
Explicit methods for rational points on curves

Nils Bruin (Simon Fraser University)
Bjorn Poonen (University of California, Berkeley)

February 4-9, 2007

1 Introduction to the field

One of the “big problems” of number theory is to understand the set of rational points on a variety, or equiv-
alently, the rational solutions to a system of polynomial equations. Despite thousands of years of research,
we are very far from having a general method for solving all such problems. There is even some evidence
that deciding the existence of a rational solution is an undecidable problem (the corresponding problem for
integers, “Hilbert’s Tenth Problem”, was proved to be undecidable by Martin Davis, Hilary Putnam, Julia
Robinson [6]. and Yuri Matijasevič [11]. Therefore many researchers have tried to solve special cases of the
general problem.

One way to subdivide the task is to classify varieties by their dimension, which can be defined as the
dimension of the complex analytic space whose underlying set is the set of complex number solutions to
the system. This space will be a complex manifold if the equations satisfy the differential criterion for
smoothness. The study of this complex analytic space is useful for more than just classification: it was
discovered in the 20th century that the geometry of this space has a profound influence on the set of rational
points.

The rational points on0-dimensional varieties are easy to understand. By suitableprojection, one reduces
to the problem of understanding the rational roots of a polynomial in one variable with rational coefficients,
and there are elementary methods for understanding these.

Rational points on curves (1-dimensional varietiesX) are already much harder: there is still no general
algorithm for determining the set of rational points that has been proved to determine the rational points in
every case. One can reduce to the case where the curve is smooth, projective, and geometrically integral, or
equivalently, where the corresponding complex analytic space is a compact Riemann surface; from now on
we will assume this. Then one can subdivide the problem further, according to the topological genusg of the
compact Riemann surface. This nonnegative integerg can also be defined algebraically as the dimension of
the space of regular differentials, or the dimension of the sheaf cohomology spaceH1(X,OX).

Major number-theoretic breakthroughs of the 20th century have given us a qualitative understanding of
the setX(Q) of rational points on a (smooth, projective, geometricallyintegral) curve as above. Many of
these results generalize to the case where the fieldQ of rational numbers is replaced by a finite extension, or
even some other types of fields, but for simplicity we will discuss the case ofQ.

In the caseg = 0, the problem of deciding whetherX(Q) is nonempty is equivalent to the problem
of deciding whether a quadratic form in three variables represents0, and a criterion for this in terms of
congruences goes back to work of Legendre. Moreover, if a rational point exists, thenX is isomorphic to
the projective lineP1 overQ, and hence the rational solutions may be parametrized. For instance, the special
case of (the projective closure of) the curvex2 + y2 = 1 yields the familiar parametrization of Pythagorean
triples.
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In the caseg = 1, it is still not known how to decide whetherX(Q) is nonempty. Suppose thatX(Q)
is nonempty. Then the choice of a point inX(Q) leads to a group structure on the varietyX , so X(Q)
acquires the structure of an abelian group. The famous Mordell-Weil theorem (due to Mordell in the special
case we are considering), proved in the 1920s, states that this groupX(Q) is finitely generated. The proof
combines a generalization of Fermat’s method of infinite descent with a study of the sizes of numerators and
denominators of the coordinates of rational points. The Mordell-Weil theorem remains a qualitative result,
however, in the sense that there is no algorithm that has beenproved to construct generators for this group, or
even to calculate the rank of this group. More precisely, researchers have developed algorithms to solve these
problems, but these algorithms terminate in general only iffor every elliptic curveE overQ, there exists a
primep such that thep-primary part of a torsion abelian group called the Shafarevich-Tate group is finite, as
has been conjectured.

In the caseg ≥ 2, Gerd Faltings [7] proved Mordell’s 1922 conjecture thatX(Q) is finite, and a few years
later Paul Vojta [15] gave a completely different proof. Butthese proofs are ineffective, even in principle:
given an explicit curve, the proofs do not give a procedure for listing the rational points: they only (with extra
work) give an upper bound for the number of rational points, depending on the input curve. These upper
bounds typically appear to be ridiculously large.

There are other techniques that were developed to solve these problems:

1. In some cases, one can determine the rational points on a curveX by finding a non-constant morphism
from it to an abelian varietyA whose group of rational points is finite; here one often uses the Jacobian
J of X , sinceJ is the universal abelian variety through which all morphisms fromX to abelian varieties
map. If one succeeds in finding such a morphismX → A, one can hope to determine all rational points
onA and then examine their preimages inX .

