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Introduction

• Risk in finance: possibility of an adverse scenario that has potential to
undermine financial stability of a financial institution or a market

• Hence, focus on extreme events corresponding to such adverse
scenarios

• Extreme value analysis (EVA) offers a natural theoretical paradigm
based on extreme value theory combined with a modern set of
statistical tools and techniques to address a wide range of questions
arising in the realm of financial risk assessment and management

• Goal: a review of advances in EVA that provide useful solutions to new
challenges in financial risk management
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Risk categories and EVA applicability

• Risk categories subject to quantitative methods and regulatory scrutiny:

D Within a bank: credit, market and operational risk*

D Systemic risk: when failure of a single financial institution could lead to a
failure of the entire system (e.g., industry or economy)

• Different risk categories have different data availability and data
characteristics

• EVA is a data intensive approach and hence:

D EVA methods are well suited to measure market risk

D For operational risk, data pooling across institutions is necessary

D For credit risk, EVA can be used but usually as a modelling tool

D For systemic risk, EVA can be applied to institutions with market
indicators (e.g., stock prices, CDS spreads)
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Talk overview

• Motivating example: Measuring risk of an investment portfolio

• Univariate extreme value analysis with application to market risk
measurement

• Multivariate extreme value analysis with application to systemic risk
and reverse stress testing

• Extreme value analysis for serially dependent data

• Open problems
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Motivating example: Measuring risk of an investment
portfolio

• Risk measurement is used

D as a basis for setting regulatory capital requirements for financial
institutions

D as part of internal risk management, to constraint amount of risk traders
at a bank may take

• While different methods exist, a statistically rigorous approach is based
on the loss distribution

D Consider an investment portfolio of financial assets (e.g., stocks, bonds)

D X: loss on the portfolio over a set time horizon with fixed portfolio
decomposition over this period

D The distribution of X is referred to as the loss distribution (denoted FX)
and X is the loss random variable
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Univariate risk measures

• A common way to quantify risk is via a real-valued risk functional or a
risk measure defined on the space of loss random variables

• Popular risk measures:

D Value-at-Risk (VaR): until 2016, a long time standard measure of market
risk in banking regulation

VaRp(X) = F
←

X (p) = inf
x
{FX(x) ≥ p}

D Expected shortfall (ES): the current standard measure of market risk

ESp(X) = E(X | X ≥ VaRp(X))

• p ≈ 1 ⇒ careful modelling of tail of the loss distribution is needed

D for regulatory capital of banks’ market risk: p = 0.99 for VaR and
p = 0.975 for ES

D for the banking book (assets on the bank’s balance sheet to be held to
maturity): p = 0.999
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Motivating example (cont’d) - S&P 500 stock market index

• Data are clearly heavy-tailed

• Tail behaviour is consistent with a
Pareto-type model:

1− FX(x) ≈ Ax−α, α > 0, A > 0

• Aim: probabilistic models with focus on
tail and only mild assumptions on FX ;
inference using data in a tail region
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Univariate Extreme Value Analysis

• Mathematically, heavy-tailed behaviour is usually characterized by the
condition of regular variation

• A df F with infinite upper endpoint is said to have a regularly varying
(upper) tail with tail index α > 0, denoted as 1− F ∈ RV−α, if

lim
x→∞

1− F (tx)
1− F (x)

= t−α, t > 0

• Examples include Student’s t, skew-t, Pareto and log-gamma
distributions
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Univariate Extreme Value Analysis (cont’d)

• Regular variation allows estimation of risk measures at some extreme
probability level by extrapolating from a less extreme level

• For p, q close to one and q < p:

1− p
1− q

=
1− FX(VaRp(X))

1− FX(VaRq(X))
≈
(
VaRp(X)

VaRq(X)

)−α

⇒ VaRp(X) ≈ VaRq(X)

(
1− q
1− p

)1/α

• To use this asymptotic approximation, we need an estimate of tail
index α
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Tail index estimation

• Hill estimator (Hill (1975)) is a popular estimator of the (reciprocal of) tail index α

