], where they characterized certain classes of them. Their techniques are valid at the level of
algebra and coalgebra objects in braided monoidal categories, establishing a path to work with the aforemen-
tioned deformations at a categorical level. This program brought together these authors to build upon their
previous efforts.

2 Algebraic objects in monoidal categories
The basic insight of representation theory is that, given an algebra A over a field k, one can understand
it through its modules. These are vector spaces M over the same field k equipped with a k linear map
ρM : A ⊗ M → M compatible with the multiplication m and the unit u of A. Namely, the equalities
(ρM )(ρM⊗idA) = (ρM )(idM⊗m) and (ρM )(idM⊗u) = (idM )(idM⊗ρk) hold. As the above presentation
suggests, all these notions can be given in terms of objects and morphisms in the category of k vector spaces
Veck, as well as the commutativity of certain diagrams (or equivalently, the equality of certain morphisms in
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Veck). This hints at the concepts of algebra and module being applicable within a larger family of categories
admitting a generalization of the tensor product.

These are known as monoidal categories. They are a category C equipped with a bifunctor⊗ : C×C→ C
called the tensor product, a collection of natural isomorphisms αX,Y,C : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) for
each triple of objects X,Y, Z in C called the associativity morphisms, a distinguished object 1 of C called the
unit, a collection of natural isomorphisms lX : 1⊗X → X called the left unitors, and a collection of natural
isomorphisms rX : X ⊗ 1→ X called the right unitors, satisfying the pentagon and the triangle axioms.

(idW ⊗ αX,Y,Z)(αW,X⊗Y,Z)(αW,X,Y ⊗ idZ) = (αW,X,Y⊗Z)(αW⊗X,Y,Z) (Pentagon axiom)

rX ⊗ idY = (idX ⊗ lY )(αX,1,Y ) (Triangle axiom)

For simplicity, in the rest of this report we will only consider symmetric monoidal categories. These are
monoidal categories C equipped with a collection of natural isomorphisms cX,Y : X ⊗ Y → Y ⊗ X for
each pair of objects X,Y in C called the symmetry morphisms, satisfying the left hexagon, right hexagon,
and symmetry axioms.

(αY,Z,X)(cX,Y⊗Z)(αX,Y,Z) = (idY ⊗ cX,Z)(αY,X,Z)(cX,Y ⊗ idZ) (Left hexagon axiom)

(α−1
Z,X,Y )(cX⊗Y,Z)(α−1

X,Y,Z) = (cX,Z ⊗ idY )(α−1
X,Z,Y )(idZ ⊗ cX,Y ) (Right hexagon axiom)

(cX,Y )(cY,X) = idX⊗Y (Symmetry axiom)

Fixing a symmetric monoidal category C for the rest of this report, we can now consider all the objects of
interest for representation theory (and quantum symmetries in particular) within it.

An algebra object in C is an object A of C equipped with a morphism m : A ⊗ A → A in C called
multiplication and a morphism u : 1→ A in C called unit satisfying the associativity, left unit, and right unit
axioms.

(m⊗ idA)(m) = (m)(idA ⊗m)(αA,A,A) (Associativity axiom)

(m)(u⊗ idA) = (idA)(lA) (Left unit axiom)

(m)(idA ⊗ u) = (idA)(rA) (Right unit axiom)

Its dual notion is called a coalgebra object in C. Namely, it is an algebra object in the opposite category
Cop, which has a comultiplication ∆ and a counit ε satisfying the coassociativity, left counit, and right counit
axioms. We are interested in the following ways of making the structures of an algebra object A in C and a
coalgebra object A in C compatible.

A Frobenius algebra in C is an objectA of C equipped with a multiplicationm, a unit u, a comultiplication
∆, and a counit ε, satisfying that A is an algebra object in C, A is a coalgebra object in C, and the Frobenius
axiom.

(idA ⊗m)(∆⊗ idA) = (∆)(m) = (m⊗ idA)(idA ⊗∆) (Frobenius axiom)

This condition is, in fact, a topological restriction. Interpreting the multiplication as a (thinned) cup and the
comultiplication as a (thinned) cap, it is equivalent to the fact that the string diagram obtained by stacking
can be modified up to isotopy without altering the final result.

A bialgebra in C is an objectA of C equipped with a multiplicationm, a unit u, a comultiplication ∆, and
a counit ε, satisfying that A is an algebra object in C, A is a coalgebra object in C, and the bialgebra axioms.

(m⊗m)(idA ⊗ cA,A ⊗ idA)(∆⊗∆) = (m)(∆) (Bialgebra axiom for m and ∆)

(ι)(ε⊗ ε) = (ε)(∆) (Bialgebra axiom for m and ε)

(∆)(u) = (u⊗ u)(ι) (Bialgebra axiom for u and ∆)

id1 = (ε)(u) (Bialgebra axiom for u and ε)

An important observation is that l1 =: ι := r1 in C, so there is only one canonical isomorphism ι : 1⊗1→ 1.
Bialgebras are fundamental objects because their categories of modules classify monoidal categories.



3

A Hopf algebra in C is a bialgebra A in C equipped with an invertible morphism S : A → A satisfying
the antipode axiom.

(m)(idA ⊗ S)(∆) = (u)(ε) = (m)(S ⊗ idA)(∆) (Antipode axiom)

Hopf algebras are fundamental objects because their categories of modules classify finite tensor categories
admitting a fiber functor. In fact, the categories of modules of weak Hopf algebras classify multifusion
categories. The study of these more general objects over C = Veck is a rich and fruitful modern approach to
quantum symmetries, but little is known about them over a general symmetric monoidal category C.

