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Nonlocal Shrodinger equations

(−∆ + V )φ+ λφ = 0 (1)

on R3, where V = K ∗ |φ|2 is some symmetric kernel.
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Nonlocal Shrodinger equations

The kernel is induced by electrostatic/gravitational potential
K (x) ≈ ±|x |−1:

−∆φ(x)±
(∫

|φ(y)|2

|x − y |
dy

)
φ(x) + φ(x) = 0
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Nonlocal Shrodinger equations

The ”gravitational” case K (x) ≈ −|x |−1

−∆φ(x)−
(∫

|φ(y)|2

|x − y |
dy

)
φ(x) + φ(x) = 0

was originally proposed by Ph. Choquard, as an approximation to
Hartree–Fock theory for a one component plasma. Equation of similar
types also appear to be a prototype of the so-called nonlocal problems,
which arise in many situations and as a model of self-gravitating matter.
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A generalized version in Rn takes the form

−∆φ− (Iα ∗ |φ|p) |φ|p−2φ+ φ = 0 (1)

where

Iα = A(α)|x |α−n; A(α) :=
Γ
(
n−α
2

)
2απn/2Γ (α/2))

(2)

is the Rietz potential, α ∈ (0, n), p ∈ (1,∞) was considered by many
authors in the last decades, using its variational structure as a critical
point of the functional

Ep,α(φ) =
1

2

∫
Rn

(
|∇u|2 + |φ|2 − 1

2p
(Iα ∗ |φ|p) |φ|p

)
(3)

on an appropriate space.
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In particular, existence of solutions the case p = 2 (and for more general
singular interaction kernels) was studied by

E. H. Lieb, Existence and uniqueness of the minimizing solution of
Choquard’s non-linear equation ,Studies in Appl. Math.57(2)93-105,
1976/77

P.-L. Lions: The Choquard equation and related questions, Nonlinear
Anal., 4 (6) pp. 1063-1072, 1980

G.P. Menzala: On regular solutions of a nonlinear equation of
Choquard’s type, Proc. Roy. Soc. Edinburgh Sect. A, 86 (3-4) pp.
291-301, 1980

For existence, regularity and asymptotic behavior of solutions in the
general case see V. Moroz and J. Van Schaftingen

Groundstates of nonlinear Choquard equations:
Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp.
Math. 17 , no. 5, 2015

A guide to the Choquard equation, Vitaly Moroz & Jean Van
Schaftingen. J. Fixed Point Theory Appl. 19 , no. 1, 773-813, 2017
and references therein.
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The non-linear Schrödinger equation associated with Ep,α takes the form

− i∂tψ −∆ψ − a(Iα ∗ |ψ|p)|ψ|p−2ψ = 0 . (4)

The number a ∈ R is the strength of interaction. The case a > 0
corresponds to the attractive, gravitation-like dynamics, and is related to
Choquard’s equation. The case a < 0 is the repulsive, electrostatic case
and is related to the Hartree system. In this lecture we deal with the
attractive case.
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Considering an eigenmode ψ = e−iλtφ we get that φ satisfy the non-linear
eigenvalue problems

−∆φ− a (Iα ∗ |φ|p) |φ|p−2φ− λφ = 0 (5)

which can be reduced to a = λ = 1 by a proper scaling. However, the
solutions of the time dependent nonlinear equation preserve the L2 norm
in time, so it is natural to look for stationary solutions under a prescribed
L2 norm (say, ‖φ‖2 = 1). It is not difficult to see that, in general, one can
find a scaling φ 7→ φβ(x) = β−n/2φ(x/β) which preserves the L2 norm
and transform the strength of interaction in (5) into a = 1, making this
parameter mathematically insignificant. There is, however, an exceptional
case α = n(p − 1)− 2. In that case the first two terms in (5) are scaled
identically under L2 preserving scaling, so the size of the interaction
coefficient a is mathematically significant in that case.
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In the case p = 2 and in the presence of a prescribed, scalar potential W ,
the L2− constraint version of (5) takes the form