• X1, . . . , Xn
i.i.d.∼ F with 1− F ∈ RV−α

• With ξ = 1/α and X1,n ≤ X2,n ≤ · · · ≤ Xn,n order statistics

ξ̂Hk,n =
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n
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Connections between limit results in extreme value theory

• X1, . . . , Xn
i.i.d.∼ F ; let Mn = max{X1, X2, . . . , Xn}

• A df F belongs to the maximum domain of attraction of df G,
F ∈ D(G), if G is non-degenerate and there exist an > 0, bn ∈ R such
that

P
(
(Mn−bn)/an ≤ x

)
= Fn(anx+bn)→ G(x), n→∞, x ∈ C(x)

D Fisher-Tippett-Gnedenko theorem tells that G is the generalized extreme
value distribution (up to type)

Gξ(x) = exp{−(1 + ξx)−1/ξ}, 1 + ξx > 0, ξ ∈ R

D If ξ > 0, Gξ(x) corresponds to the Fréchet distribution, and regular
variation of 1−FX is a necessary and sufficient condition for F ∈ D(Gξ)
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Connections between limit results in extreme value theory
(cont’d)

• If F ∈ D(Gξ), the conditional distribution of excesses X − u given
X ≥ u, after proper scaling, converges to a generalized Pareto
distribution with shape parameter ξ for u→ xF

H(y;σ, ξ) =

{
1− (1 + ξ yσ )

−1/ξ
+ , ξ 6= 0;

1− exp(−y/σ), ξ = 0

(Pickands-Balkema-de Haan theorem)
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Peaks-over-threshold (POT) method

• The generalized Pareto distribution can be used to model losses exceeding a
high threshold

• Write: F (x) = 1− F (x) and Fu(y) = P(X − u > y | X > u)

• We have: F (x) = F (u)× Fu(x− u) for x > u

• Then, for threshold u large:

1− p = F (VaRp(X)) = F (u)× Fu(VaRp(X)− u)
≈ F (u)×H(VaRp(X)− u;σu, ξ)

⇒ VaRp(X) ≈ u+
σu
ξ

((1− p
F (u)

)−ξ
− 1
)

(POT high quantile estimator)
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From univariate to multivariate EVA

• The concept of ordering plays an
essential role in defining an extreme
event

• For univariate data, there is a natural
way to order sample points and hence
a single direction for extrapolation

• Peaks-over-threshold method:

P(X > x) = P(X > u) P(X > x | X > u), x > u

≈ P(X > u) H(x− u;σu, ξ) for large x,

where H(·;σu, ξ) is the cdf of a generalized Pareto distribution
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Multivariate extreme value analysis

• For multivariate data, there is no
natural ordering

• Implication:

D There exist various ways for
multivariate ordering and different
directions for extrapolation

⇓

D Different approaches and
representations for multivariate
extremes

D Tail dependence structure is often
key to which representation is most
useful
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Background

• The original approach to the study of multivariate extremes was based on the

coordinatewise maxima Mn =
(
max1≤i≤nX1,i, . . . ,max1≤i≤nXd,i

)
• Asymptotic behaviour is studied after applying a linear normalization:

Mn − an
bn

with normalizing sequences an and bn determined by marginal distributions

• The limiting distribution of normalized maxima exists when margins are in the
domain of attraction and the dependence structure satisfies the condition of
multivariate regular variation (MRV)

• While block maxima approach is nowadays less common, MRV assumption is
widely used in applications
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Background (cont’d)

• A measurable function f : R+ → R+ is regularly varying at infinity with
index ρ (written f ∈ RV∞ρ ) if

f(tx)/f(t)→ xρ, x > 0, t→∞

• Random vector X is said to be multivariate regularly varying on cone
E = [0,∞]d \ {0}, with index α > 0, if for any relatively compact B ⊂ E,

tP(X/b(t) ∈ B)→ ν(B), t→∞,

with ν(∂B) = 0, b(t) ∈ RV∞1/α, and the limit measure ν homogeneous of
order −α
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Background (cont’d)