2. If one finds a morphism fromX to an abelian varietyA such thatA(Q) is infinite, but satisfies
rankA(Q) < dim A, then there is ap-adic analytic method due to Chabauty [3] that provides an
upper bound on the number of rational points onX . Moreover, this upper bound is usually reasonable,
and often is even sharp, in which case it can be used to determine the setX(Q). The method operates
by first computingA(Q) (in fact, one can usually get by with knowledge of a subgroup of finite index
therein), and then looking at the intersection of the image of the1-dimensionalp-adic manifoldX(Qp),
with thep-adic closure ofA(Q) in A(Qp): the latter closure can be shown to be ap-adic analytic sub-
manifold of dimension at mostrankA(Q), so dimension counting suggests that the intersection above
is 0-dimensional; Chabauty proved that it was finite, and RobertColeman [5] showed how to obtain a
very explicit upper bound on#X(Q) via this method.

3. If for every abelian variety quotientA of the Jacobian ofX , the inequalityrankA(Q) < dimA is
violated, then one can try instead ideas originating in workof Chevalley-Weil [4], again generalizing
Fermat’s infinite descent. One can replace the problem of finding rational points on a given curveX
of genus at least2 with the problem of determining the rational points for a finite set of unramified
covers of the given curve. This is often helpful, and it may bethat in principle combining this method
with Chabauty’s method always succeeds in determining the rational points (see [12] and [14], for
instance), but in practice, the fact that the covering curves have higher genus thanX often makes the
computation too time-consuming to carry out to completion.Also, it seems very difficult to prove that
this combination of methods would always succeed in principle.

2 Recent developments and open problems

In [8], Minhyong Kim introduced a new idea for studying rational and integral points on curves. Loosely
speaking, the Jacobian of a curve classifies geometrically abelian covers of the curve, and Chabauty’s method
can be understood as applying descent to pass to the tower of geometrically abelian unramified covers of
p-power degree. Kim’s idea was instead to use the tower of covers coming from the pro-p nilpotent quotient
of the algebraic fundamental group of the curve. In direct analogy with Chabauty’s method, he defines a
“unipotent Albanese map” fromX(Qp) not toJ(Qp) but to thep-adic points of a pro-unipotent algebraic
groupπ1,DR(X, x). Using this, he gave a new proof of Siegel’s theorem on the finiteness of the set of
solutions toS-unit equations, forS a finite set of places ofQ. Although this particular result can also be
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obtained by the more elementary approach of applying Chabauty’s method to unramified covers ofP1 −
{0, 1,∞}, it seemed possible that Kim’s method might be applicable toother situations for which it is not
clear that applying Chabauty’s method to unramified covers would work. As evidence for this, Kim showed
that various conjectures (about Galois cohomology or Galois representations) would imply that his technique
would prove the finiteness of the set of integral points on anyhyperbolic curve overQ, and in particular the
finiteness of the set of rational points on any smooth projective curve of genus at least2 overQ.

This raises several questions:

1. Is it actually the case that Kim’s approach is equivalent to Chabauty’s approach applied to unramified
covers? If not, is one approach stronger than the other?

2. Does Kim’s approach lead to a new proof of Faltings’ theorem in general?

3. Does Kim’s approach suggest an algorithm, along the linesof the algorithm that implements Chabauty’s
ideas?

One of the main goals of the workshop was to bring people together to try to gain insight on these difficult
questions.

3 Workshop presentations

3.1 Expository talks

Tim Dokchitser – Analytic ranks of Jacobians of curves
This talk concentrated on a conjectural but, if ever proven,very powerful way of computing the free rank

of abelian varieties over the rational numbers.
One associates to any Abelian variety over the rationals an analytic object, itsL-series. This is an analytic

function in, say,s, defined by a convergent series forRe(s) > 3/2. According to a conjecture by Birch and
Swinnerton-Dyer, this function extends to a meromorphic function on the entire complex plane, and the
order of vanishing ats = 1 should correspond to the free rank of the group of rational points on the abelian
variety. Furthermore, the lowest order derivative that does not vanish should take a value ats = 1 which is
a combination of virtually all interesting arithmetic geometric quantities associated to the abelian variety. In
particular, the conjectural order of the Shafarevich-Tategroup can be read off from that value.

