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1 Introduction to the field

One of the “big problems” of number theory is to understaredgét of rational points on a variety, or equiv-
alently, the rational solutions to a system of polynomialaépns. Despite thousands of years of research,
we are very far from having a general method for solving atlhsproblems. There is even some evidence
that deciding the existence of a rational solution is an ait#ble problem (the corresponding problem for
integers, “Hilbert's Tenth Problem”, was proved to be uridable by Martin Davis, Hilary Putnam, Julia
Robinson [6]. and Yuri Matijasevi€ [11]. Therefore mangearchers have tried to solve special cases of the
general problem.

One way to subdivide the task is to classify varieties byrtd@nension, which can be defined as the
dimension of the complex analytic space whose underlyingssthe set of complex number solutions to
the system. This space will be a complex manifold if the eigunatsatisfy the differential criterion for
smoothness. The study of this complex analytic space isubif@f more than just classification: it was
discovered in the 20th century that the geometry of thissbas a profound influence on the set of rational
points.

The rational points ofi-dimensional varieties are easy to understand. By suifabjection, one reduces
to the problem of understanding the rational roots of a patyial in one variable with rational coefficients,
and there are elementary methods for understanding these.

Rational points on curved {dimensional varietie) are already much harder: there is still no general
algorithm for determining the set of rational points thas h&en proved to determine the rational points in
every case. One can reduce to the case where the curve ishsipagéctive, and geometrically integral, or
equivalently, where the corresponding complex analytacegds a compact Riemann surface; from now on
we will assume this. Then one can subdivide the problem éuyticcording to the topological gengsf the
compact Riemann surface. This nonnegative integean also be defined algebraically as the dimension of
the space of regular differentials, or the dimension of treag cohomology spadd (X, Ox).

Major number-theoretic breakthroughs of the 20th centamehgiven us a qualitative understanding of
the setX (Q) of rational points on a (smooth, projective, geometricallggral) curve as above. Many of
these results generalize to the case where the@edfirational numbers is replaced by a finite extension, or
even some other types of fields, but for simplicity we willaliss the case @j.

In the casey = 0, the problem of deciding whethe¥ (Q) is nonempty is equivalent to the problem
of deciding whether a quadratic form in three variables ésents), and a criterion for this in terms of
congruences goes back to work of Legendre. Moreover, ifianalt point exists, therX is isomorphic to
the projective liné?! overQ, and hence the rational solutions may be parametrizednBtarice, the special
case of (the projective closure of) the cume+ 3> = 1 yields the familiar parametrization of Pythagorean
triples.



In the casgy = 1, it is still not known how to decide whethéf (Q) is nonempty. Suppose thai(Q)
is nonempty. Then the choice of a point }(Q) leads to a group structure on the variétfy so X (Q)
acquires the structure of an abelian group. The famous Merdsl theorem (due to Mordell in the special
case we are considering), proved in the 1920s, states teairbup X (Q) is finitely generated. The proof
combines a generalization of Fermat's method of infiniteedaswith a study of the sizes of numerators and
denominators of the coordinates of rational points. ThedébiWeil theorem remains a qualitative result,
however, in the sense that there is no algorithm that hasfresed to construct generators for this group, or
even to calculate the rank of this group. More preciselygaeshers have developed algorithms to solve these
problems, but these algorithms terminate in general orfigrievery elliptic curveE’ overQ, there exists a
primep such that the-primary part of a torsion abelian group called the Shafiahe\fate group is finite, as
has been conjectured.

Inthe casg > 2, Gerd Faltings [7] proved Mordell's 1922 conjecture thgtQ) is finite, and a few years
later Paul Vojta [15] gave a completely different proof. Bluése proofs are ineffective, even in principle:
given an explicit curve, the proofs do not give a procedurdigting the rational points: they only (with extra
work) give an upper bound for the number of rational poinepehding on the input curve. These upper
bounds typically appear to be ridiculously large.

