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Background: Recreational fisheries surveys

e (National Academies Press,
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This talk: motivated by Large Pelagics Intercept Survey

e Interested in fishing trips that target pelagic species (tuna,
sharks, billfish, etc.)

e How many Wahoo were caught by recreational anglers along
the US Atlantic coast in 20217
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Survey statistics: sampling from a finite population

e Make inference about a numerical characteristic of a real and
well-defined finite population

Utrips = {1a 2a ceey Ntrips}
= {all Atlantic large pelagics trips in 2021}

¢ vy, = number of Wahoo caught on kth trip

e unknown real numbers, not random variables
e Total Wahoo caught = T, = >, -, v«

e Infeasible to obtain data on all N large pelagics trips: instead,
use a probability sample s C U

4/41



Sampling the large pelagics fishery

e No frame Uyps of all large
pelagics boat-trips

e Instead, sample from frame
of site-days: s C U
= {access sites} x
{days in season}

e Count the number of
pelagics trips, {zx}kes

e Collect catch by species for
pelagics trips, generically
denoted {yx }kes
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Probability sampling: design-based inference

e Universe of elements U = {1,2,..., N}
e Variables of interest: yy, zx (unknown real numbers)

e Population parameters: T, = >, ., Vi; Tz = > ey 2k
Ty/ Tz =3 keuYr/ 2okeu 2k

e Draw probability sample s C U via design with known,
positive inclusion probabilities 74 = Pr[k € s] >0

e Sample membership indicators Iy =1if k€s, [, =0

otherwise
E [Ik] = Tk
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Probability sampling: estimation for the population

e Under repeated sampling, the Horvitz-Thompson (1952)

estimator ;
23 k Yk
f- a3
Tk Tk
keU kes
is unbiased for T;

=~ / =
T,=N z LN

T v
keu 'k i

kes
is unbiased for T,

o 'T'y/ T, is asymptotically unbiased for ol T
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Motivation for nonprobability sampling: LPIS

e Large Pelagics Intercept Survey (LPIS) data are used to
estimate catch rate: average recreational catch per large
pelagic trip, by species: T, /T,

e Problem: Many site-days have no pelagics trips: zx = 0

e Field crews want to choose their own site-days!

e Designed compromise: select an initial probability sample of

site-days s, C U and randomly divide it into s4 and sg

e s, is maintained as a strict probability sample, with known
inclusion probabilities 7 > 0
e field crew can leave sg as-is or move anywhere in U \ sa

e sg has unknown inclusion probabilities 72
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Other applications?

e Many surveys involve screening for domain of interest
e U = households, z, = age-eligible children, y, = immunization
status
e U = hospitals, zx = radiation oncologists, yx = number of
cancer patients
e U = land segments, zx = farms served by well water, y, =
pesticide contamination

e Nonprobability sampling methods might be used to build out
the initial probability sample
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Expert judgment probabilities

Expert judgment “selection mechanism” is unknown; sg is no
longer a probability sample

Field crew choose sg after seeing sa, so saNsg = ()

w8 = Prlkesg| ke sy Prlke sy
+Prlk € sg | k & sa] Pr[k ¢ sa]
= 0+ p(1—77)

Need to estimate pk, which may depend on site-day
characteristics xy, including trips zx or catch yy

Specify a parametric model for p, and fit using sa, sg
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Logistic regression model for selection

e Judgment model is Poisson sampling: I,? independent
Bernoulli(pk) for k ¢ sa, with

logit(pk) = linear function of covariates
o Feasible pseudo-log-likelihood is unbiased for log-likelihood:

Z/Bln( ) Zlnl—pk)(l—wk)'kk

keU\sa keU

e Similar approach if we replace Poisson by with-replacement

e Maximize with respect to parameters in p, and obtain py
e Obtain pk, normalized version of py, to match expected
sample size ng
e Estimated inclusion probabilities for sg are then

78 =k (1)
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Dual-frame judgment sample 1: separate estimator

e Similar to probability sampling from two frames: multiple
valid estimators

e Compute HT estimator from sample sa:

e Compute approximate HT estimator from sample sg:

= Yk
8= =7

kESB

e Convex combination, with ¢ € (0, 1):
?sep = ¢?A ate (1 - w)?B
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Dual-frame judgment sample 2: combined estimator

Combine the sample as s = sy U sg

Compute a combined inclusion probability,

Prlk €s] = Prlkesal+Prlk €sg]—Prlk € sansg]
= wf+(1—7rf>pk—0

Plugging in py, the resulting HT-like estimator is

= Yk
P T

kEspUsg

Ensures some weight stability because denominator > Wf
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Asymptotic properties: combined estimator

e Under some mild assumptions, the combined estimator is
design mean square consistent

o V [N‘l ?y,com} is design consistent for Var (N‘l :r\y,com>
e The combined estimator is asymptotically normal almost
surely (a.s.)

Ty,com - Ty,N

VVa+ Vg

e Theoretical support relies on an assumed but possibly wrong

Fn 5 N(0,1) a.s.

model

e Robustness?
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Dual-frame doubly-robust estimation

e Possible misspecification of p

e Consider constructing doubly-robust catch estimator by
specifying two models:

e model for the selection probability px
o model for the outcome E¢ [yi| x| = m(xx)

e Requires auxiliary variable available at population level

Tor = ) A};l_((_l_ﬂ. A+Z

kEspUsg keU

e Consistent (and approximately unbiased) if at least one of the
two models is correctly specified
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Estimation of catch rate

e But (1) we do not have great covariates available for the
whole frame and (2) we are interested in catch rate, not
catch

e For either separate or combined, estimated catch rate is

Ty Dokes WhsYk

Rolr_ |
T, ZkEs WksZk

where the weights wys do not depend on yy (but may depend

on Zk)
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Doubly-robust property for rate

e Rate is doubly-robust by construction under a plausible
outcome model:
Eely | 24] = bz«
e If weights depend on z, but not y, and the outcome model is
correct, then

e | Ty _eTe oT.
o I o -
T, z Ug z

whatever the quality of the probability model
e If the probability model is correct, then

[ T

T, Iz

whatever the quality of the outcome model
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Simulation experiments

e Use historical LPIS data to create population with 30 strata
and 57,388 site-days, each with known pressure

e Simulate trips for each site-day using zero-inflated Poisson
(matching trip features from LPIS data)

e Given trips, simulate catch for 11 different species with
(possibly truncated)(possibly zero-inflated) Poisson with
various relationships with trips:

E[catch | trips] o (trips)?, p € {0.5,1,2}
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Simulation experiments, continued

e Use traditional LPIS sampling design to select original
stratified unequal-probability sample, s, = Uthlsoh, of size
865 site-days

e Within each stratum h, divide s,;, at random:

e 75% strict probability sample sap
e 25% movable sample sg;, (can use judgment or leave as-is)
e Two methods = sets of constraints on movement of sgp

e stratum method: moves remain strictly within stratum

e bucket method: moves maintain the same allocation by state,
month, and kind-of-day (weekday or weekend), but modes can
change
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Simulated judgment behaviors of field staff

¢ No Move (with judgment): choose to keep sample as
originally selected
Unskilled: random moves (simple random sampling)

Change distribution of zeros only
e Expert Jump: successfully avoids all zero-trip site-days
e Skilled Jump: reduces number of zero-trip site-days

Change distribution of non-zeros only
e Pure Tilt: increase probability of more trips when there are
non-zero trips
Change distribution of both zeros and non-zeros
e Jump and Tilt: shift the entire distribution toward fewer

zeros and higher-value non-zeros
e Skilled Shift: leave half unmoved and move the other half to
highest-trip site-days
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Nine simulated judgment behaviors, continued

e Generate logistic inclusion probabilities as function of trips

|Ogit(pk) = By + /Bll(zk = 0) + ﬂzzkl(zk > 0),

and then
e Logistic: ...draw without-replacement sample using
(approximately) these unequal probabilities
e With replacement: ...draw with-replacement sample using
(exactly) these unequal probabilities
¢ No Move (without judgment) yields the original probability
sample with original (known) weights
e can we beat this classic design/estimator strategy?
e For all nine judgment behaviors, estimate the unknown
conditional inclusion probabilities, px = Pr[k € sg | k ¢ sa]
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Estimation for each judgment behavior