−∆φ+ Wφ− a

(∫
Rn

|φ(y)|2

|x − y |n−α
dy

)
φ− λφ = 0, ‖φ‖2 = 1 . (6)

A solution is given by a minimizer of the functional

EW
a (φ) :=

1

2

∫
Rn

(
|∇φ|2 + W |φ|2

)
dx− a

4

∫
Rn

∫
Rn

|φ(x)|2|φ(y)|2

|x − y |n−α
dxdy (7)

restricted to the L2 unit sphere ‖φ‖2 = 1. W a prescribed function
satisfying

lim
|x |→∞

W (x) =∞
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Exceptional case

D. Yinbin, L. Lu and S. Wei studied the equation in the exceptional case
α = n − 2, for n ≥ 3, a > 0.

−∆φ+ Wφ− a

(∫
Rn

|φ(y)|2

|x − y |2
dy

)
φ− λφ = 0, ‖φ‖2 = 1 .

Constraint minimizers of mass critical Hartree functionals: Existence and
mass concentrations, J. Mathematical physics, 56, 2015
In particular, they showed the existence of a critical strength āc > 0,
depending on n but independent of W , such that EW

a is bounded from
below on the sphere ‖φ‖2 = 1 iff a ≤ āc . Moreover, a minimizer of EW

a

exists if a < āc , and is a solution. It was also shown that ac = ‖φ̄‖2,
where φ̄ is the unique, positive unconstrained solution of the equation of

−∆φ̄(x)−
(∫

Rn

|φ̄(y)|2

|x − y |2
dy

)
φ̄(x) + φ̄(x) = 0 . (8)
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Multi state system

The first object is to extend the L2-constraint Choquard equation (6) into
a k− state system

−∆φj + (W − aV )φj − λjφj = 0 ‖φj‖2 = 1, ; j = 1 . . . k

where

V (x) = Iα ∗

(
k∑

i=1

βi

∫
Rn

ρi (y)

|x − y |n−α
dy

)
ρi := |φi |2

where (φ1, . . . φk) constitutes an orthonormal k−sequence in L2(Rn) and

βj > 0,
k∑
1

βj = 1 (9)

are the probabilities of occupation of the states j = 1 . . . k .
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Multi state system

The first object is to extend the L2-constraint Choquard equation (6) into
a k− state system
and the exceptional case α = n − 2

−∆φj + Wφj − a

(
k∑

i=1

βi

∫
Rn

|φi (y)|2

|x − y |2
dy

)
φj − λjφj = 0

where (φ1, . . . φk) constitutes an orthonormal k−sequence in L2(Rn) and

βj > 0,
k∑
1

βj = 1 (9)

are the probabilities of occupation of the states j = 1 . . . k .
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Theorem

If {φ1, . . . , φk} is a minimizer of

E(α)β,a (~ψ) :=
1

2

k∑
j=1

βj

[
〈∇ψj ,∇ψj〉+ 〈Wψj , ψj〉 −

a

2

k∑
i=1

βi
〈
|ψj |2, Iα ∗ |ψi |2

〉]

on all k− orthonormal frames ~ψ = (ψ1, . . . ψk), then it is a solution of the
k − state Choquard system, while

λ1 < λ2 ≤ . . . ,≤ λk

are successive eigenvalues starting form the minimal level λ1 and φj the
corresponding eigenstates.
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Dual formulation
The second object is to introduce a dual approach to the L2 constraint
Choquard problem in the case p = 2.

