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Nonlocal Shrodinger equations

(—A+V)p+2rp=0
on R3, where V = K x |$|? is some symmetric kernel.

o = E DA
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Nonlocal Shrodinger equations

The kernel is induced by electrostatic/gravitational potential
K(x) =~ +|x|1:

~Ag(x) £ (

[o(y)I? _
)t dy) H(x) + 9(x) = 0
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Nonlocal Shrodinger equations

The " gravitational” case K(x) ~ —|x| !

2

~a00 = ([ 12200y ) o)+ 60 =
x — |

was originally proposed by Ph. Choquard, as an approximation to

Hartree—Fock theory for a one component plasma. Equation of similar

types also appear to be a prototype of the so-called nonlocal problems,

which arise in many situations and as a model of self-gravitating matter.
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A generalized version in R" takes the form

— D¢ — (I % |¢P) [9]P?¢+ ¢ =0 (1)
where r (na
o = A()|x|*7"; Ala) = #@)/z)) (2)

is the Rietz potential, o € (0, n), p € (1, 00) was considered by many
authors in the last decades, using its variational structure as a critical
point of the functional

Epo(@) =3 [ (IVoR 4108 = o (o loP)lol) @)

on an appropriate space.
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In particular, existence of solutions the case p = 2 (and for more general
singular interaction kernels) was studied by
o E. H. Lieb, Existence and uniqueness of the minimizing solution of
Choquard’s non-linear equation ,Studies in Appl. Math.57(2)93-105,
197677
@ P.-L. Lions: The Choquard equation and related questions, Nonlinear
Anal., 4 (6) pp. 1063-1072, 1980
o G.P. Menzala: On regular solutions of a nonlinear equation of
Choquard'’s type, Proc. Roy. Soc. Edinburgh Sect. A, 86 (3-4) pp.
291-301, 1980
For existence, regularity and asymptotic behavior of solutions in the
general case see V. Moroz and J. Van Schaftingen
@ Groundstates of nonlinear Choquard equations:
Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp.
Math. 17 , no. 5, 2015
@ A guide to the Choquard equation, Vitaly Moroz & Jean Van
Schaftingen. J. Fixed Point Theory Appl. 19, no. 1, 773-813, 2017
and references therein.
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The non-linear Schrodinger equation associated with E, , takes the form

— i0p) — Dap — a(ly * Y|P Y[P2p = 0. (4)

The number a € R is the strength of interaction. The case a > 0
corresponds to the attractive, gravitation-like dynamics, and is related to
Choquard’s equation. The case a < 0 is the repulsive, electrostatic case
and is related to the Hartree system. In this lecture we deal with the
attractive case.
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Considering an eigenmode 1) = e~ "*¢ we get that ¢ satisfy the non-linear
eigenvalue problems

— A¢ —a(lo*[8]P) [P — A =0 (5)

which can be reduced to a = A = 1 by a proper scaling. However, the
solutions of the time dependent nonlinear equation preserve the L2 norm
in time, so it is natural to look for stationary solutions under a prescribed
L2 norm (say, ||¢|[2 = 1). It is not difficult to see that, in general, one can
find a scaling ¢ — ¢g(x) = B~"2¢(x//3) which preserves the .2 norm
and transform the strength of interaction in (5) into a = 1, making this
parameter mathematically insignificant. There is, however, an exceptional
case a = n(p — 1) — 2. In that case the first two terms in (5) are scaled
identically under IL? preserving scaling, so the size of the interaction
coefficient a is mathematically significant in that case.
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In the case p = 2 and in the presence of a prescribed, scalar potential W/,
the IL2— constraint version of (5) takes the form

2
aoswo-a( [ LN g)o-xe=0 ol=1. @

A solution is given by a minimizer of the functional

Wiy .o L 2 [6(x)*|¢(y) >
EN() =5 [ (Vo + wiop)a—7 [ [ 1IN gy )

restricted to the IL? unit sphere ||¢|l2 = 1. W a prescribed function
satisfying
lim W(x)= o0

[x]—00
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Exceptional case

D. Yinbin, L. Lu and S. Wei studied the equation in the exceptional case
a=n—2,forn>3, a>0.

2
—A¢+W¢>—a</ 9()] >¢ Ao =0, [lglla=1.