There are other techniques that were developed to solve fiteblems:

1. In some cases, one can determine the rational points awv@ &y finding a non-constant morphism
from it to an abelian varietyl whose group of rational points is finite; here one often usegacobian
J of X, sinceJ is the universal abelian variety through which all morptégrom X to abelian varieties
map. If one succeeds in finding such a morphi$m- A, one can hope to determine all rational points
on A and then examine their preimagesin

2. If one finds a morphism fronX to an abelian varietyd such thatA(Q) is infinite, but satisfies
rank A(Q) < dim A, then there is @-adic analytic method due to Chabauty [3] that provides an
upper bound on the number of rational pointsXdnMoreover, this upper bound is usually reasonable,
and often is even sharp, in which case it can be used to deteitme sefX (Q). The method operates
by first computing4(Q) (in fact, one can usually get by with knowledge of a subgroifinie index
therein), and then looking at the intersection of the im&ghel -dimensionap-adic manifoldX (Q,,),
with the p-adic closure ofA(Q) in A(Q,): the latter closure can be shown to bg-adic analytic sub-
manifold of dimension at mostnk A(Q), so dimension counting suggests that the intersectioneabov
is 0-dimensional; Chabauty proved that it was finite, and RoBeteman [5] showed how to obtain a
very explicit upper bound o# X (Q) via this method.

3. If for every abelian variety quotiemt of the Jacobian o, the inequalityrank A(Q) < dim A is
violated, then one can try instead ideas originating in wafrichevalley-Weil [4], again generalizing
Fermat's infinite descent. One can replace the problem oinfincational points on a given cun
of genus at leas? with the problem of determining the rational points for aténset of unramified
covers of the given curve. This is often helpful, and it mayhz in principle combining this method
with Chabauty’s method always succeeds in determining dtierral points (see [12] and [14], for
instance), but in practice, the fact that the covering ceiheve higher genus than often makes the
computation too time-consuming to carry out to completidiso, it seems very difficult to prove that
this combination of methods would always succeed in priecip

2 Recent developments and open problems

In [8], Minhyong Kim introduced a new idea for studying ratad and integral points on curves. Loosely
speaking, the Jacobian of a curve classifies geometridadlijem covers of the curve, and Chabauty’s method
can be understood as applying descent to pass to the toweoaiarically abelian unramified covers of
p-power degree. Kim’s idea was instead to use the tower ofrsmaming from the prg» nilpotent quotient

of the algebraic fundamental group of the curve. In dire@lagy with Chabauty’s method, he defines a
“unipotent Albanese map” fronX (Q,,) not to J(Q,) but to thep-adic points of a pro-unipotent algebraic
groupm i pr(X,x). Using this, he gave a new proof of Siegel’s theorem on théefieiss of the set of
solutions toS-unit equations, folS a finite set of places df. Although this particular result can also be



obtained by the more elementary approach of applying Chgisamethod to unramified covers & —
{0, 1, 00}, it seemed possible that Kim's method might be applicabletber situations for which it is not
clear that applying Chabauty’s method to unramified coverslehwork. As evidence for this, Kim showed
that various conjectures (about Galois cohomology or Gakpresentations) would imply that his technique
would prove the finiteness of the set of integral points ontayperbolic curve ovef), and in particular the
finiteness of the set of rational points on any smooth privjeciurve of genus at leagtoverQ.

This raises several questions:

1. Isit actually the case that Kim’'s approach is equivaler@habauty’s approach applied to unramified
covers? If not, is one approach stronger than the other?

2. Does Kim’s approach lead to a new proof of Faltings’ theone general?

3. Does Kim’s approach suggest an algorithm, along the 6fthee algorithm that implements Chabauty’s
ideas?

One of the main goals of the workshop was to bring people tagéd try to gain insight on these difficult
guestions.

3 Workshop presentations

3.1 Expository talks

Tim Dokchitser — Analytic ranks of Jacobians of curves

This talk concentrated on a conjectural but, if ever proveny powerful way of computing the free rank
of abelian varieties over the rational numbers.