In practice, even getting a complete description of theL-series can be troublesome, because some of the
relevant arithmetic information that makes up theL series is hard to compute. Using even further conjectures,
one can often make an educated guess about this information.In this talk, the speaker showed how to apply
these ideas in practice . He demonstrated how his newly developed software in the computer algebra system
MAGMA can be used and showed some impressive examples. One ofthe highlights was a genus3 curve, for
which he conjectured that the Jacobian should be of rank 5.

An interesting question raised by his talk is whether algebraic methods (e.g., 2-descent on the Jacobian of
this genus3 curve) can obtain this result. Some of the participants thought about this for a while, and could
not see an easy way to do it. So at least for the time being, it seems as the analytic approach and the algebraic
approach complement each other, each able to contribute information that might be inaccessible via the other
approach.

William McCallum – Introduction to explicit Chabauty methods
Given that one of the main themes of this workshop wasnon-Abelian Chabauty- a generalisation of

Chabauty’s original method to obtain a partial proof of Mordell’s conjecture, the organizers invited one of the
experts on the method to give a lecture series on the introduction into the original idea.

Let C be a complete, irreducible, nonsingular algebraic curve over the field of rational numbers, of genus
at least2. Suppose we have a degree1 divisor class onC. We can use that to considerC as a subvariety of
the JacobianJ of C. Hence, the rational points ofC can be considered a subset of the rational points ofJ .

We considerJ(Q) ⊂ J(Qp). for some primep. A nice property ofp-adic analytic commutative lie-
groups is that a finitely generated subgroup of rankr is contained in an analytic submanifold of dimension
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at mostr. Hence, ifJ(Q) is of rank strictly lower than the dimension ofJ , then it is contained in a proper
submanifoldJ(Q) ⊂ J(Qp).

We can then find a bound on#C(Q) via the inclusionC(Q) ⊂ C(Qp)∩J(Q). The latter is an intersection
of a 1-dimensionalQp-analytic algebraic variety with a properp-adic analytic submanifold of the ambient
space. One would expect a0-dimensional (in fact finite) intersection and one can show that this is indeed the
case. The cardinality of this analytic intersection provides an upper bound onC(Q).

In this talk, it is explained how all analytic computations can be formulated in terms ofp-adic integration
on the curve and several well-known examples from the literature are explained and demonstrated.

Several modifications of the method, in particular the use ofcovers and replacingJ (if possible) with a
computationally more accessible Weil-restriction of an elliptic curve are also mentioned.

Edward Schaefer –Bounding the Mordell-Weil rank of the Jacobian of a curve
A crucial ingredient for the application of Chabauty’s method to a curveC overQ with JacobianJ , is a

detailed knowledge ofJ(Q), the Mordell-Weil group. In particular, one needs to know the free rank of this
group.

One can read off this rank from a quotientJ(Q)/pJ(Q). The method ofdescenttries to approximate
this group by a group that is quaranteed to contain the given group, thep-Selmer group ofJ . The cardinality
of the latter thus provides an upper bound on the cardinalityof the former, and thus implies a bound on the
Mordell-Weil rank ofJ .

The talk explains in detail how the general Galois-cohomological framework one can use to describe the
required objects can be translated into explicitly computable objects.

As a particular example, a famous historical computation isrepeated, thus providing the required infor-
mation to complete the argument given in McCallum’s talk.

Michael Stoll – Local-global obstructions, coverings, and Mordell-Weil sieving
If Chabauty’s method applies, i.e., ifJ(Q) is of smaller rank than the dimension ofJ , then it provides

a proof thatC(Q) → J(Q)/NJ(Q) is injective for some explicitN . It then remains to determine which
classes inJ(Q)/NJ(Q) do contain a rational point.

As it turns out, assuming we can considerC as a subvariety ofJ , considering the intersection of the
image ofJ(Q) in

∏
p∈S J(Fp) with

∏
p∈S C(Fp) for some suitably chosen set of primesS provides quite

strong congruence information on the image ofC(Q) in J(Q). In fact, heuristically (see [13]), one expects
that once should be able to get accurate information for anyN . The procedure of obtaining such information
is now known asMordell-Weil sieving.

In particular, the same heuristics predict that using this procedure for a curveC that does not have rational
points, one should be able to show this using a suitably chosen setS.