A vital relation between Frobenius algebras and Hopf algebras is that when C = Veck every Hopf algebra
is a Frobenius algebra, but with a different comultiplication and counit (the multiplication and unit remain
unchanged). The only exception is the object 1 equipped with m = ι, u = id1, ∆ = ι−1, ε = id1, and
ε = id1, which is simultaneously a Fobenius algebra and a Hopf algebra.

3 Scientific progress made
The key contribution of this program is the study of twisted and cotwisted tensor products of Hopf algebras
and Frobenius algebras within monoidal categories.

Given A and B algebras in C, an invertible morphism τ : B ⊗ A → A ⊗ B in C is said to be a
twist when it is compatible with the multiplications mA and mB and the units uA and uB of A and B
respectively. Namely, the equalities (τ)(mB ⊗mA) = (mA⊗mB)(idA⊗ τ ⊗ idB)(τ ⊗ τ)(idB ⊗ τ ⊗ idA),
(uA ⊗ idB)(cB,1) = (τ)(idB ⊗ uA), and (idA ⊗ uB)(c1,A) = (τ)(uB ⊗ idB) hold. When τ is a twist, the
object A ⊗ B in C equipped with m = (mA ⊗mB)(idA ⊗ τ ⊗ idB) and u = (uA ⊗ uB)(ι) is an algebra
object in C, called the twisted tensor product of A and B.

The dual notions to twist and twisted tensor product are cotwist and cotwisted tensor product. They arise
by taking A and B algebras in Cop, taking θ a twist in Cop (which is a morphism θ : A ⊗ B → B ⊗ A
in C), and taking the resulting twisted tensor product of A and B in Cop. In this categorical framework,
the fact that A ⊗ B equipped with ∆ = (1 ⊗ θ ⊗ 1)(∆A ⊗ ∆B) and ε = (ι)(εA ⊗ εB) is a coalgebra
object in C is an immediate corollary of the aforementioned result for twisted tensor products. This ability
to reason simultaneously for algebras and coalgebras is one of the desirable advantages we seek by working
categorically.

The twisted tensor product of A and B via τ is denoted by A ⊗τ B, and the cotwisted tensor product
of A and B via θ is denoted by A ⊗θ B. The case when C = Veck is the context in which twisted and
cotwisted tensor products were originally conceived, and it has recently regained attention in the literature.
Among others, there have been attempts at classifying them, at computing their invariants, and at determining
whether they inherit any meaningful properties. Our interests during this program align with these later ideas.

Understanding any facet of twisted or cotwisted tensor products in full generality is usually a near im-
possible task. They are vast families of algebras encompassing triangular algebras, smash products of Hopf
algebras, and many of the known biproduct constructions, which makes finding a common behavior challeng-
ing. The fact that our categorical approach has been successful at these tasks for both twisted and cotwisted
tensor products A ⊗θτ B attests to its power. In this program we concluded the characterization of when
twisted and cotwisted tensor products inherit the structure of a Frobenius algebra, and we provided novel
conditions under which the twisted and cotwisted tensor product of Hopf algebras inherite the structure of a
Hopf algebra. These can be summarized in the following results.

Theorem 1 Let C be a monoidal category, let A and B be Frobenius algebras in C, let τ : B ⊗A→ A⊗B
be a twist in C, and let θ : A⊗B → B ⊗A be a cotwist in C. Then:

A⊗θτ B is a Frobenius algebra in C if and only if θ = τ−1.

Theorem 2 Let C be a braided monoidal category, letA andB be Hopf algebras in C, let τ : B⊗A→ A⊗B
be a twist in C, and let θ : A⊗B → B ⊗A be a cotwist in C. Suppose that either

(θ ⊗ idB)(idA ⊗ cB,B)(τ ⊗ idB) = (idB ⊗ τ)(cB,B ⊗ idA)(idB ⊗ θ), or

(θ−1 ⊗ idA)(idB ⊗ cA,A)(τ−1 ⊗ idA) = (idA ⊗ τ−1)(cA,A ⊗ idB)(idA ⊗ θ−1).

Then:
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A⊗θτ B is a Hopf algebra.

In particular, when τ = cB,A or θ = cA,B then a twisted and cotwisted tensor product of Hopf algebras
is always a Hopf algebra. This is a generalization of the well known result that a tensor product of Hopf
algebras can be endowed with a Hopf algebra structure by swapping the two algebras when multiplying and
comultiplying. This particular case of Theorem 2 already recovers useful examples, such as the group algebra
of the semidirect product of groups, the Drinfeld double of a Hopf algebra, and many other commutative and
cocommutative Hopf algebras.

4 Outcomes and conclusions
This program achieved its goal of characterizing when the twisted and cotwisted tensor product of Frobenius
algebras inherits a Frobenius algebra structure from its components, and also achieved its goal of providing
new sufficient conditions under which the twisted and cotwisted tensor product of Hopf algebras inherits a
Hopf algebra structure from its components.

A curious observation is that the conditions of Theorem 2 are topological in nature. Using the string
diagrams native to monoidal categories, the maps τ and θ can be interpreted as special invertible crossings,
and the conditions become generalized third Reidemeister moves. Since (as we hinted above) Hopf algebras
are fundamentally not topological in nature, this adds a layer of nuance that deserves further exploration. In
particular, this may point at deeper relations with other topological conditions that have also played a role in
the literature of both monoidal categories and quantum groups, such as the Yang–Baxter equation.

5 A personal note from the organizers
The organizers would like to wholeheartedly thank the BIRS directorship and staff for the opportunity of
having this program. It was a deeply rewarding experience that we enjoyed to the fullest. The work we
conducted during our stay is now at the core of our research programs.
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