One associates to any Abelian variety over the rationalsialytic object, itsL-series This is an analytic
function in, says, defined by a convergent series R(s) > 3/2. According to a conjecture by Birch and
Swinnerton-Dyer, this function extends to a meromorphiacfion on the entire complex plane, and the
order of vanishing at = 1 should correspond to the free rank of the group of rationaitgmn the abelian
variety. Furthermore, the lowest order derivative thatdoet vanish should take a valuesat= 1 which is
a combination of virtually all interesting arithmetic geetric quantities associated to the abelian variety. In
particular, the conjectural order of the Shafarevich-fateip can be read off from that value.

In practice, even getting a complete description of thgeries can be troublesome, because some of the
relevant arithmetic information that makes up fhseries is hard to compute. Using even further conjectures,
one can often make an educated guess about this informéatitinis talk, the speaker showed how to apply
these ideas in practice . He demonstrated how his newly olggdlsoftware in the computer algebra system
MAGMA can be used and showed some impressive examples. Qhe bighlights was a gendscurve, for
which he conjectured that the Jacobian should be of rank 5.

An interesting question raised by his talk is whether algetimethods (e.g., 2-descent on the Jacobian of
this genus3 curve) can obtain this result. Some of the participantsghoabout this for a while, and could
not see an easy way to doit. So at least for the time beingeihsas the analytic approach and the algebraic
approach complement each other, each able to contributenation that might be inaccessible via the other
approach.

William McCallum — Introduction to explicit Chabauty methods

Given that one of the main themes of this workshop wags-Abelian Chabauty a generalisation of
Chabauty’s original method to obtain a partial proof of Meltd conjecture, the organizers invited one of the
experts on the method to give a lecture series on the inttmghiato the original idea.

Let C be a complete, irreducible, nonsingular algebraic cunes the field of rational numbers, of genus
at least2. Suppose we have a degredivisor class orC. We can use that to considéras a subvariety of
the Jacobiay of C'. Hence, the rational points @f can be considered a subset of the rational points of

We considerJ(Q) C J(Q,). for some primep. A nice property ofp-adic analytic commutative lie-
groups is that a finitely generated subgroup of ran& contained in an analytic submanifold of dimension



at mostr. Hence, ifJ(Q) is of rank strictly lower than the dimension &f then it is contained in a proper
submanifold/(Q) C J(Qy).

We can then find a bound ¢AC (Q) via the inclusiorC(Q) c C(Q,)NJ(Q). The latter is an intersection
of a 1-dimensionalQ,-analytic algebraic variety with a propgradic analytic submanifold of the ambient
space. One would expecbadimensional (in fact finite) intersection and one can shuat this is indeed the
case. The cardinality of this analytic intersection preg@n upper bound afi(Q).

In this talk, it is explained how all analytic computatiorsde formulated in terms gfadic integration
on the curve and several well-known examples from the liteesare explained and demonstrated.

Several modifications of the method, in particular the useoskrs and replacing (if possible) with a
computationally more accessible Weil-restriction of dip8t curve are also mentioned.

Edward Schaefer -Bounding the Mordell-Weil rank of the Jacobian of a curve

A crucial ingredient for the application of Chabauty’s ndro a curveC overQ with Jacobian/, is a
detailed knowledge of (Q), the Mordell-Weil group. In particular, one needs to know free rank of this
group.

One can read off this rank from a quotiefitQ)/pJ(Q). The method oflescentries to approximate
this group by a group that is quaranteed to contain the giveapy thep-Selmer group of/. The cardinality
of the latter thus provides an upper bound on the cardinafithe former, and thus implies a bound on the
Mordell-Weil rank ofJ.

The talk explains in detail how the general Galois-cohomimial framework one can use to describe the
required objects can be translated into explicitly compigtabjects.

As a particular example, a famous historical computatiaeeated, thus providing the required infor-
mation to complete the argument given in McCallum’s talk.

Michael Stoll — Local-global obstructions, coverings, and Mordell-Weiksing

If Chabauty’s method applies, i.e., f(Q) is of smaller rank than the dimension &f then it provides
a proof thatC(Q) — J(Q)/NJ(Q) is injective for some explicifV. It then remains to determine which
classes in/(Q)/NJ(Q) do contain a rational point.