This talk explains this procedure and its link with the idea of using coverings as in [4] and the Brauer-
Manin obstruction in general.

3.2 Talks on non-abelian Chabauty

Richard Hain – Higher Albanese Manifolds
This talk explains the construction ofhigher albanese manifoldsin the complex analytic situation. The

same construction is used in ap-adic setting for Kim’s non-abelian Chabauty.
The usual complex analytic Albanese variety of a curveC may be defined by integrating holomorphic

1-forms along paths on the complex Riemann surface corresponding to the curve. These provide functions
on the path space ofC that are defined on classes of paths modulo the commutator of the fundamental group,
and equip this quotient with a manifold structure.

For higher albanese varieties, one replaces the integrals by iterated integrals as studied by Chen. These
are defined only on path classes modulo terms from the lower central series of the fundamental group. This
talk gave an overview of this construction, including Chen’s theorem relating the pro-unipotent completion
of the fundamental group with the Hopf algebra of homotopy functionals.

Kiran Kedlaya – p-adic Hodge Theory
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This talk provided an introduction intop-adic Hodge theory. Given a smooth proper schemeX over
Zp, one has thep-adic étale cohomology of its base extension toQp and its de Rham cohomology with
Qp-coefficients. Comparison theorems proved by Faltings and Tsuji describe how one can recover either of
these cohomology spaces from the other by using Fontaine’s “big ring” Bcrys. They allow one to compare
thep-adic integration map from a curve to the Lie algebra of its Jacobian overQp with a cohomologically
defined map. The results described so far belong to abelianp-adic Hodge theory. The talk ended with a brief
sketch of some non-abelian generalizations.

Minhyong Kim – Non-abelian Chabauty
Chabauty’s original partial proof of Mordell’s Conjecture(now Faltings’ Theorem) on finiteness of the

number of rational points on algebraic curves of genus at least 2 is based on considering the curve as a
subvariety of an abelian variety. Since the Albanese variety is universal with respect to that property, no
generality is lost by considering the curve as a subvariety of the Albanese. Chabauty’s argument is based on
the assumption that the rational points of the Albanese lie in a properp-adic submanifold. This assumption
does not hold in general.

One can try to use larger group varieties — non-abelian ones.The higher Albanese varieties are some of
the next simplest examples, being unipotent. The hope is that even in the case where the rational points in the
classical Albanese variety liep-adically dense, we can find a higher Albanese where the rational points do lie
in a proper submanifold.

For non-complete hyperbolic curves — in particularP1 overZ minus3 points — Kim was able to prove
that this is indeed the case. He was thus able to recover Siegel’s result on finiteness of the number of solu-
tions toS-unit equations [8]. He has also shown that various “motivicconjectures,” such as the Bloch-Kato
conjecture on surjectivity ofp-adic Chern class maps or the Fontaine-Mazur conjecture on representations of
geometric origin, would imply that his method reproves the theorems of Faltings and Siegel for hyperbolic
curves overQ [9].

In his series of talks, Kim explained the construction he used, with the express purpose of looking whether
this method can be made explicit and perhaps be used to produce actual bounds on the number of solutions.
The progress made during the workshop shows that this may indeed be the case.

After giving some motivating examples, he explained the map(arising in Grothendieck’s section conjec-
ture) from the set of rational points on a variety to the Galois cohomologyH1 of its fundamental group over
Q, and then he discussed the version of this for the pro-unipotent completion of the fundamental group, and
finally connected this with the de Rham picture in whichp-adic iterated integrals play a key role.

3.3 Research talks

Abstracts of all but one of the research talks are given in Appendix B below. We provide a summary of the
talk for which no abstract was provided.
Iftikhar Burhanuddin – Brauer-Siegel Analogue for Elliptic Curves over the Rationals

See abstract.

Jordan Ellenberg –Obstructions to rational points on curves coming from the nilpotent geometric funda-
mental group

In this talk another interesting obstruction arising from the nilpotent fundamental group is discussed. It is
torsion, so this obstruction is invisible for the uniponentAlbanese construction used by Kim, who tensors with
Qp. As a special example, forP1 minus three points, the ordinary quadratic Hilbert symbol was recovered.

The talk was a report on ongoing research. No explicit new results could be reported on yet.

Florian Hess –Explicit generating sets of Jacobians of curves over finite fields, using some class field
theory

See abstract.