e For each of 1000 replicated original samples s,, generate all
nine judgment samples under two movement methods

e Model pj as function of trips, zx:
|0git(pk) = Po + Bll(zk = 0) + ,82Zk1(zk > 0)

e For all (9 judgment) x (2 movement method) samples,
estimate catch rates for 11 species, using four estimators:
e Combined-Po: Poisson estimates of py
e Combined-WR: with-replacement estimates of py
e Separate-Po: Poisson estimates of py
e Separate-WR: with-replacement estimates of py
e For No Move (without judgment), compute the weighted
estimator using the original design weights
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Variance estimation for the combined estimator

e Vi: treat final (combined) weights as if they are traditional
survey weights and use Taylor linearization in standard
software (easy!)

° \72, \73, \74: derived using Poisson sampling and with
replacement sampling approximation

e Replication methods: considered jackknife and grouped
balanced repeated replication (BRR)

e Among these variance estimators, \71 has best mean square
error property and best confidence interval coverage
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Summary for expert judgment sampling

e Estimator using simple (and wrong) model for judgment
probabilities works in almost all cases, fixing most of the bias
due to judgment sampling

e Combined estimator beats classic strategy (probability
sample/weighted estimator) in almost all cases

e across range of catch characteristics (11 different types)
e across range of judgment behaviors (9 different types)
e across two different sets of movement constraints

for both Poisson and with-replacement likelihoods
o Combined beats separate estimator in almost all cases

e Simple variance estimator gives good confidence interval
coverage
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Application in other nonprobability sampling contexts?

e Dual-frame estimation approach works well in our specific
context of expert judgment sampling
e Try out this system on two other problems:

e Respondent-driven sampling with initial probability sample of
“seeds” and nonprobability sample of “sprouts”
e Probability sample with supplemental convenience sample
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Dual-frame for respondent-driven samples

e Link-tracing design in research of hidden populations

e Start with a set of initial respondent “seeds” (probability
sample), who recruit their peers (nonprobability sample), these
in return refer their peers (nonprobability sample), and so on

e Need to estimate the unknown probability of the recruitment
process

e Existing methods make strong modeling assumptions on how
recruitment works

e We propose to apply the dual-frame estimator directly to RDS

e Assess robustness to misspecified recruitment model via
simulation

27/41



Simulation experiment of RDS

o Artificial population: Use Project 90 network sample data,
from a study of heterosexuals’ transmission of HIV
e 4430 individuals and 18407 edges
e 13 binary attributes (including retired, female, pimp, ---)

e Simulated respondent-driven sampling design: mimics a real
LGBT study in Michaels et al. (2019, J. Official Stat)
e Start with 100 random seeds, seeds selected randomly or
proportional to degree
e Target sample size is 130 or 150
e Each respondent recruits up to 3 peers
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Estimators for comparison

e SH (Salganik and Heckathorn 2004) estimator: restricted to
categorical outcomes

~SH __ dgCga
Ba ===—==
daCag + dgCga

e VH (Volz and Heckathorn 2008) estimator:

1

ﬁVH _ > kes Bk Yk

y = =
ZkES dk

e SS (Gile 2011) estimator:

ZZSS _ ZkES %_1(dk)yk
Y EkES ﬂ-_l(dk)
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Estimators for comparison, continued

e Combined estimator: dual-frame approach

Yk
~com __ Zkes Wf"’(l_ﬂ-f)ﬁk
v =

1

e Convex estimator: convex combination of VH and combined

estimator
> 1 4o NG|
A -1 k
fionvx — kes |t = (HA=mpx © ratne 3, dy
Y B =il
Z na 1 ng Nd, 1
kes | natng w4+ (1—m)pk natng 3, . dk_1
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Simulated recruitment behavior of respondent

e Random: acquaintances are recruited at random (standard
assumption)

e Recruit fraction: 0, 1, 2, or 3 acquaintances are recruited at
random, with probabilities (1/6,1/6,1/6,1/2)