As it turns out, assuming we can consideras a subvariety off, considering the intersection of the
image of J(Q) in [],c s J(Fp) with ] 5 C(F,) for some suitably chosen set of primgsprovides quite
strong congruence information on the image i) in J(Q). In fact, heuristically (see [13]), one expects
that once should be able to get accurate information for’dnyhe procedure of obtaining such information
is now known adVlordell-Weil sieving

In particular, the same heuristics predict that using thegedure for a curvé€' that does not have rational
points, one should be able to show this using a suitably chests.

This talk explains this procedure and its link with the idéaising coverings as in [4] and the Brauer-
Manin obstruction in general.

3.2 Talks on non-abelian Chabauty

Richard Hain — Higher Albanese Manifolds

This talk explains the construction bfgher albanese manifolda the complex analytic situation. The
same construction is used ipaadic setting for Kim’s non-abelian Chabauty.

The usual complex analytic Albanese variety of a cutvenay be defined by integrating holomorphic
1-forms along paths on the complex Riemann surface correlpgmno the curve. These provide functions
on the path space @f that are defined on classes of paths modulo the commutatoe éihdamental group,
and equip this quotient with a manifold structure.

For higher albanese varieties, one replaces the integyatefatedintegrals as studied by Chen. These
are defined only on path classes modulo terms from the lowsraleseries of the fundamental group. This
talk gave an overview of this construction, including Clsetifeorem relating the pro-unipotent completion
of the fundamental group with the Hopf algebra of homotopyctionals.

Kiran Kedlaya — p-adic Hodge Theory



This talk provided an introduction intp-adic Hodge theory. Given a smooth proper schexhever
Z,, one has the-adic étale cohomology of its base extensior@p and its de Rham cohomology with
Q,-coefficients. Comparison theorems proved by Faltings augi @escribe how one can recover either of
these cohomology spaces from the other by using Fontaib&sring” Beys. They allow one to compare
the p-adic integration map from a curve to the Lie algebra of itsobgan overQ, with a cohomologically
defined map. The results described so far belong to abeléatic Hodge theory. The talk ended with a brief
sketch of some non-abelian generalizations.

Minhyong Kim — Non-abelian Chabauty

Chabauty’s original partial proof of Mordell's Conjectufeow Faltings’ Theorem) on finiteness of the
number of rational points on algebraic curves of genus at [&dés based on considering the curve as a
subvariety of an abelian variety. Since the Albanese wargetniversal with respect to that property, no
generality is lost by considering the curve as a subvarietig@Albanese. Chabauty’s argument is based on
the assumption that the rational points of the Albanesalie propemp-adic submanifold. This assumption
does not hold in general.

One can try to use larger group varieties — non-abelian oft@s higher Albanese varieties are some of
the next simplest examples, being unipotent. The hopeigtem in the case where the rational points in the
classical Albanese variety ljeadically dense, we can find a higher Albanese where thenatmoints do lie
in a proper submanifold.

For non-complete hyperbolic curves — in particubaroverZ minus3 points — Kim was able to prove
that this is indeed the case. He was thus able to recoverISieggult on finiteness of the number of solu-
tions to S-unit equations [8]. He has also shown that various “motivnjectures,” such as the Bloch-Kato
conjecture on surjectivity gf-adic Chern class maps or the Fontaine-Mazur conjecturegmesentations of
geometric origin, would imply that his method reproves thearems of Faltings and Siegel for hyperbolic
curves ovefQ [9].

In his series of talks, Kim explained the construction heduséth the express purpose of looking whether
this method can be made explicit and perhaps be used to gadtgal bounds on the number of solutions.
The progress made during the workshop shows that this magdhlde the case.

After giving some motivating examples, he explained the @ising in Grothendieck’s section conjec-
ture) from the set of rational points on a variety to the Gatmhomology® of its fundamental group over
Q, and then he discussed the version of this for the pro-uaig@ompletion of the fundamental group, and
finally connected this with the de Rham picture in whjiehdic iterated integrals play a key role.

