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Nonlocal nonlinear evolution systems

We consider nonlocal nonlinear evolution systems of the form{
∂tu+As(t, x, u, ...,∇lu)(u) = N (t, x, u), in (0,∞)× Rd,
u(0) = u0 in Rd (1)

where d, l ∈ N+ , u = u(t, x) : (0,∞)× Rd → Rm , and
As(t, x0, u(t, x0), ...,∇lu(t, x0))(.) is a linear differential operator of order s with
s > l i.e

F [As(t, x0, u(t, x0), ...,∇lu(t, x0))(u)](ξ) = As(ξ)F(u(t))(ξ)

with As(ξ) ∼ |ξ|s ( e.g. As = −(1 + u2)∆u with s = 2 ) and N (t, x, u) is a
nonlinear differential operator of u , with its derivative strictly less than s .

• Quasilinear systems : it is linear in highest order derivatives

• Local: A(t, x, u, ...,∇lu)(u)(t, x) is determined at x0 if one needs to know
only the values of the function u(t) in an arbitrarily small neighborhood of
x0 . Nonlocal case is a relation for which the opposite happens.



Some examples

• The Navier-Stokes equation: u = (u1(t, x), ..., ud(t, x)) : (0,∞)× Rd → Rd

∂tu−∆u+∇p+

d∑
i=1

ui∂xiu = 0,

d∑
i=1

∂xiui = 0.

It can be rewritten by the following form

∂tu−∆u = N (u).

A critical space is B−1
∞,∞ .

• The 2D Muskat equation with surface tension: f = f(t, x) : (0,∞)× R→ R

∂tf(x) =
1

π

ˆ
R

1 + ∂xf(x)∆αf(x)

〈∆αf(x)〉2
∂x

(
∂2
xf(x− α)

〈∂xf(x− α)〉3

)
dα

α
, ∆αf(x) =

f(x)− f(x− α)

α

It can be rewritten by

∂tf +
|D|3f

(1 + (∂xf)2)3/2
= N (f).

Where F(|D|3f)(ξ) = |ξ|3F(f)(ξ) .
This is a nonlocal quasilinear evolution equation. A critical space is W 1,∞(R) .



• The thin flim equation:

∂tu = ∆(e−∆u) ∆ =
d∑
i=1

∂2
xi .

It can be rewritten by
∂tu+ e−∆u∆2u = N (u).

This is a local quasilinear evolution system.

• The Mean Curvature Flow of entire graph (Wang 2004):
f = (f1, ..., fm) : Rd × [0,∞)→ Rm

∂tf
j = A(∇f)∇2f j j = 1, ...,m

where

A(∇f) =

[
Id+

m∑
i=1

∇f i ⊗∇f i
]−1

,
Id

1 + |∇f |2 ≤ A(∇f) ≤ Id.

This is a local quasilinear evolution system. A critical space is W 2,∞(R) .



Some difficulties:

• A priori controls from conservation laws such as energy, momentum, . . . are
often too weak even for the existence of weak solutions

• Lack of maximal principles

Tools:

• De Giorgi-Nash-Moser/ Krylov-Safonov theorem for holder estimates for
uniformly elliptic or parabolic equations of second order with rough
coefficients
In general case, these ideas do not work for degenerate parabolic equations,
systems, equations with higher order derivatives

• The Schauder estimates: one needs to require regular enough coefficients

• Energy method: one needs to keep singular weights that are suitable for the
degeneracy of the problem.
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Schauder-type estimates for evolution
equations and their applications1

1Joint work with Ke Chen and Ruilin Hu.



Schauder-type estimates

We consider the elliptic equation

div(A(x)∇u) = div(F )

where the coefficient A : Rd →Md×d satisfies C−1I ≤ A(x) ≤ CI.
When A is a constant matrix, we have the Schauder estimate:

||∇u||Ċa .

(
sup
k∈N

1

|a− k|

)
||F ||Ċa ∀ a ∈ R+\N. (2)

As a consequence, we can obtain the Schauder estimate when A is a non-constant
matrix,

||∇u||Ċa .

(
sup
k∈N

1

|a− k|

)
(1 + ||A||Ċa)(||F ||Ċa + ||u||L∞) ∀ a ∈ (0,∞)\N. (3)

References:

• Agmon, Douglis, Nirenberg (1959/1964),

• Ladyzhenskaya-Uraltseva’s Book (1964),

• Gilbarg-Trudinger’s Book (1983).
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How about the parabolic equation?

