On *s*-stability of $W^{s,\frac{n}{s}}$ -minimizing maps between spheres, in homotopy classes

Armin Schikorra (University of Pittsburgh)

IASM BIRS Hangzhou September 18, 2024

based on joint work with K. MAZOWIECKA

Funding: NSF Career DMS-2044898, Alexander von Humboldt Fellowship

Minimizing energies with geometry

Fix manifolds $\mathcal{N}, \mathcal{M}, p \in (1, \infty)$.

Basic Question:

What are the

- minimizers, properties of minimizers
- minimum energy

for energy

$$\int_{\mathcal{N}} |\nabla \boldsymbol{u}|^{p} : \text{ subject to } \boldsymbol{u} : \mathcal{N} \to \mathcal{M}$$

Warm-up in 1D: Minimizing curves - with boundary data Fix manifold \mathcal{M} , $p \in (1, \infty)$. Find $\gamma : [0, 1] \to \mathcal{M}$ that minimizes

$$\int_{0}^{t_{1}} |\gamma'(t)|^{p} dt: \quad \gamma: [0,1] \to \mathcal{M}$$

subject to boundary data $\gamma(0) = \vec{p_0}, \ \gamma(1) = \vec{p_1}$.

Minimizer exist, end of story (bit more work if p = 1), by the direct method of CalcVar.

Set

$$X:=\left\{\gamma: [0,1]
ightarrow \mathcal{M} ext{ s.t. } \inf_{[0,1]}|\gamma'(t)|^p dt <\infty, \ \gamma_k(0)=ec{p_0}, \ \gamma_k(1)=ec{p_1}
ight\}$$

Goal: find $\overline{\gamma} \in X$ such that

$$\mathrm{INF} := \int_{[0,1]} |\overline{\gamma}'(t)|^p dt = \inf_{\gamma \in X} \int_{[0,1]} |\gamma'(t)|^p dt$$

▶ Take a minimizing sequence $\gamma_k : [0,1] \to \mathcal{M}$, $\gamma_k(0) = \vec{p_0}$, $\gamma_k(1) = \vec{p_1}$ such that

$$\text{INF} = \lim_{k \to \infty} \int_{[0,1]} |\gamma_k'(t)|^p dt$$

The energy is coercive, so up to subsequence convergent to some $\overline{\gamma} : [0, 1] \to \mathcal{M}$. Since $\overline{\gamma} \in X$ it is the minimizer, indeed:

$$\int_{[0,1]} |\overline{\gamma}'(t)|^p dt \stackrel{l.s.c}{\leq} \lim_{k \to \infty} \int_{[0,1]} |\gamma_k'(t)|^p dt \stackrel{\text{minseq}}{=} \text{INF} \stackrel{\overline{\gamma} \in X}{\leq} \int_{[0,1]} |\overline{\gamma}'(t)|^p dt$$

These minimizers are just the geodesics (shortest curves)

Warm-up in 1D: Minimizing curves - with boundary data Fix manifold \mathcal{M} , $p \in (1, \infty)$. Find $\gamma : \mathbb{S}^1 \to \mathcal{M}$ that minimizes

$$\int_{\mathbb{S}^1} |\gamma'(t)|^p dt: \quad \gamma: \mathbb{S}^1 o \mathcal{M}$$

subject to ???.

- Minimizer exist, end of story (bit more work if p = 1), by the direct method of CalcVar.
- These minimizers are just the geodesics (shortest curves)
- ▶ If we are in the periodic setting "closed curves", i.e.

$$\gamma: \mathbb{S}^1 \to \mathcal{M},$$

minimizers all constant and minimum energy is 0

Warm-up in 1D: Minimizing curves - with boundary data Fix manifold $\mathcal{M}, p \in (1, \infty)$. Find $\gamma : \mathbb{S}^1 \to \mathcal{M}$ that minimizes

$$\int_{\mathbb{S}^1} |\gamma'(t)|^p dt: \quad \gamma: \mathbb{S}^1 o \mathcal{M}$$

subject to topology.

- Minimizer exist, end of story (bit more work if p = 1), by the direct method of CalcVar.
- These minimizers are just the geodesics (shortest curves)
- ▶ If we are in the periodic setting "closed curves", i.e.

$$\gamma: \mathbb{S}^1 \to \mathcal{M},$$

minimizers all constant and minimum energy is 0 (boring)
So let us introduce some topology:

Let $\gamma : \mathbb{S}^1 \to \mathbb{S}^1$ continuous. Draw its image with orientation (clockwise).

Sit on the northpole, and watch the curve pass by.

- Sit on the northpole, and watch the curve pass by.
- Start from 0. If curve passes clockwise add +1, if anti-clockwise add -1
- The winding number is the sum of those numbers.

- Sit on the northpole, and watch the curve pass by.
- Start from 0. If curve passes clockwise add +1, if anti-clockwise add -1
- ► The winding number is the sum of those numbers.

• Here:
$$w(\gamma) = +1$$

- Sit on the northpole, and watch the curve pass by.
- Start from 0. If curve passes clockwise add +1, if anti-clockwise add -1
- The winding number is the sum of those numbers.

• Here:
$$w(\gamma) = +1 + 1$$

- Sit on the northpole, and watch the curve pass by.
- Start from 0. If curve passes clockwise add +1, if anti-clockwise add -1
- ► The winding number is the sum of those numbers.

• Here:
$$w(\gamma) = +1 + 1 + 1$$

- Sit on the northpole, and watch the curve pass by.
- Start from 0. If curve passes clockwise add +1, if anti-clockwise add -1
- ► The winding number is the sum of those numbers.