Catherine O’Neil – Trilinear forms and elliptic curves
See abstract.

Samir Siksek –Chabauty for Symmetric Powers of Curves
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See abstract.

William Stein – Explicitly computing information about Shafarevich-Tategroups of elliptic curves using
L-functions, Euler systems, and Iwasawa theory

See abstract.

Michael Stoll – Rational points on small curves of genus 2 - an experiment
See abstract and [2].

Ronald van Luijk – Cubic points on cubic curves and the Brauer-Manin obstruction for K3 surfaces
See abstract.

4 The impact of the workshop

Here we describe some new collaborations, projects, and success stories that came into being because of our
workshop. Some of these took place during the workshop itself; in other cases, participants told us a few
weeks later about progress that had ensued.

• Jordan Ellenberg, Richard Hain, Minhyong Kim, and Kirsten Wickelgren (a graduate student) began
a new collaboration in order to compute the “Selmer varieties”, which are the analogue of thep-adic
closure of the Mordell-Weil group, in Chabauty’s method. The computation of these varieties seems to
be the most difficult part of Kim’s approach, the main obstacle to making the approach a viable method.
Yes, on Thursday night of the workshop, they made significantprogress! This group of researchers also
hopes to study a characteristic-zero function field analogue.

• Kirsten Wickelgren writes also that during the workshop Minhyong Kim made an observation about a
map that she now uses to compute examples for her Ph. D. thesis.

• Richard Hain, a topologist who is an expert in the theory of iterated integrals and pro-unipotent fun-
damental groups in the classical case (as opposed to thep-adic case used in Kim’s work) wrote that
during the course of the workshop he went from having little understanding of Kim’s program to having
a good grasp of it. As a result, he and Kim are going to write a updated exposition of some of the key
topological ideas, but with an eye towards applications to Kim’s program. In particular, they will treat
iterated integrals on algebraic curves, iterated Colemanp-adic integration, computing the Hodge filtra-
tion via the pole integration. Some of these topics have not been fully developed even in the research
literature, so their new exposition will be very welcome.

• Iftikhar Burhanuddin (a graduate student) wrote that he received valuable feedback in response to his
workshop talk on an elliptic curve analogue of the Brauer-Siegel theorem, and that this feedback is
guiding the computational data that he will collect for his Ph. D. thesis.

• At the workshop, a small subset of the participants met to discuss the issue of implementing the compu-
tation ofp-adic iterated integrals, a necessary step in making Kim’s approach practical. Kiran Kedlaya,
who was scheduled to deliver a lecture series for graduate students and lead them in a project at the
Arizona Winter School this year, wrote that the workshop gave him the idea of involving the students
in a project along these lines. At the workshop, we were discussing only the case of good reduction,
but Kedlaya has been led to begin investigating the more general case of semistable reduction as well.

• Nils Bruin, Bjorn Poonen, and Michael Stoll stayed one extraday at BIRS; during that day, they worked
together on developing explicit2-descent for general curves of genus3. Significant progress was made,
showing that the computations required could be reduced to the point of almost being doable with
current computing power and class group algorithms (modulothe Generalized Riemann Hypothesis).
In fact, a few weeks later, we had our first success along theselines, albeit for a curve with very small
discriminant.
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In addition, many participants, both those studying computational number theory and those involved in
more theoretical aspects, wrote to us expressing their thanks for the opportunity to learn about the new ideas
that were in the process of being developed. Despite some of the subject matter being highly technical, having
experts present who could explain things in a friendly learning environment led to many people leaving with
a good sense of the issues involved.

5 For more information

A more extensive account of the presentations given in this workshop can be found on the website

http://www.cecm.sfu.ca/˜nbruin/banff2007

For nearly all talks, either copies of the slides used or extensive notes taken by Bjorn Poonen are available.
Links to preprints and further reading are also accessible.