We consider the parabolic equation

∂tu− div(∇u) = div(F ) in Rd × (0,∞), u(0, x) = u0(x) in Rd × (0,∞).

Lemma (Chen, Hu and N. 2024)

For any a ∈ (0, 1) , there holds

sup
t>0
||u(t)||L∞ + sup

t>0
t
1+a
2 ||∇u(t)||Ċa .

1

a(1− a)

(
sup
t>0

t
1+a
2 ||F (t)||Ċa + ||u0||L∞

)
.

As a consequence, we can obtain the Schauder estimate for solution to

∂tu− div(A(x)∇u) = div(F ),

that for T = T (||A||Ca)� 1 .

sup
t∈(0,T )

(
||u(t)||L∞ + t

1+a
2 ||∇u(t)||Ċa

)
.

1

a(1− a)

(
sup

t∈(0,T )

t
1+a
2 ||F (t)||Ċa + ||u0||L∞

)
.
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Consider a general nonlocal parabolic equation

∂tu(t, x) + Lsu(t, x) = Pγf(t, x) in Rd × (0,∞).

Here we assume the operator Ls , Pγ satisfy

F(Lau)(t, ξ) = A(ξ)û(t, ξ), with A(ξ) & |ξ|s, |∇βA(ξ)| . |ξ|s−β , ∀β ≥ 0, ξ 6= 0,

F(Pγf)(t, ξ) = B(ξ)f̂(t, ξ), with |∇βB(ξ)| . |ξ|γ−β ,∀β ≥ 0, ξ 6= 0,

for 0 < γ < s .

Lemma (Chen, Hu and N. 2024)

For any κ ∈ (s− γ, s)

sup
t>0

t
κ
s ||u(t)||Ċκ .

1

(s− κ)(κ− s+ γ)

(
||u0||L∞ + sup

t>0
t
κ
s ||f(t)||Ċκ−s+γ

)
.

We can obtain the Schauder estimate for solution to

∂tu(t, x) + λ(x)Lsu(t, x) = Pγf(t, x), inf
x
λ ≥ c0 > 0

that for T = T (||λ||Cs , c0)� 1

sup
t∈[0,T ]

(
||u(t)||L∞ + t

κ
s ||u(t)||Ċκ

)
. ||u0||L∞ + sup

t∈[0,T ]

t
κ
s ||f(t)||Ċκ−s+γ .



Some basic applications
Recall that for any s ∈ R and γ > 0

||f ||Bs∞,∞ ∼ sup
t>0

t
a
γ |||D|se−t|D|

γ

f ||Ċa

for any 0 < a < γ (Triebel 1983). Here |D|γ = (−∆)
γ
2 .

1) The fractional Navier-Stokes equation

∂tu+ |D|γu = −Pdiv(u⊗ u) in Rd × (0,∞) (4)

where γ ∈ (1, 2) and P = 1−∇∆−1 div is the Leray projection. The problem (4) is
well posed in the Besov space B1−γ

∞,∞ .

Remark:

• γ = 1 , well posed in L∞ .

• γ = 2 , ||u(t)||2L∞ . t−1 . The problem is strongly ill-posed in B−1
∞,∞

(Bourgain-Pavlovic, 2010) and well posed in BMO−1 (Koch-Tataru 2003).

2) The surface quasi-geostrophic (SQG) equation

∂tu+ |D|γu+ div
(
u∇⊥|D|−1u

)
= 0 in R2 × (0,∞) (5)

where γ ∈ (1, 2) . The problem (5) is well posed in the Besov space B1−γ
∞,∞ .

3) The aggregation-diffusion equation

∂tρ−∆ρ = ∇ · (ρ∇|D|−sρ) in Rd × (0,∞) (6)

where s ∈ (0, 1) . The problem (6) is well posed in the Besov space B−s∞,∞ .
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Geometric flows
We consider the Mean Curvature Flow (Wang 2004):
f = (f1, ..., fm) : Rd × [0,∞)→ Rm

∂tf =

[
Id+

m∑
i=1

∇f i ⊗∇f i
]−1

∇2f in Rd × (0,∞)

and f(0) = f0 . Note that Ḣ1+ d
2 (Rd), Ẇ 1,∞(Rd) are critical spaces associated

with this problem.