R" ’X—y,

Constraint minimizers of mass critical Hartree functionals: Existence and
mass concentrations, J. Mathematical physics, 56, 2015

In particular, they showed the existence of a critical strength 3. > 0,
depending on n but independent of W, such that EaW is bounded from
below on the sphere ||¢||2 = 1 iff a < 3.. Moreover, a minimizer of EV

exists if 2 < 3, and is a solution. It was also shown that ac = 9ll2,
where ¢ is the unique, positive unconstrained solution of the equation of
2
- 5500 ([ 1 6,) 3y + 30 =0 Q
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Multi state system

The first object is to extend the LL2-constraint Choquard equation (6) into
a k— state system

—Agj+ (W —aV)gj— X =0 |djll=1, ; j=1...k

where

pi =il

where (¢1, ... ¢x) constitutes an orthonormal k—sequence in LL2(R") and

k
Bi>0, > pi=1 (9)
1

are the probabilities of occupation of the states j = 1... k.
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Multi state system

The first object is to extend the L?-constraint Choquard equation (6) into
a k— state system

and the exceptional case a« = n — 2

~A¢;+ Wo; — a (Zﬁl/ 1 (y)| ) ¢j = Aj¢j =0

—yp¥

where (¢1, ... ¢x) constitutes an orthonormal k—sequence in L2(R") and

k
Bi>0, > Bi=1 (9)
1

are the probabilities of occupation of the states j =1... k.
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Theorem
If{¢1,...,dk} is a minimizer of

ELN(P) = Zﬁ, (Y, Vi) + (W, ) — Zﬂ, Jyl?, fo  [i[2)
on all k— orthonormal frames J = (¢1,...%x), then it is a solution of the
k — state Choquard system, while

)\1<)\2§...,§)\k

are successive eigenvalues starting form the minimal level A1 and ¢; the
corresponding eigenstates.
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Dual formulation

The second object is to introduce a dual approach to the L.? constraint
Choquard problem in the case p = 2.
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Dual formulation

The second object is to introduce a dual approach to the L.? constraint
Choquard problem in the case p = 2.

Idea: Work with the " gravitational potential” and NOT with the wave
function

k
V=1l Bilél)
j=1

G. Wolansky (Technion) 11 /26



Dual formulation
The second object is to introduce a dual approach to the L.? constraint
Choquard problem in the case p = 2.

Idea: Work with the " gravitational potential” and NOT with the wave
function

k
V=1l Bilél)
j=1

For the case of single state k = 1, the dual formulation of EY for a =2
on the constraint L2 sphere takes the form of the functional
Vs 1Y (V)

a
2
over the unconstrained Beppo-Levi space V € H;(R") . Here the

functional A\; = A1(V) is the leading (minimal) eigenvalue of the
Schrdinger operator

HP(V) =3 | IVVE+ ()

—A+W—-3aV on R".
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The extension of this dual formulation to the k—system for ac € (0,2] In
case o = 2 it takes the form

AU \WHZ@

where A\1(V) < Aa2(V) < ... Ak(V) are the leading k eigenvalues of the
Schrdinger operator, while 81 > 8> > ... 8¢ > 0.
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If a £ 27

Let us recall some definitions and theorems we use later
For Vi, Vo € C§°(R") and a € (0, 2), consider the quadratic form

(V1,Va) o0 = A(_a)/n / il = MDA - V2(y))dxdy

|x — y|nto

where the constant A(—«) is defined as in (2). If « =2
<V1, V2>(1) Z:/ VVl . VVQdX .
Rn

The closure of Cg°(R") with respect to the norm induced by the inner
product (-, ->a/2 is denoted by H,, ». We denote the associated norm by

I 1lay2- ! Recall that H, /> is a Hilbert space so, in particular, is weakly
locally compact.

'Note that Ha/z(R”) does not contain L2(R"). In case o = 2 it is sometimes called
Beppo-Levi space.
YT



k
a
M2V =5 [ IV S anw)
j=1

where A1 (V) < A(V) < ... A(V) are the leading k eigenvalues of the
Schrdinger operator, while 81 > 82 > ... 8, > 0.

