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Introduction

▶ Diffuse interface model for binary mixtures:

⋆ The free interface between two components is replaced by a thin interfacial
layer of finite width ∼ ε

⋆ An efficient method to describe morphological evolution of interfaces:
topological transitions can be easily handled
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Introduction

▶ Object:

A diffuse interface model for the motion of a binary mixture of
incompressible viscous Newtonian fluids with a soluble chemical species

⋆ Navier–Stokes–Cahn–Hilliard dynamic for the fluid mixture

⋆ Advection–diffusion–reaction equation for the chemical species

▶ Related issues:

modeling heterogeneous tumor growth with the presence of a nutrient
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Basic Setting

▶ φ: the difference of volume fractions

φ ∈ [−1, 1]

▶ ρ: averaged density

ρ =
ρ2 − ρ1

2
φ+

ρ2 + ρ1
2

▶ v: (volume) averaged velocity

v =
1− φ

2
v1 +

1 + φ

2
v2

▶ σ: density of an unspecified chemical species
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Basic Setting

▶ Total energy 1

E =

∫
Ω

1

2
ρ(φ)|v|2︸ ︷︷ ︸
kinetic

+
ε

2
|∇φ|2 + 1

ε
Ψ(φ)︸ ︷︷ ︸

mixing

+ N(φ, σ)︸ ︷︷ ︸
chemical/interaction

dx

N(φ, σ) =
χσ

2
σ2 + χφσ(1− φ), for some χσ > 0, χφ ≥ 0.

−→ Chemotaxis & Active Transport

▶ Fluxes for generalized diffusion process

qφ := −m(φ)∇µ = −m(φ)∇
(
−ε∆φ+ ε−1Ψ′(φ)

)
+ m(φ) χφ∇σ︸ ︷︷ ︸

chemotaxis effect

qσ := −n(φ)∇Nσ = −n(φ)χσ∇σ + n(φ) χφ∇φ︸ ︷︷ ︸
active transport

1Garcke et al 2016 M3AS
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Full System

Lam & W. 2018 EJAM: via the mass balance law & the second law of
thermodynamics (→ generalization of the Abel–Garcke-Grün model)

∂t(ρv) + div

(
ρv ⊗ v − ρ2 − ρ1

2
m(φ)v ⊗∇µ

)
= −∇p+ div (2ν(φ)Dv)

− div (ε∇φ⊗∇φ) ,

div v =
Γ1

ρ1
+

Γ2

ρ2
,

∂tφ+ div(φv −m(φ)∇µ) =
Γ2

ρ2
− Γ1

ρ1
,

µ = −ε∆φ+
1

ε
Ψ′(φ) +Nφ,

∂tσ + div(σv − n(φ)∇Nσ) = S(φ, σ),

where

Nφ = −χσ, Nσ = σ + χ(1− φ), Dv =
1

2
(∇v +∇vT ).
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Remark 1: Different Evolutions of v

▶ Our model

−→ A full N-S description taking into account inertial effects.

▶ Darcy’s equation (Garcke et al 2016 M3AS)

v = −K
[
∇p− (µ+ χσ)∇φ

]
,

div v = Uv.

▶ Brinkman’s equation (Ebenbeck & Gacke 2019 JDE, SIMA)

− divT (v, p) + νv = (µ+ χσ)∇φ,

T (v, p) = 2η(φ)Dv + λ(φ)div vI− pI,
div v = Uv.
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Remark 2: Potential Functions for φ

▶ Mixing energy of Ginzburg–Landau type

EGL(φ) =

∫
Ω

ε

2
|∇φ|2 + 1

ε
Ψ(φ) dx

▶ Ψ ∼ a double-well potential, e.g., the Flory–Huggins:

Ψ(s) =
Θ

2
[(1 + s) ln(1 + s) + (1− s) ln(1− s)]− Θ0

2
s2, s ∈ [−1, 1],

where 0 < Θ < Θ0.

- Regular potential

Ψ(s) =
1

4
(s2 − 1)2, s ∈ R.

- Double obstacle potential

Ψ(s) =


Θ0

2
(1− s2), if s ∈ [−1, 1],

+∞, else.
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Simplification

▶ Assumptions: matched densities & zero excess of total mass

ρ1 = ρ2 = 1, Γ2 = −Γ1 = Γ, m(φ) = n(φ) = 1.