• Note that the limiting distribution of normalized maxima (when it
exists) characterizes tail dependence when all marginal components are
simultaneously extreme

• If the limiting distribution is a product measure, the components are
asymptotically independent, in which case the limit measure ν is
degenerate and MRV cannot be utilized in statistical modelling

• Intuitively, asymptotic independence refers to situations in which
marginal components cannot be extreme at the same time

• This situation calls for alternative multivariate tail characterizations

D hidden regular variation, conditional extreme value models, . . .
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Application to systemic risk

• Modelling of extremes of multivariate random vectors goes back to
1980’s

• In financial risk managements, application of multivariate EVA is fairly
recent and is related to modelling of systemic risk

• Systemic risk arises in situations when a financial distress experienced
by an individual firm causes instability of the entire financial system

• The global financial crisis of 2008-2009 revealed the far-reaching impact
of systemic risk on the global economy, and identified inadequacy of
the existing risk management framework for financial institutions
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CoVaR

• CoVaR is a popular measure of systemic risk, introduced by Adrian and
Brunnermeier (2011)

• Define

D X: loss for a financial institution

D Y : loss for a system proxy such as a market index

• CoVaR at level 1− p is defined as the (1− p)-quantile of the
conditional loss distribution

P {Y ≥ CoVaRp | X ≥ VaRp(X)} = 1− p

i.e., CoVaR is the value-at-risk (quantile) of a market index conditional
on an institution being in financial distress
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CoVaR estimation - literature review

• Quantile regression techniques have been proposed for CoVaR estimation in
the Adrian and Brunnermeier (2011) formulation

• Girardi and Ergün (2013) adopt a fully parametric approach via a bivariate
AR(1)-GARCH(1,1) model with the Engle (2002) DCC specification, and a
bivariate skew-t distribution for innovations

• Nolde and Zhang (2018) propose an EVT-based semi-parametric approach
assuming multivariate regular variation and a parametric model for the
spectral density motivated by the class of skew-elliptical distributions

D Remark: While this approach alleviates some of the model risk in Girardi
and Ergün (2013), it is restrictive in modelling different tail decays for
losses of an institution and a system proxy, and the tail dependence
structure

Aim: develop an EVT-based methodology for CoVaR estimation that relaxes
assumption of multivariate regular variation
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Probabilistic Framework

Assumptions:

Suppose (X,Y ) has df F with continuous margins FX and FY

(i) F has upper tail dependence function R 6≡ 0

lim
u→0

P{FX(X) ≥ 1− ux, FY (Y ) ≥ 1− uy}
u

=: R(x, y)

(ii) 1− FY ∈ RV−1/γ for some γ > 0
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Probabilistic Framework (cont’d)

• Define a constant ηp:

ηp :=
P
(
Y ≥ CoVaRp

)
P
(
Y ≥ CoVaRp | X ≥ VaRp(X)

)
• It follows that P

(
Y ≥ CoVaRp

)
= (1− p)ηp

i.e., CoVaR is related to quantile at level (1− p)ηp of the unconditional
distribution of Y via

CoVaRp = VaR1−(1−p)ηp(Y )
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Empirical Analysis

• Data description

D 14 financial institutions with data between Jan.1, 2000 to Dec.30, 2021,
consisting of 5535 daily closing price records for each time series

D The S&P 500 Index is used as a proxy for the aggregate financial system

D Daily losses (%) are calculated as negative log-returns
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Data description - List of financial institutions

• AFLAC INC (AFL)

• AMERICAN INTERNATIONAL GROUP INC (AIG)

• ALLSTATE CORP (ALL)

• BANK OF AMERICA CORP (BAC)

• HUMANA INC (HUM)

• J P MORGAN CHASE & CO (JPM)

• LINCOLN NATIONAL CORP (LNC), M B I A INC (MBI)

• PROGRESSIVE CORP OH (PGR)

• U S A EDUCATION INC (SLM)

• TRAVELERS COMPANIES INC (TRV)