e Degree: recruitment probabilities are proportional to the
degrees of acquaintances

e Inverse degree: recruitment probabilities are proportional to
the inverse degrees of acquaintances

e Prefer female: females must recruit female, males recruit
males

e Prefer pimp: pimps must recruit pimp, non-pimps recruit
non-pimps

e Expert female: everyone must recruit female

e Expert pimp: everyone must recruit pimp ;
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Estimation of recruitment behavior

e Requires a model of recruitment behavior for the combined
estimator, simple model of degree:

logit(pk) = Bo + Pidegree,

fitted by maximizing pseudo-log-likelihood
e For each of 1000 replicated probability samples,
e generate all eight versions of the recruited sample
e estimate rates and variances for 13 attributes using SH, VH, SS
e estimate p, and rates for 13 attributes using Combined and
Convex, with variances computed by treating final combined
weights as if they are traditional survey weights
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Summary for respondent-driven samples

e In our limited simulation setting, the combined estimator
dominates the existing estimators
e robust across a range of attributes and across a range of
recruitment behaviors
e no strong assumptions required
e simple variance estimator of the combined estimator gives
good confidence interval coverage

e In other settings, like fewer random seeds or longer waves of
recruitment, the existing estimators are more competitive
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Dual-frame for convenience samples

e Increasingly common as response to surveys decreases, the
cost of obtaining probability sample is high
e Small, representative probability sample drawn from the whole
population U; large, biased convenience sample drawn from
the sub-population Ug
e Example: Culture and Community in a Time of Crisis
(CCTQ)
e probability sample sy from U.S. general population, with
known inclusion probabilities 77 > 0
e nonprobability sample sg from art organization mailing list,

with unknown inclusion probabilities 72 = (1 — 77) p«

e Goal: Combine these two resources using dual-frame method

e Challenge: For k € Ug, 7rf and pj are unknown
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Modifications to dual-frame methodology

e Since wf is unknown for k € sg, use covariates available in
both samples to find a matching record £ € sa and assign its
inclusion probability

e Up is a strict subset of U, hence part of s4 will not match sg

e Use the matched part of sy plus sg in dual-frame estimation
for the matched part of the frame, Upg

e includes likelihood-based estimation of px, k € sg

e Use the unmatched part of s, in single-frame estimation for
the unmatched part of the frame, U\ Up
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Simulation experiment from CCTC

e For a JSM 2021 competition, NORC used CCTC to create a
simulation platform to study prob/nonprob combination

population U consists of 113,459 records

subpopulation Ug consists of 74,202 records
22 binary variables of interest: see a play, celebrate heritage,

take art class, ...
e 1000 simulated probability samples sy of size n4 = 1000
e 1000 simulated nonprobability samples sg of size ng = 4000

e Known inclusion probabilities for sp
e Unknown inclusion probabilities for sg

e Many possible covariates for matching and propensity

estimation
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Estimation summary across all variables

e Best five and worst five

s =
L L

002 4

Point estimate - Truth
°
L

g ¢ 8
i

i . responses (among 22)

e Combined has lower MSE

e Using nonprobability data

dominates probability only

e Simple variance estimator
yields confidence intervals

s o o o
L L L L

Point estimate - Truth

002

: g
i

with coverage close to
nominal

than separate in most cases
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Effective sample size ratios across all variables

Effective Sample Size Ratio [ ] RatiO Of MSE fOI’ COmbined
] sample to MSE of
301 probability sample only

25

e Ratio ~ 5 if nonprobability

Ratio

contains as much

2.0

i information as probability
and we are fully efficient in

extracting the information

Combined -|
Separate -|

e Combined mostly
dominates separate

e Either dominates
probability only
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Conclusions and thanks

e Dual-frame is simple and effective method for combining
probability and nonprobability samples
e single set of weights with some weight stability by construction
e some double robustness if estimating rates
e simple variance estimation and confidence intervals
e Considerable robustness across a range of situations

e nonprobability types include expert judgment,
respondent-driven samples, or convenience samples
e wide variety of simulated settings within nonprobability samples

e Ongoing work: further development of matching and
estimation methods for convenience samples

e Thank you!
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