Idea: Work with the ”gravitational potential” and NOT with the wave
function

V = Iα ∗ (
k∑

j=1

βj |φ̄j |2)

For the case of single state k = 1, the dual formulation of EW
a for α = 2

on the constraint L2 sphere takes the form of the functional
V 7→ HW ,α

a (V )

HW ,2
a (V ) =

a

2

∫
Rn

|∇V |2 + λ1(V )

over the unconstrained Beppo-Levi space V ∈ Ḣ1(Rn) . Here the
functional λ1 = λ1(V ) is the leading (minimal) eigenvalue of the
Schrdinger operator

−∆ + W − aV on Rn .
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The extension of this dual formulation to the k−system for α ∈ (0, 2] In
case α = 2 it takes the form

HW ,2
β,a (V ) =

a

2

∫
Rn

|∇V |2 +
k∑

j=1

βjλj(V )

where λ1(V ) < λ2(V ) ≤ . . . λk(V ) are the leading k eigenvalues of the
Schrdinger operator, while β1 > β2 > . . . βk > 0.
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If α 6= 2?

Let us recall some definitions and theorems we use later
For V1,V2 ∈ C∞0 (Rn) and α ∈ (0, 2), consider the quadratic form

〈V1,V2〉α/2 := A(−α)

∫
Rn

∫
Rn

(V1(x)− V1(y))(V2(x)− V2(y))

|x − y |n+α
dxdy

where the constant A(−α) is defined as in (2). If α = 2

〈V1,V2〉(1) :=

∫
Rn

∇V1 · ∇V2dx .

The closure of C∞0 (Rn) with respect to the norm induced by the inner
product 〈·, ·〉α/2 is denoted by Ḣα/2. We denote the associated norm by

‖| · ‖|α/2. 1 Recall that Ḣα/2 is a Hilbert space so, in particular, is weakly
locally compact.

1Note that Ḣα/2(Rn) does not contain L2(Rn). In case α = 2 it is sometimes called
Beppo-Levi space.
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α = 2:

HW ,2
β,a (V ) =

a

2

∫
Rn

|∇V |2 +
k∑

j=1

βjλj(V )

where λ1(V ) < λ2(V ) ≤ . . . λk(V ) are the leading k eigenvalues of the
Schrdinger operator, while β1 > β2 > . . . βk > 0.
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0 < α < 2:

HW ,α
β,a (V ) =

a

2
〈V ,V 〉α/2 +

k∑
j=1

βjλj(V )

where λ1(V ) < λ2(V ) ≤ . . . λk(V ) are the leading k eigenvalues of the
Schrdinger operator, while β1 > β2 > . . . βk > 0.

G. Wolansky (Technion) 14 / 26



Duality for a single component k = 1

1

2
〈Iα ∗ ρ, ρ〉 := sup

V∈C∞0 (Rn)
〈ρ,V 〉 − 1

2
〈V ,V 〉α/2 . (10)

H(α)(φ,V ) = 〈(−∆ + W )φ, φ〉+ a
[
〈V ,V 〉α/2 −

〈
V , |φ|2

〉]
. (11)

inf
V∈C∞0 (Rn)

H(α)(φ,V ) = 2E(α)a (~φ) ≡

1

2

[
〈∇φ,∇φ〉+ 〈Wφ, φ〉 − a

2

〈
|φ2, Iα ∗ |φ|2

〉]
.

Let HW ,α
a (V ) = inf‖φ‖=1H

(α)(φ,V ) .

HW ,α
,a (V ) =

a

2
〈V ,V 〉α/2 + inf

‖φ‖2=1
〈(−∆ + W − aV )φ, φ〉 .
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Multi-level case

HW ,α
β,a (V ) =

a

2
〈V ,V 〉α/2 + inf

~φ∈⊗kH1

k∑
j=1

βj 〈(−∆ + W − aV )φj , φj〉 .

V ∈ Ḣα/2 7→ Gβ,a(V ) := inf
~φ∈⊗kH1

k∑
j=1

βj 〈(−∆ + W − aV )φj , φj〉 . (12)
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Lemma

[Extended Rayleigh-Ritz ] If β1 ≥ β2 . . . ≥ βk then

Gβ,a(V ) =
k∑

j=1

βjλj(V )

where λj(V ) are the k lowest eigenvalues of the operator −∆ + W − aV
arranged by increasing order. In particular, Gβ,a is concave on Hα/2.
If 2 < n < 4 + α, 0 < α ≤ 2 then Gβ,a is weakly continuous on Hα/2.

