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Minimizing energies with geometry
Fix manifolds A/, M, p € (1, o).
Basic Question:
What are the
» minimizers, properties of minimizers
» minimum energy
for energy

/ |IVulP:  subjecttou: N — M
N



Warm-up in 1D: Minimizing curves - with boundary data
Fix manifold M, p € (1,00). Find v : [0, 1] — M that minimizes

/0]7'(t)]pdt: v:[0,1] = M

subject to boundary data v(0) = py, v(1) = p1.
» Minimizer exist, end of story (bit more work if p = 1), by the direct
method of CalcVar.
» Set

X:{WMH%WHLQyﬂmwwwmw@:%nﬂD=ﬁ}
Goal: find 7 € X such that

INF ::/ 7' (t)|Pdt = inf/ 1y (t)|Pdt
[0.1] [0,1]

veX

» Take a minimizing sequence 7 : [0,1] — M, 7(0) = po, 7x(1) = p1 such that
INF = fim / I (8)|Pdt
[0,1]

k—o00

The energy is coercive, so up to subsequence convergent to some 7 : [0, 1] — M.
» Since ¥ € X it is the minimizer, indeed:

l.s.c minse ~eX
[ prda < in [ pe@rPa ™ e 'S [ e
[0,1] k [0,1]

» These minimizers are just the geodesics (shortest curves)



Warm-up in 1D: Minimizing curves - with boundary data
Fix manifold M, p € (1,00). Find ~y : S' — M that minimizes

/ Y (t)|Pdt: St — M
sl

subject to 777.
» Minimizer exist, end of story (bit more work if p = 1), by the direct
method of CalcVar.
» These minimizers are just the geodesics (shortest curves)
» If we are in the periodic setting “closed curves”, i.e.

v:St—= M,

minimizers all constant and minimum energy is 0



Warm-up in 1D: Minimizing curves - with boundary data
Fix manifold M, p € (1,00). Find ~y : S' — M that minimizes

/ Y (t)|Pdt: St — M
sl

subject to topology.
» Minimizer exist, end of story (bit more work if p = 1), by the direct
method of CalcVar.
» These minimizers are just the geodesics (shortest curves)
» If we are in the periodic setting “closed curves”, i.e.

v:St—= M,

minimizers all constant and minimum energy is 0 (boring)
» So let us introduce some topology:



Winding number a.k.a. degree

Let v : S — S! continuous. Draw its image with orientation (clockwise).



Winding number a.k.a. degree

Let v : S — S! continuous. Draw its image with orientation (clockwise).

» Sit on the northpole, and watch the curve pass by.



Winding number a.k.a. degree

Let v : S — S! continuous. Draw its image with orientation (clockwise).

» Sit on the northpole, and watch the curve pass by.
» Start from 0. If curve passes clockwise add +1, if anti-clockwise add —1
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» Here: w(vy)=+1
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Let v : S — S! continuous. Draw its image with orientation (clockwise).

» Sit on the northpole, and watch the curve pass by.
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Winding number a.k.a. degree

Let v : S — S! continuous. Draw its image with orientation (clockwise).

» Sit on the northpole, and watch the curve pass by.

» Start from 0. If curve passes clockwise add +1, if anti-clockwise add —1
» The winding number is the sum of those numbers.

» Here: w(y)=+14+1+1-1



Topology: Winding number

Let v : S — S! continuous. Draw its image with orientation (clockwise).




Topology: Winding number

Let v : S — S! continuous. Draw its image with orientation (clockwise).

> w(y) =2
» Winding number is independent of where Ada sits!



Topology: Winding number

Let v : S — S! continuous. Draw its image with orientation (clockwise).

> w(y) =2
» Winding number is independent of where Ada sits!
» It is homotopy invariant: If we change v continuously, the winding number

does not change.



Topology: Winding number

Let v : S — S! continuous. Draw its image with orientation (clockwise).

> w(y) =2

» Winding number is independent of where Ada sits!

» It is homotopy invariant: If we change v continuously, the winding number
does not change.

» For fixed v: If 4 is uniformly close to 7y, then winding numbers are the

Same.



Topology: Winding number

Let v : S — S! continuous. Draw its image with orientation (clockwise).

> w(y) =2

Winding number is independent of where Ada sits!

» It is homotopy invariant: If we change v continuously, the winding number
does not change.

» For fixed v: If 4 is uniformly close to 7y, then winding numbers are the
same.