3.3 Research talks

Abstracts of all but one of the research talks are given inefplix B below. We provide a summary of the
talk for which no abstract was provided.
Iftikhar Burhanuddin — Brauer-Siegel Analogue for Elliptic Curves over the Ratiais

See abstract.

Jordan Ellenberg —Obstructions to rational points on curves coming from thelpotent geometric funda-
mental group
In this talk another interesting obstruction arising frdma hilpotent fundamental group is discussed. Itis
torsion, so this obstruction is invisible for the uniponatitanese construction used by Kim, who tensors with
Q,- As a special example, f@' minus three points, the ordinary quadratic Hilbert symbaswecovered.
The talk was a report on ongoing research. No explicit newlt®sould be reported on yet.

Florian Hess —Explicit generating sets of Jacobians of curves over finitelfis, using some class field
theory
See abstract.

Catherine O’'Neil — Trilinear forms and elliptic curves
See abstract.

Samir Siksek —Chabauty for Symmetric Powers of Curves



See abstract.

William Stein — Explicitly computing information about Shafarevich-Tatgroups of elliptic curves using
L-functions, Euler systems, and Iwasawa theory
See abstract.

Michael Stoll — Rational points on small curves of genus 2 - an experiment
See abstract and [2].

Ronald van Luijk — Cubic points on cubic curves and the Brauer-Manin obstrueti for K3 surfaces
See abstract.

4 The impact of the workshop

Here we describe some new collaborations, projects, armksastories that came into being because of our
workshop. Some of these took place during the workshogf;itsebther cases, participants told us a few
weeks later about progress that had ensued.

e Jordan Ellenberg, Richard Hain, Minhyong Kim, and Kirsteick®lgren (a graduate student) began
a new collaboration in order to compute the “Selmer var#tieshich are the analogue of theadic
closure of the Mordell-Weil group, in Chabauty’s methodeTdomputation of these varieties seems to
be the most difficult part of Kim’s approach, the main obstdaclmaking the approach a viable method.
Yes, on Thursday night of the workshop, they made signifipamgress! This group of researchers also
hopes to study a characteristic-zero function field anadogu

o Kirsten Wickelgren writes also that during the workshop Miong Kim made an observation about a
map that she now uses to compute examples for her Ph. D..thesis

¢ Richard Hain, a topologist who is an expert in the theory efated integrals and pro-unipotent fun-
damental groups in the classical case (as opposed to-#uéc case used in Kim’'s work) wrote that
during the course of the workshop he went from having litderstanding of Kim’s program to having
a good grasp of it. As a result, he and Kim are going to write datgd exposition of some of the key
topological ideas, but with an eye towards applicationsita’& program. In particular, they will treat
iterated integrals on algebraic curves, iterated Colepaadic integration, computing the Hodge filtra-
tion via the pole integration. Some of these topics have renljully developed even in the research
literature, so their new exposition will be very welcome.

e Iftikhar Burhanuddin (a graduate student) wrote that heixedl valuable feedback in response to his
workshop talk on an elliptic curve analogue of the Braueg8l theorem, and that this feedback is
guiding the computational data that he will collect for his B. thesis.

e Atthe workshop, a small subset of the participants met toudis the issue of implementing the compu-
tation ofp-adic iterated integrals, a necessary step in making Kipgs@ach practical. Kiran Kedlaya,
who was scheduled to deliver a lecture series for graduateests and lead them in a project at the
Arizona Winter School this year, wrote that the workshopeglaim the idea of involving the students
in a project along these lines. At the workshop, we were disiolg only the case of good reduction,
but Kedlaya has been led to begin investigating the morergeoase of semistable reduction as well.

¢ Nils Bruin, Bjorn Poonen, and Michael Stoll stayed one edtrpat BIRS; during that day, they worked
together on developing explidtdescent for general curves of gerusignificant progress was made,
showing that the computations required could be reducetiegbint of almost being doable with
current computing power and class group algorithms (mothédGeneralized Riemann Hypothesis).
In fact, a few weeks later, we had our first success along tivesg albeit for a curve with very small
discriminant.