Moreover, the minimum in (12) is obtained at the eigenfunction φ̄j of
−∆ + W − aV corresponding to λj .
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The Euler-Lagrange equation

∂V
1

2
〈V ,V 〉α/2 = (−∆)α/2V

∂VGβ,a = −a
k∑

j=1

βj |φ̄j |2

(−∆)α/2V −
k∑

j=1

βj |φ̄j |2 = 0 ⇐⇒ V = Iα ∗ (
k∑

j=1

βj |φ̄j |2)
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Partial Proof
Let φ̄j be the normalized eigenvalues of −∆ + W − aV corresponding to
λj(V ). Fix some m ≥ j and let Hm = Sp(φ̄1, . . . φ̄m). Let us restrict the

supremum (12) to Hk
m := {~φ := (φ1, . . . φk), φj ∈ Hm} ⊂ Hk .

Then

φj =
m∑
i=1

〈
φj , φ̄i

〉
φ̄i , (−∆ + W − aV )φj =

m∑
i=1

λi
〈
φj , φ̄i

〉
φ̄i .

Define βk+1 = . . . = βm = 0. Then we can write, for any ~φ ∈ Hk
m

k∑
j=1

βj 〈(−∆ + W − aV )φj , φj〉 =
m∑
i=1

m∑
j=1

βjλi |
〈
φj , φ̄i

〉
|2 . (13)

Denote now γi ,j := |
〈
φj , φ̄i

〉
|2. Then {γi ,j} is m ×m, bi-stochastic

matrix, i.e
∑m

i=1 γi ,j =
∑m

j=1 γi ,j = 1 for all i , j = 1 . . .m. Consider now
the infimum of

∑m
i=1

∑m
j=1 γ̃i ,jλiβj over all bi-stochastic martices {γ̃i ,j}.

By Krain-Milman theorem, the minimum is obtained on an extreme point
in the convex set of bi- stochastic matrices. By Birkhoff theorem, the
extreme points are permutations so, from(13)
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∀~φ ∈ Hk
m,

k∑
j=1

βj 〈(−∆ + W − aV )φj , φj〉 ≥
m∑
j=1

βπ(j)λj

for some permutation π : {1, . . .m} 7→ {1, . . .m}. Now, recall that βj are
assumed to be in descending order while λj are in ascending order by
definition. By the discrete rearangment theorem of Hardy, Littelwood and
Polya [?] we obtain that the maximum on the right above is obrained at
the identity permutation π(i) = i , that is, at the identity matrix
γ̃i ,j :=

〈
φj , φ̄i

〉
= δi ,j . This implies thet the eigenbasis φ̄1, . . . φ̄k of the k

leading eigenvalues is the minimizer of (12) on Hk
m for any m ≥ k .

In particular, the minimizer of (12) in Hk
m is independent of m, as long as

m ≥ k . Suppose there exists some ~ψ ∈ Hk which is not contained in and
finite dimensional subspace generated by eigenstates, for which (12) is
strictly smaller than its value on the first k− leading eigenspace. Since the
eigenstates of the Schrdinger operator under assumption generate the
whole space we can find, for a sufficiently large m, an orthonormal base in
Hk

m for on which the left side of (12) is strictly larger than
∑k

j=1 βjλj(V ),
and we get a contradiction for this value of m.
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Theorem (Main)

a: The functional V 7→ a
2 〈V ,V 〉α/2 + Gβ,a(V ) is bounded from below

on Ḣα/2 for any a > 0 if 3 ≤ n < 2 + α.

b: In the critical cases n = 3, α = 1 or n = 4, α = 2 there exists

a = a
(n)
c (~β) > 0 independent of W for which the functional is

bounded from below if a < a
(n)
c (~β) and unbounded if a > a

(n)
c (~β).