» More generally: Homotopy groups: o € m,(M) all maps f : S” — M with
[f] = a.

v



Minimizing maps — with topology
Minimizing maps: Fix M compact manifold, o € 7,(M).

#ia:=min [ |[Vull: st u:S"—> M, [u] €a (Hi)
Sn
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Minimizing maps — with topology
Minimizing maps: Fix M compact manifold, o € 7,(M).

>
>
>

>

vvyy

#ia:=min [ |[Vull: st u:S"—> M, [u] €a (Hi)
Sn

If p > n: WLP(S", M) embedds in C° compactly: Minimizers exist.

If p < n: minimal energy is zero: minimum not attained.
If p = n: “conformal case” — things get interesting, due to bubbling.

Take a minimizer v : S" — M in « (assume it exists)

We can mess with u without changing the energy:

Take 7 : S" — S” that maps most of the domain S” to {north pole + +}
Consider the new minimizing map

Uy 7= UO T €

but vy <% const (i.e. it leaves the homotopy class).

We can choose 7, conformal, the energy is conformally invariant: energy of u o 7
is same as energy of u.

These “bubbles” could appear for any minimizing sequence!
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#ia:=min [ |[Vull: st u:S"—> M, [u] €a (Hi)
Sn

> If p > n: WHP(S", M) embedds in C° compactly: Minimizers exist.
» If p < n: minimal energy is zero: minimum not attained.

» If p = n: “conformal case” — things get interesting, due to bubbling.
» In general we have SACKS-UHLENBECK-theory?

p = n =2: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI,
TakeuCcHI, KUWERT, DUZAAR and many more: n-harmonic, polyharmonic. ..



Minimizing maps — with topology
Minimizing maps: Fix M compact manifold, o € 7,(M).

#ia:=min [ |[Vull: st u:S"—> M, [u] €a (Hi)
Sn

> If p > n: WHP(S", M) embedds in C° compactly: Minimizers exist.
» If p < n: minimal energy is zero: minimum not attained.

» If p = n: “conformal case” — things get interesting, due to bubbling.
» In general we have SACKS-UHLENBECK-theory?
» There exists a generating set {aq,...,an} C m,(M):
minimizer of (H;) exists for each «;

p = n =2: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI,
TakeuCcHI, KUWERT, DUZAAR and many more: n-harmonic, polyharmonic. ..



Minimizing maps — with topology
Minimizing maps: Fix M compact manifold, o € 7,(M).

#ia:=min [ |[Vull: st u:S"—> M, [u] €a
Sn
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Minimizing maps — with topology
Minimizing maps: Fix M compact manifold, o € 7,(M).

#Hia = min/ VulP i st u:S" > M, [u] € a (Hi)

> If p > n: WHP(S", M) embedds in C° compactly: Minimizers exist.
» If p < n: minimal energy is zero: minimum not attained.
» If p = n: “conformal case” — things get interesting, due to bubbling.
» In general we have SACKS-UHLENBECK-theory?
» There exists a generating set {aq,...,an} C m,(M):
minimizer of (H;) exists for each «;
» Energy identity: for any o € mp(M) there exists (1, ..., 81 € m(M) s.t.

L

L
#ra =) #1, and a=)» f
j=1

J=1

and #13; is attained.
» There are indeed examples of a where minimizers do not exist (FUTAKI)

p = n =2: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI,
TakeuCHI, KUWERT, DUZAAR and many more: n-harmonic, polyharmonic. ..



Why not W$:1/S_harmonic — a continuum of Energies
Minimizing maps: Fix M compact manifold, « € 7,(M), s € (0,1)

HFs = min/ |U(X)_u(2y)|s dxdy: st u€a« (Hs)
nJsn o [x—y[*

The energy on the right is the W*s-seminorm, it is still conformally invariant.
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Why not W$:1/S_harmonic — a continuum of Energies
Minimizing maps: Fix M compact manifold, « € 7,(M), s € (0, 1)

HFs = min/ |U(X)_u(2y)‘s dxdy: st u€a« (Hs)
nJsn o [x—y[*

The energy on the right is the W*s-seminorm, it is still conformally invariant.

We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

» There exists a generating set {ay,...,an} C m,(M) such that minimizer
of (Hy) exists for each «;

» Energy identity for any a € m,(M) there exists f1,. .., € (M) s.t.

L L
#oo=) #pB and a=) B
j=1 J=1

and #,/3; is attained.

Q UEStIOn . How stable are these results as s changes?