∂tv + v · ∇v − div(2ν(φ)Dv) +∇p = (µ+ χσ)∇φ,

divv = 0,

∂tφ+ v · ∇φ = ∆µ−α(φ− c0),

µ = −ε∆φ+
1

ε
Ψ ′(φ)−χσ,

∂tσ + v · ∇σ = ∆(σ + χ(1− φ))− Ch(φ)σ + S,

in Ω× (0, T ).

▶ 0 < T ≤ ∞, Ω ⊂ Rd, d = 2, 3 bounded with smooth boundary ∂Ω

▶ ν: fluid viscosity (e.g., the linear interpolation of ν1 and ν2)

▶ 2Γ = −α(φ− c0): interaction of Oono’s type 2

2the simplest in mathematical form; typical for block copolymers
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Initial and Boundary Conditions

Initial conditions

v|t=0 = v0(x), φ|t=0 = φ0(x), σ|t=0 = σ0(x), in Ω.

Boundary conditions on ∂Ω

▶ v = 0: no-slip boundary condition
▶ ∂nµ = 0: no-flux boundary condition
▶ ∂nφ = 0: free interface ⊥ boundary
▶ ∂nσ = 0: no-flux boundary condition

n: unit outer normal on ∂Ω.

Other choices of B.C. are possible:

Periodic BC, Dirichlet BC, or

▶ (2η(φ)Dv − pI) · n = 0, ∂nσ = K(1− σ).
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Related Results

▶ Navier–Stokes–Cahn–Hilliard system ∼ Model "H"

Huge literature

▶ Navier–Stokes–Cahn–Hilliard–Oono system

Bosia, Grasselli & Miranville ’12; Miranville & Temam ’16 ...

⋆ Several open questions with singular potential !

▶ NSCH system with chemotaxis and mass transport:

Lam & W. ’18: with a general regular potential Ψ

Lack of maximum principle for the 4th order Cahn–Hilliard eq.

⇓

φ ∈ [−1, 1] cannot be guaranteed with a regular potential Ψ .
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Results under a Singular Potential

▶ Consider

Ψ(s) =
Θ

2
[(1 + s) ln(1 + s) + (1− s) ln(1− s)]− Θ0

2
s2.

=⇒
φ ∈ [−1, 1].

(1) Existence of global weak solutions in 2D and 3D,

uniqueness of global weak solutions in 2D (He 2021 Nonlinearity)

(2) Existence of global strong solutions that are strictly separated from the
pure states ±1 over time in 2D (He & W. 2021 JDE)

Question: how about global weak/strong solutions in 3D ?

−→ require further understanding of the structure.
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A Modified System

Consider

∂tv + v · ∇v − div
(
2ν(φ)Dv

)
+∇p = (µ+ χσ)∇φ,

div v = 0,

∂tφ+ v · ∇φ = ∆µ− α(φ− c0),

µ = −∆φ+ Ψ ′(φ)− χσ + βN (φ− φ),

∂tσ + v · ∇σ = ∆(σ − χφ),

subject to

v = 0, ∂nµ = ∂nφ = ∂nσ = 0, on ∂Ω× (0, T ),

v|t=0 = v0, φ|t=0 = φ0, σ|t=0 = σ0, in Ω.

⋆ φ: spatial average of φ
⋆ N = (−∆)−1: inverse of the minus Neumann Laplacian
⋆ α = β: recover Oono’s interaction
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Assumptions

(H1) Viscosity function: ν ∈ C2(R) and

ν∗ ≤ ν(s) ≤ ν∗, |ν′(s)| ≤ ν0, |ν′′(s)| ≤ ν1, ∀ s ∈ R.

(H2) Singular potential: Ψ ∈ C([−1, 1]) and real analytic in (−1, 1),

Ψ(s) = Ψ0(s) +
θc
2
(1− s2),

such that
lim

s→±1
Ψ ′
0(s) = ±∞, Ψ ′′

0 (s) ≥ θ > 0,

with θc − θ > 0. There exists ϵ0 ∈ (0, 1) such that Ψ ′′
0 is nondecreasing in

[1− ϵ0, 1) and nonincreasing in (−1,−1 + ϵ0].

(H3) Coefficients:
χ ∈ R, c0 ∈ (−1, 1), α ≥ 0, β ∈ R.
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Structure I

Mass dynamics:

d

dt
(φ− c0) + α(φ− c0) = 0,

=⇒

φ(t)− c0 = (φ0 − c0)e
−αt, ∀ t ≥ 0.

▶ If α = 0, or φ0 = c0 for α > 0: φ(t) is conserved in time.