G. Wolansky (Technion) 14 / 26



O<a<2: ;
a a
HE (V) = SV Vg D BiA(V)
j=1

where A1 (V) < A2(V) < ... A(V) are the leading k eigenvalues of the
Schrdinger operator, while 81 > 82 > ... 8k > 0.
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Duality for a single component k =1

N =

1
</a * pap> = sup <p7 V> - 5 <V7 V>a/2
Vel (Rm)

(10)

o = = E DA
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Duality for a single component k =1

1
</a * p7p> = sup <p7 V> - 5 <V, V>a/2 : (10)
Vel (Rm)

H(6, V) = (~ A+ W)o,0) +a (V. Vo = (ViloP)] - (1)

N =
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Duality for a single component k =1

1
<la * p7p> = sup <p7 V> - 5 <V, V>a/2 : (10)
Vel (Rm)

N~

H(6, V) = (~ A+ W)o,0) +a (V. Vo = (ViloP)] - (1)

inf  H®(¢, V) =28(4) =

Vecse (R)

(V6. 96) + (W, 6) = 2 (1% ko % 16%)] -

N
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Duality for a single component k =1

1
<la * p7p> = sup <p7 V> - 5 <v7 V>a/2 : (10)
Vel (Rm)

N~

H(6, V) = (~ A+ W)o,0) +a (V. Vo = (ViloP)] - (1)

-,

inf  H®(¢, V) =28(4) =

Vecse (R)

(V6. 96) + (W, 6) = 2 (1% ko % 16%)] -

N

Let H3"(V) = infygy=1 H®(9, V) .

HY (V) = 2V, V)t inf (~A+W—aV)s,6) .

¢ll2=

15 / 26
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Multi-level case

W (V) = g (V, V) oo+ .g{HIZﬁJ A+ W —aV)g,¢)) -
k
V € Hyn — Gpa(V) = _inf ZBJ (A + W —aV)e;,¢) . (12)

¢e®kH1
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Lemma

[Extended Rayleigh-Ritz | If 51 > Ba... > Bk then
k
G,B,a(v) = Z/BJAJ(V)
j=1

where \j(V') are the k lowest eigenvalues of the operator —A + W — aV
arranged by increasing order. In particular, Gg 5 is concave on Hy, /5.
If2<n<4+4a, 0<a<2then Gg, is weakly continuous on H,>.
Moreover, the minimum in (12) is obtained at the eigenfunction gi_)j of
—A + W — aV corresponding to ;.
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The Euler-Lagrange equation

Oy (V. V) = (—a)*2v

N

k
IvGsa=—ay Bilol

Jj=1

k k
(D) PV =3 "BilgP =0 =V =1lx(>_ Bl
=1

Jj=1
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Partial Proof
Let qBJ- be the normalized eigenvalues of —A + W — aV corresponding to
Aj(V). Fix some m > j and let Hy, = Sp(¢1,...¢m). Let us restrict the

supremum (12) to HX := {gz;:: (f1,---0k),0j € Hm} C Hk.
Then

Z<¢J, Yoi, (FA+W—aV)gi=> X))
i=1

Define 5k+1 =...= fBm =0. Then we can write, for any 56 HE
Z/BJ (A +W—aV)g), ¢)) ZZBJA‘ 5, 0i) |2 - (13)
Jj=1 i=1 j=1

Denote now 7;j := | {¢j,®i)|?. Then {v;;} is m x m, bi-stochastic
matrix, i.e 7, => " vi;=1forall i, j=1...m. Consider now
the infimum of 377, 77, 4, ;Ai3; over all bi-stochastic martices {%; ;}.
By Krain-Milman theorem, the minimum is obtained on an extreme point
in the convex set of bi- stochastic matrices. By Birkhoff theorem, the