» Fix a.. If s-minimizer is attained, what about § &~ s and the s-minimizer?
» Is s — #.a continuous?
» Is the Sacks-Uhlenbeck generating set {ay, ..., ay} the same for all s?



What to expect: mappings between spheres

Summary of what we know:

> S? — S?2, W2 minimizer exist for any degree?

» S —S" n >3, W -minimizer only exist at degree 1, —1,03

> S — S% W13 there exists infinitely many homotopy classes where
minimizers are attained (RIVIERE)®*

> S! — S W22 minimizers are attained for any degree BERLYAND,
MIRONESCU, PISANTE, RYBALKO, SANDIER®

2meromorphic maps minimize area

3reason: minimizer are conformal

“power law for the energy w.r.t. Hopf degree
5

explicit computations & Fourier transform — not easily generalizable
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What to expect: mappings between spheres
Summary of what we know:
> S? — S?2, W2 minimizer exist for any degree?
» S" = S" n>3 Wbhminimizer only exist at degree 1, —1, 03
> S — S% W13 there exists infinitely many homotopy classes where
minimizers are attained (RIVIERE)®*
> S! — S W22 minimizers are attained for any degree BERLYAND,
MIRONESCU, PISANTE, RYBALKO, SANDIER®
Theorem (MIRONESCU)
There exists § > 0 such that degree 1 minimizer exists in W*5(S!,S!) for
se[1/2,1/244].
» One-sided because: embedding theorem W*s(S") ¢ W*HE(S") for s > t.
Conjecture (Natural conjecture?)

For any s € (0,1], for any n € N, there exists a W5 -minimizing degree 1 map.

meromorphic maps minimize area
reason: minimizer are conformal
power law for the energy w.r.t. Hopf degree

2
3
4
®explicit computations & Fourier transform — not easily generalizable



continuous dependence of minimal energy
Theorem (MAZOWIECKA-S. (2023))

Fix a € m,(S"), i.e. consider maps u : S" — S*. Then

s — #.a = inf / ulx) = uly)* dx dy
n Sn

UEx ‘x —y’2”

IS continuous.



continuous dependence of minimal energy
Theorem (MAZOWIECKA-S. (2023))

Fix a € m,(S"), i.e. consider maps u : S" — S*. Then

s — #.a = inf / ulx) = uly)* dx dy
n Sn

UEx ‘x —y’2”

Is continuous.
» By smooth approximation we get

#sa > limsup #:a

t—s

> Observe if [u] +o < 0o then not necessarily [u] ;1 < oo for s > t!
» Proof is based on a new conformal regularity theorem (more: later).
» Let us first discuss some immediate consequences
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Consequences (1): Progress on Mironescu's problem

Theorem (MIRONESCU)

There exists § > 0 such that degree 1 minimizer exists in W*s (Sl St for
se[1/2,1/2+4].

Theorem (MAZOWIECKA-S.)

There exists § > 0 such that degree 1 minimizer exists in W*s (Sl St for
s€[1/2-0,1/2 4],

Proof.
If 4.1 is not attained, there must be (d;)" ; with >~ . d; = 1 (depending on s)

such that y
cont. energy ident. cont
A #1 TR Y Z# d
i=1

But BERLYAND—MIRONESCU—RYBALKO—SANDIER:

#:1

Nl —

#%d:47r2|d].

Contradiction.

(Works with minimal energy homotopy classes — any dimension)
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Consequences (2): Stability of generating homotopy groups
Theorem (MAZOWIECKA-S.)

For each s there exists generating set X = {av, ..., an} C m,(SY) such that
#sa is attained foreach i =1,..., N.

Theorem (MAZOWIECKA-S.)

For each s there exist generating set For each s there exists generating set
Xs = {ay,...,an} C m(S") such that #.q; is attained for each i =1,..., N,
and t ~ s

Proof.

If #.c is not attained for some o and some t = s then there exists (depending
on t) generator (o) of a

- N .. N
continuity continuity
#Fsa R #t@:§ #Ho R § Qi
i=1 =1

» We can repeat this argument for «; on the right hand side, whenever for
some t = s there is no minimizer for «;

» no term from the left-hand side can reappear again on the right-hand side

» finitely many choices of «;, eventually stop or contradiction.
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Proof of continuity
Theorem (MAZOWIECKA-S. (2023))

Fix a € m,(S"). Then s — #a is continuous.

Proof. _ .
» Assume u:S" — Stis a W5 s-minimizer of #..
» (Conformal higher regularity:) then for sy > s, u € W*%(S", S) and
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Proof of continuity
Theorem (MAZOWIECKA-S. (2023))

Fix a € m,(S"). Then s — #a is continuous.