Appendix A: List of participants

1. Burcu Baran, University of Rome Tor Vergata

2. Ioan Berbec, University of California at Berkeley

3. Martin Bright, University of Bristol

4. Reinier Bröker, Fields Institute

5. David Brown, University of California at Berkeley

6. Nils Bruin, Simon Fraser University

7. Iftikhar Burhanuddin, University of Southern California

8. Robert Carls, University of Leiden

9. Imin Chen, Simon Fraser University

10. Henri Cohen, Universite Bordeaux 1

11. Robert Coleman, University of California at Berkeley

12. Jean-Marc Couveignes, Université Toulouse II, Groupede Recherche en Informatique et Mathématiques
(GRIMM)

13. Tim Dokchitser, Robinson College, Cambridge

14. Jordan Ellenberg, University of Wisconsin

15. Richard Hain, Duke University

16. Florian Hess, Technische Universität Berlin

17. Kiran Kedlaya, Massachusetts Institute of Technology

18. Minhyong Kim, University of Arizona and Purdue University

19. Abhinav Kumar, Microsoft Research

20. Adam Logan, University of Waterloo

21. William McCallum, University of Arizona

22. Catherine O’Neil, Barnard College, Columbia University
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23. Jennifer Paulhus, University of Illinois at Urbana-Champaign

24. Bjorn Poonen, University of California at Berkeley

25. Ed Schaefer, Santa Clara University

26. René Schoof, University of Rome II

27. Samir Siksek, University of Warwick

28. William Stein, University of Washington

29. Michael Stoll, International University Bremen

30. Ronald van Luijk, PIMS, SFU, UBC

31. John Voight, University of Minnesota

32. Mark Watkins, University of Bristol

33. Joseph Wetherell, Center for Communications Research

34. Kirsten Wickelgren, Stanford University

Appendix B: Schedule of the workshop

Monday, February 5, 2007

9:00 – 9:10 Introduction to BIRS

9:10 – 10:00 William McCallum –Introduction to explicit Chabauty methods I

10:30 – 11:20 William McCallum –Introduction to explicit Chabauty methods II

2:30 – 3:20 Richard Hain –Higher Albanese Manifolds

4:00 – 4:50 Kiran Kedlaya –p-adic Hodge Theory

At the request of the organizers, I will introduce/review some constructions from p-adic Hodge theory
that intervene in the usual Chabauty method; these include the comparison isomorphism between the
de Rham and etale cohomology groups of a curve, and the Bloch-Kato exponential map. I will focus on
the case of good ordinary reduction, where these constructions can be made reasonably explicit. The
goal is to analogize the explicit descriptions to the higherunipotent de Rham and etale fundamental
groups, in a manner useful for doing nonabelian Chabauty; astime and my abilities permit, I will start
doing this (again only in the good reduction case) using somework of Martin Olsson.

Tuesday, February 6, 2007

9:10 – 10:00 Minhyong Kim, I

10:30 – 11:20 Minhyong Kim, II

2:30 – 3:20 Edward Schaefer –Bounding the Mordell-Weil rank of the Jacobian of a curve

We use a Chabauty computation to determine the set of rational points on a curve of higher genus.
The input for a Chabauty computation includes the Mordell-Weil rank of the associated Jacobian.
Traditionally we bound, and hope to determine, the Mordell-Weil rank using a Selmer group. In this
talk, we will survey the methods for computing a Selmer groupof a Jacobian using functions on the
curve. We will review both major methods. The first is quite general, but is inefficient for cyclic covers
of the projective line (like hyperelliptic curves). The second method addresses such covers.
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4:00 – 4:50 Michael Stoll –Local-global obstructions, coverings, and Mordell-Weil sieving

We will discuss how one can obtain information on rational points by combining coverings with local
information. We will focus on the case of abelian coverings and explain the relationship with the
Brauer-Manin obstruction. If explicit generators of the Mordell-Weil group are known, this can be
implemented efficiently, leading to a procedure known as theMordell-Weil sieve. We will formulate a
conjecture that, if valid for a given curve, implies that we can effectively decide whether a given coset
of N times the Mordell-Weil group meets the image of the curveor not. If we know that each such
coset contains at most one point coming from the curve, this means that we can determine the set of
rational points on the curve.

5:00 – 5:50 Jordan Ellenberg –Obstructions to rational points on curves coming from the nilpotent geometric
fundamental group

Wednesday, February 7, 2007

8:40 – 9:30 Minhyong Kim, III

9:40 – 10:30 Samir Siksek –Chabauty for Symmetric Powers of Curves

LetC be a curve of genusg ≥ 3 and letC(d) denote itsd-th symmetric power. We explain an adaptation
of Chabauty which allows us in many cases to computeC(d)(Q) provided the rank of the Mordell-Weil
group is at mostg − d. Cases for which our method should work include:

(i) d < γ whereγ is the gonality ofC and the jacobian is simple (hereC(d)(Q) is finite).