Theorem (Chen, Hu and N. 2024)

Let f0 ∈ C1(Rd,Rm) and and β ∈ R+\N . There exists T > 0 such that the
problem has a unique solution f in [0, T ] satisfying

||f ||T := sup
t∈[0,T ]

(
||∇f(t)||L∞ + t

β
2 ||∇f(t)||Ċβ

)
<∞.

Moreove, if ||f0||B1
∞,∞

(1 + ||∇f0||L∞)4 � 1 , we can take T =∞.

Remark: when m = 1, the problem has a global unique solution f with any
Lipschitz initial data by Ecker and Huisken (1989/1991).
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Proof
Set

||f ||T := sup
t∈[0,T ]

(
||∇f(t)||L∞ + t

β
2 ||∇f(t)||Ċβ

)
,

Aϕ(x) =

[
Id+

m∑
i=1

∇ϕi ⊗∇ϕi
]−1

for ϕ ∈ C3
c (Rd,Rm).

Note that Aϕ(x) ≥ 1
〈∇ϕ〉2 Id , 〈b〉 = (1 + |b|2)

1
2 .

We rewrite the equation as

∂tf −Aϕ∇2f = (Af −Aϕ)∇2f,

with ||∇ϕ−∇f0||L∞ ≤ ε� 1 .

Set f̃(t, x) = f(t, x)− ϕ(x) . So,

∂t∂if̃ − div(Aϕ∇∂if̃) = ∂i
(
(Af −Aϕ)∇2f

)
+ l.o.t.

Then,

||f̃ ||T . ||∇f̃(0)||L∞ + ||f̃ ||T ||f ||T + C(ϕ)T c0 (||f ||T + 1)
2
1ϕ6≡0

. ε+ ||f̃ ||2T + C(ϕ)T c0
(
||f̃ ||T + 1

)2

1ϕ6≡0.

for some c0 > 0 .
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Geometric flows

• The Willmore flow:

ut + 〈∇u〉div

(
1

〈∇u〉

((
Id− ∇u⊗∇u

〈∇u〉2

)
∇ (〈∇u〉H)− 1

2
H2∇u

))
= 0

(7)
in R2 × (0,∞) is well posed in Lip(R2) (and C1(R2)). Here

H = div
(
∇u
〈∇u〉

)
, 〈b〉 = (1 + |b|2)

1
2 .

• The Surface diffusion flow:

∂tu+ div

(
(〈∇u〉Id− ∇u⊗∇u

〈∇u〉
)∇H

)
= 0 in Rd × (0,∞) (8)

is well posed in Lip(Rd) (and C1(Rd)).
• The Thin-film equation:

∂tu = ∆(e−∆u) in Rd × (0,∞) (9)

is well posed in {f : ∆f ∈ L∞(Rd)(and C(Rd))} .

Our method can be applied for these equations with homogeneous Dirichlet
boundary condition.



Nonlocal quasilinear evolution equations

Figure: ∂tf = 〈∇f〉u−.~n|∂Ωt

Assume µ = 1 . We consider the 2D Muskat equation with surface tension

∂tf(x) =
1

π

ˆ
R

1 + ∂xf(x)∆αf(x)

1 + (∆αf(x))2 ∂x

(
∂2
xf(x− α)

〈∂xf(x− α)〉3

)
dα

α
in R× (0,∞).

Here f : R× (0,∞)→ R , 〈a〉 = (1 + a2)
1
2 , ∆αf(x) = δαf(x)

α
= f(x)−f(x−α)

α
.

Note that Ḣ
3
2 (R), Ẇ 1,∞(R) are critical spaces associated with this problem.



We rewrite the equation as

∂tf +
1

〈∂xf〉3
|D|3f = R(f) +

1

π
N(f),

where

N(f) =

ˆ
∆αf(∂xf −∆αf)

〈∆αf〉2
∂x

(
∂2
xf(.− α)

〈∂xf(.− α)〉3

)
dα

α

+

ˆ
∂2
xf(.− α)δα

(
1

〈∂xf(.)〉3

)
dα

α2
.

Theorem (Chen, Hu and N. 2024)

Let f0 ∈ C1(Rd) and β ∈ R+\N .There exists T > 0 such that the problem has
a unique solution f in [0, T ] satisfying

||f ||T := sup
t∈[0,T ]

(
||∇f(t)||L∞ + t

β
3 ||∇f(t)||Ċβ

)
<∞.

Moreove, if ||∇f0||L∞ � 1 , we can take T =∞.



