
Singular perturbation approach to rattleback reversals

G. W. Patrick (University of Saskatchewan)
C. Stoica ( Wilfrid Laurier)

Apr-l 5–April 12, 2009

Lagrangian systems with constraints are common models of fundamental or idealized physical systems.
Holonomic constraints, typified in the example of a freely moving rigid body, give rise to systems with certain
special properties, such as symplectic Hamiltonian systems. Nonholonomic constraints arise in such systems
as a disk which rolls without slipping.

Holonomic and nonholonomic systems have differing mathematical structures, and they have different
behaviors [1, 3, 4, 9, 21, 22, 24]. For example, when a vehicle has good contact with a road, then it is
behaving as a nonholonomic system. Angular momentum is not conserved; otherwise, the vehicle could not
be steered into a turn. Under icy conditions, the vehicle is essentially a holonomic system; then steering
cannot change its angular momentum, the vehicle cannot be turned, and whatever spin it has will persist.
Conservation of energy, however, is a dominant feature of both systems.

A rattleback is a toy top in the shape of long, narrow boat, with a slight, usually imperceptible asymmetry,
either in its shape, or in its mass distribution. Many people anticipate that, when spun on a table, the rattleback
will behave as other tops do i.e. holonomically. And, when spun in one direction, the rattleback will behave
like this. When spun in the opposite direction, rattlebacks will spontaneously reverse direction, exhibiting
nonholonomic non-conservation of angular momentum. As it turns out, because of the asymmetry, the table
and the rattleback are coupled nonholonomically. Angular momentum is not conserved: some time after
spinning in the unstable direction, the rattleback is observed to be spinning, at nearly the same rate, in the
opposite direction. The transition between the two spins is dynamically complicated: it occurs through a
non-spinning longitudinal wobbling motion. This is the rattleback’s spin reversal.

Rattlebacks have been observed, and the basic mathematical model obtained, for over a century [26, 27],
and the have been researched off-an-on since then [2, 5, 6, 7, 8, 15, 16, 17, 19, 20, 23, 25, 28]. But the spin
reversal is a global dynamical feature, and its understanding is incomplete. Part of the problem is the sheer
complexity of the system. The (reduced) rattleback equations of motion, for a body with surfaceM rolling
on the plane, are

LM(s)
ds

dt
= Ω× nM(s),(

I −m(s∧)2
) dΩ
dt

= −U, U ≡ Ω× I Ω +ms×
(

Ω× ds

dt
+ (s · Ω)Ω + gnM

)
,

where Ω is the body-reference angular velocity, as in the Euler equation for a rigid body; s ∈ M is the
body-reference contact point; nM is the unit normal ofM; and LM is the Weingarten map ofM. Putting
the equations in the usual first-order form requires inverting LM(s), with result a complicated nonlinear
differential equation, on the five dimensional manifoldM× R3.

In the workshop, we explored a new idea about rattleback spin reversals, with objective a better under-
standing, and especially a proof, that it occurs in some dynamical regimes. Taking advantage of the slender
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geometry, we view the rattleback as a perturbation of a cylindrical reference system i.e. in the reference sys-
tem,M = C × [−l/2, l/2], l > 0, where C is a curve. Since cylinders are not curved, they cannot wobble,
so spin reversal cannot occur in the reference system, only in small perturbations of it. The reference system
has, however, a robust feature: for a cylinder, LM(s) is non-invertible, because the principle curvature of
a cylinder along its axis is zero. As a result the perturbations we are considering are singular, such as, for
example, the differential equation

ε
dx

dt
= (v + αx) cosx,

dv

dt
= − sinx (1)

as ε is perturbed from zero. Such singular perturbations are central in Applied Mathematics. Singularly
perturbed systems display fast transitions between slow invariant manifolds, of which there is a related so-
phisticated dynamical and geometric theory [10, 11, 12, 13, 14, 18].

At the BIRS workshop, we began our research into singular perturbations and rattleback spin-reversals.
We managed to see that the rapid transitions between relatively stable spin and wobbling modes could be
explained as fast transitions of a singularly perturbed system. We computed what the invariant manifolds
might be, and how the fast vector field meets the codimension 1 invariant manifolds, where transversally or
not. And we analyzed possible of the behaviors of the simpler systems (1).
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