• UNUMPROVIDENT CORP (UNM)

• WELLS FARGO & CO NEW (WFC)

• WASHINGTON MUTUAL INC (WM)
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Comparative backtests1

Log

HR

Bilog

Alog

t

FP

EVT−NZ

Log HR Bilog Alog t FP EVT−NZ
Reference method

P
ro

po
se

d 
m

et
ho

d

(a) MBI

Log

HR

Bilog

Alog

t

FP

EVT−NZ

Log HR Bilog Alog t FP EVT−NZ
Reference method

P
ro

po
se

d 
m

et
ho

d

(b) Combined

1See, e.g., Nolde and Ziegel (2017) for details
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Traditional vs. Reverse Stress Testing

• Traditional stress testing: given extreme scenarios of risk factors, what
are potential consequences for a given institution?

D Choice of stress scenarios is arbitrary based on expert opinion or
historical data

F may not meet the plausibility requirement of stress scenarios as set by
the Basel Committee on Banking Supervision (2005)

F can exclude scenarios leading to highly adverse outcomes

D The global financial crisis of 2007-2009 revealed limitations of traditional
stress testing

• Reverse stress testing: given an adverse outcome (a loss of given
magnitude), what scenarios of risk factors would lead to that outcome?

D emphasized by supervisory authorities
(Basel Committee on Banking Supervision (2009), Committee of European Banking

Supervision (2009) and Financial Services Authority (2009)

D used for internal risk management decisions (e.g., limits on trading)
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Reverse Stress Testing (RST)

• Aim: to identify most probable scenarios for risk factors that lead to a
specified adverse portfolio outcome (a large portfolio loss)

• Let

D X ∈ Rd: changes in risk factors

D L = g(X): portfolio loss

D f(· | L ≥ `): conditional density of X given L ≥ `

• Define a stress scenario as

m∗(`) = argmaxx∈Rd f (x|L ≥ `)

• RST involves estimation of stress scenarios m∗(`) for given `
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Starting point

• Glasserman, Kang and Kang (2015) propose the following method
(referred to as the GKK method) for estimating m∗(`):

D (X, L) is assumed to be elliptically distributed (with a regularly varying
density generator)

D A scaling factor is established between m∗(`) and conditional mean
µ(`) = E(X|L ≥ `) using elliptical symmetry

D The conditional mean µ(`) is estimated empirically with observations
satisfying L ≥ `

• The use of the empirical estimator of µ(`) is warranted only when
threshold ` is not too large, while the scaling factor between m∗(`) and
µ(`) is justified only under above model assumptions

• We propose an EVT-based estimator which uses direct extrapolation of
the conditional mode into extreme regions under assumption of
multivariate regular variation
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Simulation Studies (1): bivariate t distribution

Top panel:

• p = 1/100

• n = 1000

Bottom panel:

• p = 1/3000

• n = 3000
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Simulation Studies (2): bivariate skew-t distribution

Top panel:

• p = 1/100

• n = 1000

Bottom panel:

• p = 1/3000

• n = 3000
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Application: Data
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Application: Results - Portfolio A
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Application: Results - Portfolio B
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Remarks on RST

• The proposed EVT-based estimator of stress scenarios provides a clear
improvement over existing approaches when considered adverse
outcomes are extreme, and it is applicable under weaker model
assumptions

• In large aggregate portfolios, risk factors appear to be weakly
associated with large portfolio losses.

How to construct stress scenarios in this setting?

Is it possible that a combination of (non-extreme) values in several risk
factors leads to large portfolio losses?
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EVA for serially dependent data

• Serial dependence in financial data

D Filtering through GARCH-type models

D Unconditional risk versus dynamic risk

• Extreme value theory for stationary serially dependent data
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Open problems

• As financial risks are likely to change over time, there is a need for
non-stationary modelling of extremes both univariate and multivariate

• Mixed dependence structures that can bridge asymptotic dependence
and asymptotic independence

• Curse of dimensionality: dimension reduction techniques, sparse
dependence structures, inference in high dimensions, ...
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