In addition, many participants, both those studying corapaomal number theory and those involved in
more theoretical aspects, wrote to us expressing theikgam the opportunity to learn about the new ideas
that were in the process of being developed. Despite sonmeaiibject matter being highly technical, having
experts present who could explain things in a friendly leagenvironment led to many people leaving with
a good sense of the issues involved.

5 For more information

A more extensive account of the presentations given in thikshop can be found on the website
http://www.cecm.sfu.ca/"nbruin/banff2007

For nearly all talks, either copies of the slides used orresite notes taken by Bjorn Poonen are available.
Links to preprints and further reading are also accessible.
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Appendix B: Schedule of the workshop

Monday, February 5, 2007

9:00 — 9:10 Introduction to BIRS

9:10 — 10:00 William McCallum 4ntroduction to explicit Chabauty methods |

10:30 —11:20 William McCallum 4ntroduction to explicit Chabauty methods II

2:30
4:00

— 3:20 Richard Hain Higher Albanese Manifolds

—4:50 Kiran Kedlaya p-adic Hodge Theory

At the request of the organizers, | will introduce/reviewrsoconstructions from p-adic Hodge theory
that intervene in the usual Chabauty method; these inchreleamparison isomorphism between the
de Rham and etale cohomology groups of a curve, and the Bdattvexponential map. | will focus on
the case of good ordinary reduction, where these constngtian be made reasonably explicit. The
goal is to analogize the explicit descriptions to the higin@potent de Rham and etale fundamental
groups, in a manner useful for doing nonabelian Chabautyrresand my abilities permit, | will start
doing this (again only in the good reduction case) using seori of Martin Olsson.

Tuesday, February 6, 2007

9:10 - 10:00 Minhyong Kim, |

10:30 —11:20 Minhyong Kim, Il

2:30 — 3:20 Edward SchaefeBeunding the Mordell-Weil rank of the Jacobian of a curve

We use a Chabauty computation to determine the set of ratmiats on a curve of higher genus.
The input for a Chabauty computation includes the Mordedil\WWank of the associated Jacobian.
Traditionally we bound, and hope to determine, the Morélédlil rank using a Selmer group. In this
talk, we will survey the methods for computing a Selmer grofip Jacobian using functions on the
curve. We will review both major methods. The first is quitegel, but is inefficient for cyclic covers

of the projective line (like hyperelliptic curves). The sed method addresses such covers.



4:00 — 4:50 Michael Stoll +ocal-global obstructions, coverings, and Mordell-Wé#sng

We will discuss how one can obtain information on rationahfgby combining coverings with local
information. We will focus on the case of abelian coveringd &xplain the relationship with the
Brauer-Manin obstruction. If explicit generators of the idell-Weil group are known, this can be
implemented efficiently, leading to a procedure known asMbedell-Weil sieve. We will formulate a
conjecture that, if valid for a given curve, implies that venceeffectively decide whether a given coset
of N times the Mordell-Weil group meets the image of the cuwweot. If we know that each such
coset contains at most one point coming from the curve, tieiama that we can determine the set of
rational points on the curve.

5:00 — 5:50 Jordan Ellenberg3bstructions to rational points on curves coming from tHpatient geometric
fundamental group

Wednesday February 7, 2007
8:40 — 9:30 Minhyong Kim, IlI

9:40 — 10:30 Samir Siksek€habauty for Symmetric Powers of Curves

LetC be a curve of genug > 3 and letC(?) denote itsi-th symmetric power. We explain an adaptation
of Chabauty which allows us in many cases to comgiite(Q) provided the rank of the Mordell-Weil
group is at mosg — d. Cases for which our method should work include:

(i) d < v wherey is the gonality ofC' and the jacobian is simple (hef&% (Q) is finite).
(i) C'is hyperelliptic andl = 2 (hereC(®(Q) is infinite).

(i) C is bielliptic andd = 2 (hereC(®(Q) can be infinite). Our adaptation of Chabauty differs from
the classical Chabauty in that we combine Chabauty typerimdtion given by several primes.