(ii) C is hyperelliptic andd = 2 (hereC(d)(Q) is infinite).

(iii) C is bielliptic andd = 2 (hereC(d)(Q) can be infinite). Our adaptation of Chabauty differs from
the classical Chabauty in that we combine Chabauty type information given by several primes.

Example. LetC be the genus3 hyperelliptic curve

C : y2 = x(x2 + 2)(x2 + 43)(x2 + 8x − 6) (1)

with Jacobian having rank1. Letπ : C → P 1 be thex-coordinate map. We show thatC(2)(Q) consists
of π−1P 1(Q) plus10 other points which we write down explicitly. Here we needed to combine the
Chabauty information at primesp = 5, 7, 13. It is noteworthy thatC(2) in this example is a surface of
general type.

Thursday, February 8, 2007

9:10 – 10:00 Tim Dokchitser –Analytic ranks of Jacobians of curves

10:30 – 11:20 Ronald van Luijk –Cubic points on cubic curves and the Brauer-Manin obstruction for K3
surfaces

It is well-known that not all varieties overQ satisfy the Hasse principle. The famous Selmer curve
given by3x3 + 4y3 + 5z3 = 0 in P2, for instance, indeed has points over every completion ofQ,
but no points overQ itself. Though it is trivial to find points over some cubic field, it is a priori not
obvious whether there are points over a cubic field that is galois. We will see that such points do exist.
K3 surfaces do not satisfy the Hasse principle either, whichin some cases can be explained by the so
called Brauer-Manin obstruction. It is not known whether this obstruction is the only obstruction to
the existence of rational points on K3 surfaces. We relate the two problems by sketching a proof of
the following fact. If there exists a smooth curve overQ given byax3 + by3 + cz3 = 0 that is locally
solvable everywhere, that has no points over any cubic galois extension ofQ, and whose Jacobian has
trivial Mordell-Weil group, then the algebraic part of the Brauer-Manin obstruction is not the only one
for K3 surfaces. No knowledge about K3 surfaces or Brauer-Manin obstructions will be assumed as
known.
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2:30 – 3:20 Catherine O’Neil –Trilinear forms and elliptic curves

We explain a correspondence between triliear forms and triples of genus one curves with a fixed Ja-
cobian and some added structure. We generalize the additionlaw on elliptic curves to addition on
certain “cubes” of numbers. We explain how this works for arbitrary rings, and we give a natural con-
struction of points on elliptic curves to other points on other elliptic curves which generalizes a known
construction from class field theory.

4:00 – 4:50 William Stein –Explicilty computing information about Shafarevich-Tategroups of elliptic curves
using L-functions, Euler Systems, and Iwasawa theory

I will discuss theoretical and computational results toward the following problem: given a specific el-
liptic curve overQ, compute the exact order and structure of its Shafarevich-Tate group in practice. I
view this problem as a motivating question for organizing both theoretical and algorithmic investiga-
tions into the arithmetic of elliptic curves and the Birch and Swinnerton-Dyer conjecture.

5:00 – 5:30 Iftikhar Burhanuddin –Brauer-Siegel Analogue for Elliptic Curves over the Rationals

The height of a rational point on an elliptic curve measures the size of the point. The enormous
gap between the lower and upper bound (Lang’s conjectures) of the height of such a point, prompted
the comparison of the elliptic curve scenario with that of the multiplicative group, the Brauer-Siegel
theorem. In this talk, a conjectural Brauer-Siegel theoremfor elliptic curves over the rationals will
be discussed and interesting questions which arise in this context motivated by computation will be
presented.

Friday , February 9, 2007

9:10 – 10:00 Florian Hess –Explicit generating sets of Jacobians of curves over finite fields, using some
class field theory

10:30 – 11:20 Michael Stoll –Rational points on small curves of genus 2 - an experiment

We considered all genus 2 curvesy2 = f(x) wheref has integral coefficients of absolute value at
most 3; there are about 200,000 isomorphism classes of such curves. Using various methods (point
search, local solubility, 2-descent, Mordell-Weil sieve), we attempted to decide for each curve whether
it possesses rational points. In all but 42 cases, we were successful; in the remaining cases, our result
is conditional on the Birch and Swinnerton-Dyer conjecture. In the talk, we will explain the methods
we used and the improvements we came up with, and discuss the results.
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