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What do we mean by small-scale behaviour? (1)

Basic idea: For example (case when the mass (Li-norm) of u >0
is conserved) most of the mass is concentrated on a small ball
B(e) of radius e.

More involved criterion: for p > 1 the L, norms behave as g—<(p,N)

Indeed, if fB(E) u > C, then by Holder's inequality,

1/p
(/ u”) > C|B(e)| P~ 1/P = ce=NI-1/p),
B(e)

For a reverse inequality, we would need for example an upper
estimate for |u|so.

If we have weaker concentration in the limit ¢ — 0 (on a surface of
dimension k rather than a point), we obtain a different exponent
for € (equal to —(N — k)(1 —1/p)).
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What do we mean by small-scale behaviour? (2)

Oscillations beyond concentration: we study the small-scale
behaviour of the Sobolev semi-norms

0mu
[lm,p = (/Rn oxm

In the language of hydrodynamics/turbulence theory (Kolmogorov,
Kraichnan, Frisch, Kuksin, Shirikyan...): typical small-scale
quantities used to detect oscillations:

P dx) 1/p.

-i(s) for large |s|.

-u(x + r) — u(x) for small r.

Small-scale quantities are related to Sobolev norms:
-H™ = W™2 Sobolev norms defined through spectrum.

-Holder, Sobolev-Slobodeckij... defined through increments;
then Sobolev injections.
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1D Periodic Generalised Burgers Equation

Vi Wy = eV, t >0, x e St = R/Z. (1DB)

"Pressureless turbulence” considered by many physicists, for
instance Polyakov '95 (and Zeldovich in the multi-d case '89).
We assume that € > 0, ¢ < 1. Again, only ¢ varies.

In [B. '14], sharp estimates for the (averaged) (1DB) solution.
{Vmpt e, ¥m>1, 1< p< oo

Here v(m,p) = m —1/p, and {...} stands for averaging over a
vo-dependent time period [T1, T>].

For more details (+randomness), see book [B.-Kuksin].
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Aggregation-diffusion equation

Moderately singular aggregation-diffusion equation (pointy
potential):

ur —eAu+V - (uVK xu) =0, (ADE)
Radial kernel K = k(| - |) satisfying k" € L> N C°(]0, 00))
(like 1D chemiotaxis).

Properties: Preservation of positivity; conservation of mass
M = [ u; global well-posedness (in Ly N Ly, p < oo, W™1).

We assume that k’(0) # 0; therefore there is a mild singularity
(pointy potential).

Typical examples K(x) = —|x|; e~ x|,
From now on, we always assume u > 0.
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Inviscid explosion

For e =0, i.e. for the aggregation equation
ur+ V- (uVK*u) =0,

short-time well-posedness and long-time explosion if the kernel is
attractive.

Bertozzi, Laurent, Rosado; Carrillo, James, Lagoutiere, Vauchelet;
Carrillo, Di Francesco, Figalli, Laurent, Slep&ev...

Explosion in the radial attractive case: the quantity

u(x,t)

dx if N>2
x|

D(u(t)) = u(0, ) if N=1, /

explodes in finite time (Biler-Karch-Laurengot '09).
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Small-scale behaviour

[Biler-B.-Karch-Laurencot 1] Assume that up is radially symmetric,
concentrated near 0 and K is attractive near 0. Then the solution
u of (ADE) satisfies

T*
/ / u(x, t) dx dt > C, = (Holder)
0 B(\«¢€)

T. 1/p L
/ ( / u(x, )P dx) > C(p)e M0 D), 1< p < oo,
0 B(Axe)

for all € € (0,e,). The constants with the * only depend on ug, K
through a finite number of parameters.

These LP estimates are sharp; the corresponding upper estimates
hold on the whole space R” and without time averaging.
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Proof of small-scale concentration

The upper estimates hold under very general conditions: radial
symmetry is not needed. We use an energy method.

To prove lower estimates, we consider again the quantity:

u(x,t)
Ix]

D(u(t)) == u(0,8) if N =1, / dxif N> 2
If € > 0, no explosion. However, integrating by parts and using a
symmetrization trick we obtain that for some T, > O:

T,
/ D(u(t)) > Ce~L.
0

Combining this lower estimate with the upper ones in Lebesgue
spaces (and in H! if N = 1) and using Holder's inequality, we
obtain the lower bounds for the mass over the small ball.
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Sobolev norms

In [Biler-B.-Karch-Laurencot 2], we obtain s-optimal Sobolev
norms for u localised on a small ball as above.

Lower estimates: They follow from lower estimates for L, norms
and the GN (Gagliardo-Nirenberg) inequality.

For example, since (after averaging in time) we have (by
conservation of the mass M):

CeM/2 < |uly < CM/(N+2) |y YN+,

we obtain that
‘U‘l 5, > CM_Z/Ng_(N/2+1),

Upper estimates: Energy method. Inequalities of Holder, GN and
HLS (Hardy-Littlewood-Sobolev), taking derivatives of K
(convolution with |x| =% for k < N). As before, hold on the whole
space and without time-averaging.
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Analogy between Burgers and (ADE)

Formally, if v solves Burgers, —v satisfies (ADE) with

K(x) = —|x]|.
See Bertozzi-Laurent; Bonaschi-Carillo-Di Francesco-Peletier.
However:

1. Periodic setting so —v, = u > 0 is impossible.

2. This is a purely 1D analogy.

However, this suggests |u|, ~ e—(1-1/p)

And this is indeed true only in 1D. In general, for (ADE),
lu|, ~ e NI=1/P) (no N for Burgers: cf. [B' 16]).

So dependence on N for (ADE). The explanation is that when
¢ — 0, for Burgers (resp. (ADE)) we concentrate to a singularity
of codimension 1 (resp. codimension N).
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Concluding Remarks

Our results give precise and rigorously proved small-scale estimates
for a broad class of (deterministic and random) models.

Until recently, such results were only available for Burgers-type
equations, relying heavily on versions of Oleinik's estimate

-1
Ve <t

Many perspectives on aggregation-diffusion equations (which do
not have inviscid upper estimates like Oleinik’s, but have obvious
inviscid lower ones since solutions are positive: remember formally
u=—vyl)
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