Proof. _ .
» Assume u:S" — Stis a W5 s-minimizer of #..
» (Conformal higher regularity:) then for sy > s, u € W*%(S", S) and

[U] W507%(Sn) rg C([U] W%%(Sn))

» Stability of Sobolev norm:

t, 2 qny s, 0 rqn < n \V/ —t 1
[U]W T (Sn) [U]W 5 (SM) N[u]WSO%(Sn’S[) € |5 ‘ <

> So
#ia<#sa+e forall tst. |t—s| <oy
w*'s

» If no minimizer exist: energy identity
» We have
#.a<H#a+e Vst

» Interchanging roles of s and t we conclude.
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Conformal higher regularity for minimizers
Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the [u] Wys.2-energy between spheres are Holder continuous.
However
» This is usually e-regularity: if [u]ng(B
with suitable estimates

» No way we have uniform higher regularity: Indeed, take any minimizer,

rescale it conformally (almost bubble), the modulus of continuity is
arbitarily bad.

» |dea: Obtain better regularity for another conformally invariant energy.
Theorem (S., MAZOWIECKA-S.)

Critical points of the [u],, s n-energy into spheres, then

[4]

or) <1 then u € C%(B(0, R/2))

n < n
W0 5y C([u] sts(S”)) for some sy > s.
» We show this for critical points, not only minimizers.

» No idea how to use minimizing property (no e-regularity result!)
» Can't do it for general target manifolds
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Conformal higher regularity for minimizers

Theorem (S., MAZOWIECKA-S.)

Critical points of the [u],, . n-energy into spheres, then

n
wses

n < n
[u] w0 5 C([u] WS’S(S,,)) for some sy > s.

» For classical W'2-harmonic maps S* — S
—Au = u|Vul?
» HELEIN, COIFMAN-LIONS-MEYER-SEMMES:

ulVul? € HY(R?).

IVEulls S 1Aullp S 1V ullz2

This is a global (scaling-invariant!) estimate!



Conformal higher regularity for minimizers

Theorem (S., MAZOWIECKA-S.)
Critical points of the [u] , s n-energy into spheres S', then

n < n
[u] o 5 C([u] W%(Sn)) for some sy > s.

» Euler-Lagrange equations
(—A)agou L TS
where
SNPYEE
/ u(x) = u(y)[="2(u(x) = u(y)) - () = 2 )
n Jsn [x — y|rtep
» In S.'16, | rewrote this as (for t < s)
(=A)i gt = (—A)? Tru
where T,v(z) roughly corresponds to ]\/ms”p_:fv]p_l,
/n ; v(x) = v(y)IP2(v(x) — v(¥)) (Ix — 2" — |y — 2z|™") d(x.y)

=yl

(x, y)




Conformal higher regularity for minimizers

Theorem (S., MAZOWIECKA-S.)
Critical points of the [u]

[4]

s, -energy into spheres, then

n < n
WS sy C([u] W575(8,,)) for some sy > s.

» Euler-Lagrange equations
(=AY T,u L T,
We observe even though t < s, since T;u is “somewhat tangential”
lu- Teul| 2, S C([u]ys2)
and by the PDE and compensation phenomena we have
[uA Tequll o < C([u]ysn)

Thus
[ Teull 2, S C([ul yysz)
> Iwaniec’ stability then implies u € W"7(S") for r := s2— with the
corresponding estimate.
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Summary

» Conformal higher regularity: Critical W*'s-harmonic maps into spheres
belong to W%,

[4]

n < n
WO gm C([u] Ws’g(S,,)) for some sy > s.

» = for any o € m,(S")

= #S@ - [LII?GIC(Ja[U] SWS’Q(Sn’SE)

is continuous
» = If for some 5 and o € 7,(S") we have

e < #55 forall B € my(SH) \ {0}

Then #sa is attained for all s =~ 5
» = For any 5 there exists a generating set {1, ..., a,} € 7,(S") such that

#sc; is attained for all s = 5



Things to do
It would be very interesting to investigate the stability s — 1~ (for spheres
this might be doable)
What about s — 017
What about general manifolds? Higher conformal regularity for minimizers
into general manifolds?

Thank you for your attention
MAZOWIECKA, S.: Minimal W$5s-harmonic maps in homotopy classes (J.
Lond. Math. Soc., 2023)
MAZOWIECKA, S.: s-stability for W*"/5-harmonic maps in homotopy

groups (preprint)