▶ Otherwise, φ(t) converges exponentially fast to c0 provided that α > 0,
the so-called off-critical case.
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Structure II

Modified free energy:

F(φ, σ) =

∫
Ω

(1
2
|∇φ|2 + Ψ(φ) +

1

2
|σ|2 − χσφ +

β

2
|∇N (φ− φ)|2︸ ︷︷ ︸

nonlocal interaction

)
dx.

Energy balance:

d

dt

(∫
Ω

1

2
|v|2 dx+ F(φ, σ)

)
+

∫
Ω

(
2ν(φ)|Dv|2 + |∇µ|2 + |∇(σ − χφ)|2

)
dx

= −α

∫
Ω

(φ− c0)µdx = −α(φ− c0)

∫
Ω

µdx︸ ︷︷ ︸
"better" energy production rate
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Global Strong Solutions in 3D

Theorem (He & W. 2024 Math. Ann.)

Let (φ∗, σ∗) be a local minimizer of F . For any ϵ > 0, there exist
η1, η2, η3 ∈ (0, 1) such that for any regular initial data (v0, φ0, σ0) satisfying

v0 ∈ H1
0,div(Ω), φ0 ∈ H3(Ω) ∩H2

N (Ω), σ0 ∈ H1(Ω),

∥v0∥L2 ≤ η1, ∥φ0 − φ∗∥H2 ≤ η2, ∥σ0 − σ∗∥L2 ≤ η3,

the IBVP admits a unique global strong solution (v, φ, µ, σ, p) on [0,+∞).
Moreover,

∥φ(t)− φ∗∥H2 ≤ ϵ, ∥σ(t)− σ∗∥L2 ≤ ϵ, ∀ t ≥ 0,

and there exists δ > 0 such that

∥φ(t)∥C(Ω) ≤ 1− δ, ∀ t ≥ 0,
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Long-time Behavior in 3D

Theorem (He & W. 2024 Math. Ann.)

There exists κ ∈ (0, 1/2) such that

∥v(t)∥L2 + ∥φ(t)− φ∞∥H1 + ∥σ(t)− σ∞∥L2 ≤ C(1 + t)−
κ

1−2κ , ∀ t ≥ 0,

where (φ∞, σ∞) ∈
(
H3(Ω) ∩H2

N (Ω)
)
×H2

N (Ω) is a steady state:

−∆φ∞ + Ψ ′(φ∞)− χσ∞ + βN (φ∞ − c0) = Ψ ′(φ∞)− χσ∞, in Ω,

∆(σ∞ − χφ∞) = 0, in Ω,

∂nφ∞ = ∂nσ∞ = 0, on ∂Ω,

subject to the constraints φ∞ = c0, σ∞ = σ0.

Proof: Energy dissipation structure + Łojasiewicz–Simon approach
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Global Weak Solutions in 3D – Existence

Theorem (He & W. arXiv:2408.09514)

For any initial data (∼ finite initial energy)

v0 ∈ L2
0,div(Ω), φ0 ∈ H1(Ω), σ0 ∈ L2(Ω), ∥φ0∥L∞ ≤ 1, |φ0| < 1,

the IBVP admits at least one global weak solution (v, φ, µ, σ) on [0,+∞):

v ∈ L∞(0,+∞;L2
0,div(Ω)) ∩ L2(0,+∞;H1

0,div(Ω)),

φ ∈ L∞(0,+∞;H1(Ω)) ∩ L4
uloc(0,+∞;H2

N (Ω)) ∩ L2
uloc(0,+∞;W 2,6(Ω)),

µ ∈ L2
uloc(0,+∞;H1(Ω)), ∇µ ∈ L2(0,+∞;L2(Ω)),

φ ∈ L∞(Ω× (0,+∞)) with |φ(x, t)| < 1 a.e. in Ω× (0,+∞),

σ ∈ L∞(0,+∞;L2(Ω)) ∩ L2
uloc(0,+∞;H1(Ω)),

Proof: Energy dissipation structure + semi-Galerkin scheme
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Global Weak Solutions in 3D – Regularity

Question: Regularity propagation of global weak solutions ?

▶ Expectation: similar behavior like that for the 3D Navier–Stokes system:

eventual regularity for large time.