Nonlocal quasilinear evolution equations

The 2D Peskin equation with general force (Lin-Tong, Mori-Rodenberg-Spirn 2019)

∂tX =

ˆ
T
∂αG(δαX(s)) (T(|∂sX|)∂sX) (s− α)dα.

Here X : T× (0,∞)→ R2 and G(x) = 1
4π

(
− log(|x|)I + x⊗x

|x|2

)
is the fundamental

solution of the Stokes equation in R2 , δαX(s) = X(s)−X(s− α) ,
T(r) + rT′(r),T(r) > 0 , ∀ r ≥ 0 .

The Peskin problem describes a closed one dimensional elastic structure immersed in a two
dimensional field of incompressible viscous fluid and is free to move with the fluid velocity. It is
inspired by the numerical immersed boundary method introduced by Peskin (1972, 2002) to
study the flow patterns around heart valves.

• Arc-chord assumption: There exists λ0 > 0 such that

inf
s,α

|δαX0(s)|
|α|

≥ λ0,

where |α| = infk∈Z |α− kπ| .
• As Muskat equation, the 2D Peskin equation also has the following scaling propriety : if

X(s, t) is a solution then the familly λ−1X(λs, λt) is a solution with initial data
λ−1X0(λs) for all λ > 0 . Under this scaling, Ẇ 1,∞, BMO1 and B1

∞,∞ are critical
spaces.
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• As Muskat equation, the 2D Peskin equation also has the following scaling propriety : if

X(s, t) is a solution then the familly λ−1X(λs, λt) is a solution with initial data
λ−1X0(λs) for all λ > 0 . Under this scaling, Ẇ 1,∞, BMO1 and B1

∞,∞ are critical
spaces.



We can rewrite the equation as

∂tX(s) +
1

4
A(∂sX(s))ΛX(s) = Ñ (X)(s),

where Λ = (−∆)
1
2 and A(Z) = T(|Z|)id+ T′(|Z|)

|Z| Z ⊗ Z > 0 .

Theorem (Chen, Hu and N. 2024)

Let β ∈ R+\N . For any initial data X0 ∈ L∞ ∩ C1 satisfying

infs,α
|δαX0(s)|
|α| ≥ c0 > 0 , there exists a time T0 > 0 such that the problem has a

unique solution X ∈ C([0, T0];C1−) satisfying

sup
t∈[0,T0]

(
||∂sX(t)||L∞ + tβ ||∂sX(t)||Ċβ

)
<∞, inf

s,α

|δαX(s, t)|
|α|

≥ c0/2 ∀t ∈ [0, T0].

Remark: when T(r) ≡ 1 , the problem is local well posed for arbitrary initial

configuration X0 ∈ (C1)Ḃ
1
∞,∞ with the arc-chord assumption.



The Peskin problem in 3D with general nonlinear elastic laws:

∂X

∂t
(x̂) =

ˆ
S2
G(X(x̂)−X(ŷ))∇S2 ·

(
T (|∇S2X(ŷ)|)

∇S2X(ŷ)

|∇S2X(ŷ)|

)
dµS2 (ŷ),

X(x̂)|t=0 = X0(x̂),

(10)

where ∇S2 denotes the surface gradient operator on the unit sphere, µS2 is the standard

measure on the unit sphere, G(x) is the 3D Stokeslet tensor: G(x) = 1
8π

(
1
|x| I3 + x⊗x

|x|3

)
and

T ′ ≥ c0 > 0 . This equation describes a two-dimensional elastic membrane immersed in a
three-dimensional steady Stokes flow. Similar as in 2D, we need to impose the arc-chord
condition

Θ(X0) := sup
θ,η∈S2,θ 6=η

|θ − η|
|X0(θ)−X0(η)|

< +∞. (11)

Theorem (Chen, Hu and N. 2024)

Let β ∈ R+\N . There exists ε0 > 0 such that, if the initial data X0 ∈W 1,∞ ∩ (C1)Ḃ
1
∞,∞

satisfying Θ(X0) <∞ . Then there exists a time T0 > 0 such that the problem has a unique
solution X ∈ C([0, T0];C1−) satisfying

sup
t∈[0,T ]

‖∇X(t)‖L∞ + tβ‖∇X(t)‖Ċβ ≤ C‖∇X0‖L∞ , Θ(T ) ≤ 2Θ0.

Juarez, Kuo, Mori and Strain (93 pages, 2023) proved this result with C1,α initial data.



Thank you for your attention
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