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What do we mean by small-scale behaviour? (1)

Basic idea: For example (case when the mass (L1-norm) of u ≥ 0
is conserved) most of the mass is concentrated on a small ball
B(ε) of radius ε.

More involved criterion: for p ≥ 1 the Lp norms behave as ε−c(p,N).

Indeed, if
∫
B(ε) u ≥ C , then by Hölder’s inequality,

(∫
B(ε)

up

)1/p

≥ C |B(ε)|−(p−1)/p = Cε−N(1−1/p).

For a reverse inequality, we would need for example an upper
estimate for |u|∞.
If we have weaker concentration in the limit ε → 0 (on a surface of
dimension k rather than a point), we obtain a different exponent
for ε (equal to −(N − k)(1 − 1/p)).

3 / 13



Intro Burgers equation Aggregation-diffusion equation (ADE) Small-scale behaviour for radial (ADE)

What do we mean by small-scale behaviour? (2)

Oscillations beyond concentration: we study the small-scale
behaviour of the Sobolev semi-norms

|u|m,p :=
(∫

Rn

∣∣∣∂mu

∂xm

∣∣∣p dx
)1/p

.

In the language of hydrodynamics/turbulence theory (Kolmogorov,
Kraichnan, Frisch, Kuksin, Shirikyan...): typical small-scale
quantities used to detect oscillations:

-û(s) for large |s|.
-u(x + r) − u(x) for small r.

Small-scale quantities are related to Sobolev norms:

-Hm = Wm,2 Sobolev norms defined through spectrum.

-Hölder, Sobolev-Slobodeckij... defined through increments;
then Sobolev injections.
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1D Periodic Generalised Burgers Equation

vt + vvx = εvxx , t ≥ 0, x ∈ S1 = R/Z. (1DB)

”Pressureless turbulence” considered by many physicists, for
instance Polyakov ’95 (and Zeldovich in the multi-d case ’89).

We assume that ε > 0, ε ≪ 1. Again, only ε varies.

In [B. ’14], sharp estimates for the (averaged) (1DB) solution.

{|v |m,p}
m,p∼ ε−γ , ∀m ≥ 1, 1 < p ≤ ∞.

Here γ(m, p) = m − 1/p, and {. . . } stands for averaging over a

v0-dependent time period [T1,T2].

For more details (+randomness), see book [B.-Kuksin].
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Aggregation-diffusion equation

Moderately singular aggregation-diffusion equation (pointy
potential):

ut − ε∆u + ∇ · (u∇K ∗ u) = 0, (ADE )

Radial kernel K = k(| · |) satisfying k ′ ∈ L∞ ∩ C 0([0,∞))
(like 1D chemiotaxis).

Properties: Preservation of positivity; conservation of mass
M =

∫
u; global well-posedness (in L1 ∩ Lp, p < ∞, Wm,1).

We assume that k ′(0) ̸= 0; therefore there is a mild singularity
(pointy potential).

Typical examples K (x) = −|x |; e−|x |.
From now on, we always assume u ≥ 0.
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Inviscid explosion

For ε = 0, i.e. for the aggregation equation

ut + ∇ · (u∇K ∗ u) = 0,

short-time well-posedness and long-time explosion if the kernel is
attractive.
Bertozzi, Laurent, Rosado; Carrillo, James, Lagoutière, Vauchelet;
Carrillo, Di Francesco, Figalli, Laurent, Slepčev...
Explosion in the radial attractive case: the quantity

D(u(t)) := u(0, t) if N = 1,

∫
Rn

u(x , t)

|x |
dx if N ≥ 2

explodes in finite time (Biler-Karch-Laurençot ’09).
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Small-scale behaviour

[Biler-B.-Karch-Laurençot 1] Assume that u0 is radially symmetric,
concentrated near 0 and K is attractive near 0. Then the solution
u of (ADE) satisfies∫ T∗

0

∫
B(λ∗ε)

u(x , t) dx dt ≥ C∗ ⇒ (Hölder)

∫ T∗

0

(∫
B(λ∗ε)

u(x , t)p dx

)1/p

≥ C (p)ε−N(1− 1
p
)
, 1 ≤ p < ∞,

for all ε ∈ (0, ε∗). The constants with the ∗ only depend on u0,K
through a finite number of parameters.

These Lp estimates are sharp; the corresponding upper estimates
hold on the whole space Rn and without time averaging.
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Proof of small-scale concentration

The upper estimates hold under very general conditions: radial
symmetry is not needed. We use an energy method.

To prove lower estimates, we consider again the quantity:

D(u(t)) := u(0, t) if N = 1,

∫
Rn

u(x , t)

|x |
dx if N ≥ 2

If ε > 0, no explosion. However, integrating by parts and using a
symmetrization trick we obtain that for some T∗ > 0:∫ T∗

0
D(u(t)) ≥ Cε−1.

Combining this lower estimate with the upper ones in Lebesgue
spaces (and in H1 if N = 1) and using Hölder’s inequality, we
obtain the lower bounds for the mass over the small ball.
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Sobolev norms
In [Biler-B.-Karch-Laurençot 2], we obtain ε-optimal Sobolev
norms for u localised on a small ball as above.

Lower estimates: They follow from lower estimates for Lp norms
and the GN (Gagliardo-Nirenberg) inequality.
For example, since (after averaging in time) we have (by
conservation of the mass M):

Cε−N/2 ≤ |u|2 ≤ CM2/(N+2)|u|N/(N+2)
1,2 ,

we obtain that
|u|1,2 ≥ CM−2/Nε−(N/2+1).

Upper estimates: Energy method. Inequalities of Hölder, GN and
HLS (Hardy-Littlewood-Sobolev), taking derivatives of K
(convolution with |x |−k for k < N). As before, hold on the whole
space and without time-averaging.
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Analogy between Burgers and (ADE)

Formally, if v solves Burgers, −vx satisfies (ADE) with
K (x) = −|x |.
See Bertozzi-Laurent; Bonaschi-Carillo-Di Francesco-Peletier.
However:

1. Periodic setting so −vx = u ≥ 0 is impossible.

2. This is a purely 1D analogy.

However, this suggests |u|p ∼ ε−(1−1/p).

And this is indeed true only in 1D. In general, for (ADE),
|u|p ∼ ε−N(1−1/p) (no N for Burgers: cf. [B’ 16]).

So dependence on N for (ADE). The explanation is that when
ε → 0, for Burgers (resp. (ADE)) we concentrate to a singularity
of codimension 1 (resp. codimension N).

11 / 13



Intro Burgers equation Aggregation-diffusion equation (ADE) Small-scale behaviour for radial (ADE)

Concluding Remarks

Our results give precise and rigorously proved small-scale estimates
for a broad class of (deterministic and random) models.

Until recently, such results were only available for Burgers-type
equations, relying heavily on versions of Oleinik’s estimate
vx ≤ t−1.

Many perspectives on aggregation-diffusion equations (which do
not have inviscid upper estimates like Oleinik’s, but have obvious
inviscid lower ones since solutions are positive: remember formally
u = −vx !)
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