▶ Difficulty: A weak-strong type uniqueness is only available if φ is strictly
separated from ±1 (not valid for Cahn–Hilliard eq. in 3D)

▶ Idea: Abels, Garcke & Giorgini for the NSCH system (2024 Math. Ann.)
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Regularity Propagation

Theorem (He & W. arXiv:2408.09514)

Let (v, φ, µ, σ) be a global weak solution.

(1) Instantaneous regularity of (φ, µ, σ):

for any τ ∈ (0, 1), it holds

φ ∈ L∞(τ,+∞;W 2,6(Ω)), ∂tφ ∈ L2(τ,+∞;H1(Ω)),

µ ∈ L∞(τ,+∞;H1(Ω)) ∩ L2
uloc(τ,+∞;H3(Ω)),

Ψ ′(φ) ∈ L∞(τ,+∞;L6(Ω)),

σ ∈ L∞(τ,+∞;L6(Ω)), ∂tσ ∈ L2(τ,+∞; (H1(Ω))′),

▶ We do not have σ ∈ L∞(τ,+∞;H1(Ω)) due to low regularity of v.
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Regularity Propagation

Theorem (He & W. arXiv:2408.09514)

(2) Eventual strict separation property of φ:

there exist TSP ≥ 1 and δ ∈ (0, 1) such that

|φ(x, t)| ≤ 1− δ, ∀ (x, t) ∈ Ω× [TSP,+∞).

(3) Eventual regularity of (v, σ):

there exist TR ≥ TSP such that

v ∈ L∞(TR,+∞;H1
0,div(Ω)) ∩ L2(TR,+∞;H2(Ω)),

σ ∈ L∞(TR,+∞;H1(Ω)) ∩ L2
uloc(TR,+∞;H2

N (Ω)).

Moreover, φ ∈ L∞(TR,+∞;H3(Ω)).
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Strategy of Proof

Step 1. Given a divergence-free velocity

v ∈ L2(0,+∞;H1
0,div(Ω)),

study a convective Cahn–Hilliard–diffusion system for (φ, σ):

∂tφ+ v · ∇φ = ∆µ− α(φ− c0),

µ = −∆φ+ Ψ ′(φ)− χσ + βN (φ− φ),

∂tσ + v · ∇σ = ∆(σ − χφ),

▶ Instantaneous regularization of weak solution (φ, σ) for t > 0

▶ Due to the second order nature of σ-equation & low regularity of v:

⋆ σ only partially regularizes

⋆ No uniqueness! But a weak-strong uniqueness under

σ ∈ L8(0, T ;L4(Ω)).
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Strategy of Proof

Step 2. Eventual strict separation of φ: a dynamic approach via ω-limit set

lim
t→+∞

distW 1,6

(
φ(t), ω(φ)

)
= 0.

For every small δ > 0, there is TSP ≫ 1 such that

∥φ(t)∥C(Ω) ≤ 1− δ, ∀ t ≥ TSP.

Step 3. Weak-strong uniqueness for (v, φ, σ): a relative energy method

(v1, φ1, µ1, σ1) is a weak solution, (v2, φ2, µ2, σ2) is a strong solution,
they satisfy the same initial data and both φ1, φ2 are strictly separated
from ±1, then

(v1, φ1, µ1, σ1) = (v2, φ2, µ2, σ2), in [0, T ].
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Strategy of Proof

Step 4. Eventual regularity of v:

Lemma (Abels 2009, ARMA)

∂tu+ u · ∇u− div
(
2ν(c)Du

)
+∇p = f , in Ω× (0, T ),

divu = 0, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u|t=0 = u0, in Ω,

for given data c, u0, f . Suppose c ∈ BUC([0,+∞);W 1,6(Ω)),
u0 ∈ H1

0,div(Ω) and f ∈ L2(0,+∞;L2
0,div(Ω)). There is ε0 > 0 such that, if

∥u0∥H1
0,div(Ω) + ∥f∥L2(0,+∞;L2

0,div(Ω)) ≤ ε0,

then there is a unique global strong solution u on [0,+∞).

Set c = φ, u = v, f = −φ∇µ−χφ∇(σ−χφ) and conclude on [TR,+∞)
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Summary and Outlook

For a 3D NSCH system with chemotaxis, mass transfer and Oono’s interaction,
we have shown

(1) Existence of global weak solutions,

(2) Existence and uniqueness of a global solution (near energy minimizers)

(3) Regularity propagation of global weak solutions

(4) Long-time behavior: convergence to a single equilibrium

Future work:

▶ Unmatched densities

▶ Nonlocal CH dynamics

▶ General mass scourses
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End

Thank You !
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