Example. LetC' be the genu8 hyperelliptic curve
C:y* = x(2? +2)(2® + 43)(2? + 8z — 6) (1)

with Jacobian having rank Letr : C' — P' be thex-coordinate map. We show th@t? (Q) consists
of 7= P}(Q) plus 10 other points which we write down explicitly. Here we neededodmbine the
Chabauty information at primes= 5, 7, 13. It is noteworthy that”(?) in this example is a surface of
general type.

Thursday, February 8, 2007

9:10 - 10:00 Tim Dokchitser Analytic ranks of Jacobians of curves

10:30—-11:20 Ronald van Luijk €ubic points on cubic curves and the Brauer-Manin obstarctor K3
surfaces

It is well-known that not all varieties ovep satisfy the Hasse principle. The famous Selmer curve
given by3z3 + 4y3 + 523 = 0 in P2, for instance, indeed has points over every completiof of
but no points ovef) itself. Though it is trivial to find points over some cubic @elt is a priori not
obvious whether there are points over a cubic field that isigalVe will see that such points do exist.
K3 surfaces do not satisfy the Hasse principle either, whicdome cases can be explained by the so
called Brauer-Manin obstruction. It is not known whethas thbstruction is the only obstruction to
the existence of rational points on K3 surfaces. We relatewo problems by sketching a proof of
the following fact. If there exists a smooth curve o@given byax?® + by® + cz® = 0 that is locally
solvable everywhere, that has no points over any cubic gakiension of), and whose Jacobian has
trivial Mordell-Weil group, then the algebraic part of theaBier-Manin obstruction is not the only one
for K3 surfaces. No knowledge about K3 surfaces or BraueniMabstructions will be assumed as
known.
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2:30 - 3:20 Catherine O’Neil Filinear forms and elliptic curves

We explain a correspondence between triliear forms antetripf genus one curves with a fixed Ja-
cobian and some added structure. We generalize the adthtioln elliptic curves to addition on
certain “cubes” of numbers. We explain how this works foritaglny rings, and we give a natural con-
struction of points on elliptic curves to other points oneatblliptic curves which generalizes a known
construction from class field theory.

4:00 — 4:50 William Stein Explicilty computing information about Shafarevich-Tgteups of elliptic curves
using L-functions, Euler Systems, and lwasawa theory

| will discuss theoretical and computational results taivdre following problem: given a specific el-
liptic curve overQ), compute the exact order and structure of its Shafarevath-Jroup in practice. |
view this problem as a motivating question for organizinghtiveoretical and algorithmic investiga-
tions into the arithmetic of elliptic curves and the Birctdéwinnerton-Dyer conjecture.

5:00 — 5:30 Iftikhar Burhanuddin Brauer-Siegel Analogue for Elliptic Curves over the Radilsn

The height of a rational point on an elliptic curve measutes dize of the point. The enormous
gap between the lower and upper bound (Lang’s conjectufgldeight of such a point, prompted
the comparison of the elliptic curve scenario with that @ thultiplicative group, the Brauer-Siegel
theorem. In this talk, a conjectural Brauer-Siegel theofenelliptic curves over the rationals will
be discussed and interesting questions which arise in tritert motivated by computation will be
presented.

Friday, February 9, 2007

9:10 - 10:00 Florian Hess Explicit generating sets of Jacobians of curves over finakl$, using some
class field theory

10:30 - 11:20 Michael Stoll Rational points on small curves of genus 2 - an experiment

We considered all genus 2 curvg$ = f(z) where f has integral coefficients of absolute value at
most 3; there are about 200,000 isomorphism classes of sughst Using various methods (point
search, local solubility, 2-descent, Mordell-Weil siewgg attempted to decide for each curve whether
it possesses rational points. In all but 42 cases, we weezssful; in the remaining cases, our result
is conditional on the Birch and Swinnerton-Dyer conjecturethe talk, we will explain the methods
we used and the improvements we came up with, and discussshis:
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