c: Moreover, in the cases n = 3 and n = 4, a < a
(n)
c (~β) the functional is

coersive on Ḣα/2(Rn), namely

lim
‖|V ‖|α/2→∞

1

2
〈V ,V 〉α/2 + Gβ,a(V ) =∞ (14)

and a minimizer V̄ exists.

d: If case [c] holds then there exists a solution of the Choquard system,
induced by the minimizing potential V̄ .
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Proof of Main Theorem

Theorem (Lieb-Thirring)

For the Schrödinger operator −∆− V on Rn with a real valued potential
V the numbers µ1(V ) ≤ µ2(V ) ≤ · · · ≤ 0 denote the (not necessarily
finite) sequence of its negative eigenvalues. Then, for n ≥ 3 and γ ≥ 0∑

j ;µj (V )<0

|µj(V )|γ ≤ Lγ,n

∫
V

n/2+γ
+ dx (15)

where V+ = max{0,V } and Lγ,n is independent of V .

Lemma (Critical Sobolev)

For α ∈ (0, 2], n > 2, the space Ḣα/2 is continuously embedded in

L2n/(n−α)(Rn), so there exists S = Sn,α > 0 such that

‖V ‖2n/(n−α) ≤ Sn,α
√
〈V ,V 〉α/2 .
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Recall that λj(V ) are the eigenvalues of −∆ + W − aV . Since W ≥ 0 it
follows that λj(V ) ≥ µj(aV ). Hence

Gβ,a(V ) :=
∑k

j=1 βjλj(V ) ≥ −
∑

j ;µj (aV )<0 βj |µj(aV )|. By Holder

inequality, for γ ≥ 1, γ
′

= γ/(γ − 1) and (15)

Gβ,a(V ) ≥ −

 k∑
j=1

|βj |γ
′

1/γ
′  ∑

j ;µj (aV )<0

|µj(aV )|γ
1/γ

≥

−a1+n/2γL
1/γ
γ,n ‖~β‖γ′

(∫
V

n/2+γ
− dx

)1/γ

.

Set now γ = 2n
n−α − n/2 ≡ (4+α)n−n2

2(n−α) . Then, if 2 < n < 2 +
√

1 + 3α we

get γ
′
n,α ≥ 1 and

Gβ,a(V ) ≥ −a
4

4+α−n L
1/γ
γ,n ‖β‖γ′n,α

(∫
Rn

V
2n

n−α
+

) 2(n−α)
(4+α)n−n2

.

Using the critical Sobolev inequality

Gβ,a(V ) ≥ −a
4

4+α−n L
1/γ
γ,n ‖β‖γ′n,αS

4
(4+α)−n
n,α 〈V ,V 〉

2
(4+α)−n

α/2
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HW ,α
β,a (V ) =

a

2
〈V ,V 〉α/2 + Gβ,a(V ) ≥

a 〈V ,V 〉
2

4+α−n

α/2

(
1

2
〈V ,V 〉

1− 2
4+α−n

α/2 − a
n−α

4+α−n L
1/γ
γ,n ‖β‖γ′n,αS

4
(4+α)−n
n,α

)
(16)

It follows that HW ,α
β,a is coersive for any a > 0 if 3 ≤ n < 2 + α. If

n = 2 + α then the functional is coersive if a <
S

4
n−(4+α)
n,α

2L
1/γ
γ,n

|β|−1
γ′n,α

. Note that

γ
′
n,α =∞ for n = 3, α = 1 and γ

′
n,α = 2 for n = 4, α = 2. Hence coersivity

holds if

(α, n) = (1, 3): a <
S−2
3,1

2L
1/γ
γ,3

|β|−1∞ < a
(3)
c (β)

(α, n) = (2, 4): a <
S−2
4,2

2L
1/γ
γ,4

|β|−12 < a
(4)
c (β)
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Equi-energy distribution

~β = 1k :=

(k−1, . . . , k−1)︸ ︷︷ ︸
k

|~β|−1∞ = k ; |~β|−12 =
√
k

so
a
(3)
c (1k) > O(k) ; a

(4)
c (1k) > O(k1/2)
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