extreme points are permutations so, from(13
G. Wolansky (Technion) 19 / 26



k m
V(;EH;? ZBJ (A + W_av)¢j7¢j> ZZﬁWU)Aj

=1 j=1
for some permutation 7 : {1,...m} — {1,...m}. Now, recall that j3; are
assumed to be in descending order while A; are in ascending order by
definition. By the discrete rearangment theorem of Hardy, Littelwood and
Polya [?] we obtain that the maximum on the right above is obrained at
the identity permutation (i) = i, that is, at the identity matrix
Nij = <¢j, g5,> = 0;j. This implies thet the eigenbasis b1, ... ¢k of the k
leading eigenvalues is the minimizer of (12) on HY, for any m > k.
In particular, the minimizer of (12) in HX is independent of m, as long as
m > k. Suppose there exists some w € ]HI" which is not contained in and
finite dimensional subspace generated by eigenstates, for which (12) is
strictly smaller than its value on the first k— leading eigenspace. Since the
eigenstates of the Schrdinger operator under assumption generate the
whole space we can find, for a sufficiently large m, an orthonormal base in
HX for on which the left side of (12) is strictly larger than Zjlle BiAi(V),
and we get a contradiction for this value of m.
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Theorem (Main)
a: The functional V — 3(V, V), » + Gg,a(V) is bounded from below
onHa/z foranya>0 if3<n<2+a.
b: In the critical cases n =3, =1 or n = 4, = 2 there exists
a=a" (B) > 0 independent of W for which the functional is
bounded from below if a < a%" )(6) and unbounded ifa> al" )(ﬁ)

c: Moreover, in the casesn =3 and n =4,a < a (6) the functional is
coersive on ]I-]Ia/2( "), namely

1
lim Vv,V + Gg (V) = 14
5 VYDt GaulV) (14)

and a minimizer V' exists.

d: If case [c] holds then there exists a solution of the Choquard system,
induced by the minimizing potential V.
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Proof of Main Theorem

Theorem (Lieb-Thirring)

For the Schrédinger operator —A — V' on R" with a real valued potential
V' the numbers (V) < p2(V) < --- < 0 denote the (not necessarily
finite) sequence of its negative eigenvalues. Then, for n >3 and v > 0

> V)7 < L [ VP 0 (15)

Jimi(V)<0

where V., = max{0, V'} and L, , is independent of V.

Lemma (Critical Sobolev)

For a € (0,2], n > 2, the space Ha/z is continuously embedded in
1.27/(n=@)(IR"), so there exists S = S, o > 0 such that

H VHZn/(n—a) < Sn,a\/ <Va V>a/2 C
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Recall that \j(V) are the eigenvalues of —A + W —aV. Since W >0 it
follows that A; (V) > pj(aV). Hence

Gp,a(V) = ZJ 18X (V) . Zj;uj(aV)<0 Biluj(aV)|. By Holder
inequality, for v > 1, v = /(v — 1) and (15)
1/'Yl 1/~

k
Gpa(V) = = | D15 o] =
j=1

Jinj(aV)<o

. /v
o (/ Vn/2+7dx>

—n/2= B Then, if 2 < n < 2+ vI+ 30 we

_31+"/27L%n

Set now v = nz”a

get 7;1,04 >1and

2(n—a)
4 1 % (44+a)n—n2
Gg,a(V) > —atra=n Lv{r’vyHBH%’m (/]Rn v/ ) .

Using the critical Sobolev inequality

2
4+a —n

Goa(V) > —atn L] 5] STV V)
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a a
Hyl (V) = SV, V)apa + Gaa(V) =

2 o 4
2V V)T (5 - LR ST

Wa

It follows that 7—[ is coersive forany a>0if3<n<2+a. If

g4+
n,o

4
4t
n = 2 + « then the functional is coersive if a < TW\ 1 Note that

'yn,a =o0 forn=3,a =1 and 'yn,a =2forn=4,a0=2. Hence coersivity
holds if

o (a,n)=(1,3): a< 1M|ﬁ|oo<a£3’(/3)

o (a,n)=(2,4): a< 1M|,8|2 < a®(B)
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Equi-energy distribution

l

D ™

|
SO

g1
N
I
-

®(1,) > 0(k)
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k

B2t = Vk

(4)(1k) > O(kl/z)
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