• Here:
$$w(\gamma) = +1 + 1 + 1 - 1$$

$$\blacktriangleright w(\gamma) = 2$$

Let $\gamma : \mathbb{S}^1 \to \mathbb{S}^1$ continuous. Draw its image with orientation (clockwise).

• $w(\gamma) = 2$

Winding number is independent of where Ada sits!

- $w(\gamma) = 2$
- Winding number is independent of where Ada sits!
- It is homotopy invariant: If we change γ continuously, the winding number does not change.

- $w(\gamma) = 2$
- Winding number is independent of where Ada sits!
- It is homotopy invariant: If we change γ continuously, the winding number does not change.
- For fixed γ: If γ̃ is uniformly close to γ, then winding numbers are the same.

- $w(\gamma) = 2$
- Winding number is independent of where Ada sits!
- It is homotopy invariant: If we change γ continuously, the winding number does not change.
- For fixed γ: If γ̃ is uniformly close to γ, then winding numbers are the same.
- More generally: Homotopy groups: $\alpha \in \pi_n(\mathcal{M})$ all maps $f : \mathbb{S}^n \to \mathcal{M}$ with $[f] = \alpha$.

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

▶ If p > n: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

▶ If p > n: W^{1,p}(Sⁿ, M) embedds in C⁰ compactly: Minimizers exist.
 ▶ If p < n: minimal energy is zero: minimum not attained.

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

- ▶ If p > n: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.
- ▶ If p < n: minimal energy is zero: minimum not attained.
- ▶ If p = n: "conformal case" things get interesting, due to bubbling.

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

- ▶ If p > n: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.
- ▶ If p < n: minimal energy is zero: minimum not attained.
- ▶ If p = n: "conformal case" things get interesting, due to bubbling.
 - Take a minimizer $\boldsymbol{u}: \mathbb{S}^n \to \mathcal{M}$ in α (assume it exists)
 - We can mess with u without changing the energy:
 - Take $\tau_k : \mathbb{S}^n \to \mathbb{S}^n$ that maps most of the domain \mathbb{S}^n to {north pole $\pm \frac{1}{k}$ }
 - Consider the new minimizing map

 $\mathbf{u}_{\mathbf{k}} := \mathbf{u} \circ \tau_{\mathbf{k}} \in \alpha$

but $u_k \xrightarrow{k \to \infty} const$ (i.e. it leaves the homotopy class).

- We can choose τ_k conformal, the energy is conformally invariant: energy of $u \circ \tau_k$ is same as energy of u.
- These "bubbles" could appear for any minimizing sequence!

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

▶ If p > n: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

lf p < n: minimal energy is zero: minimum not attained.

If p = n: "conformal case" – things get interesting, due to bubbling.
 In general we have SACKS-UHLENBECK-theory¹

 $^{{}^{1}}p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: *n*-harmonic, polyharmonic...

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

▶ If p > n: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

lf p < n: minimal energy is zero: minimum not attained.

- If p = n: "conformal case" things get interesting, due to bubbling.
 In general we have SACKS-UHLENBECK-theory¹
 - There exists a generating set {α₁,..., α_N} ⊂ π_n(M): minimizer of (H₁) exists for each α_i

 $^{{}^{1}}p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: *n*-harmonic, polyharmonic...

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

▶ If p > n: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

lf p < n: minimal energy is zero: minimum not attained.

- If p = n: "conformal case" things get interesting, due to bubbling.
 In general we have SACKS-UHLENBECK-theory¹
 - There exists a generating set {α₁,..., α_N} ⊂ π_n(M): minimizer of (H₁) exists for each α_i
 - Energy identity: for any $\alpha \in \pi_2(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_2(\mathcal{M})$ s.t.

$$\#_1 \alpha = \sum_{j=1}^L \#_1 \beta_j, \text{ and } \alpha = \sum_{j=1}^L \beta_j$$

and $\#_1\beta_j$ is attained.

 $^{^{1}}p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: *n*-harmonic, polyharmonic...

Minimizing maps: Fix \mathcal{M} compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t. } u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \qquad (H_1)$$

▶ If p > n: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

lf p < n: minimal energy is zero: minimum not attained.

- If p = n: "conformal case" things get interesting, due to bubbling.
 In general we have SACKS-UHLENBECK-theory¹
 - There exists a generating set {α₁,..., α_N} ⊂ π_n(M): minimizer of (H₁) exists for each α_i
 - Energy identity: for any $\alpha \in \pi_2(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_2(\mathcal{M})$ s.t.

$$\#_1 \alpha = \sum_{j=1}^L \#_1 \beta_j, \text{ and } \alpha = \sum_{j=1}^L \beta_j$$

and $\#_1\beta_i$ is attained.

• There are indeed examples of α where minimizers do not exist (FUTAKI)

 $^{{}^{1}}p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: *n*-harmonic, polyharmonic...

$$\#_{\mathbf{s}}\alpha := \min \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} \, dx \, dy : \quad \text{s.t. } u \in \alpha \qquad (H_{\mathbf{s}})$$

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant.

$$\#_{\mathbf{s}}\alpha := \min \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} \, dx \, dy : \quad \text{s.t. } u \in \alpha \qquad (H_{\mathbf{s}})$$

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- ► There exists a generating set {α₁,..., α_N} ⊂ π_n(M) such that minimizer of (H₁) exists for each α_i
- Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$\#_{\mathbf{s}} \alpha = \sum_{j=1}^{L} \#_{\mathbf{s}} \beta_j$$
 and $\alpha = \sum_{j=1}^{L} \beta_j$

and $\#_{\mathbf{s}}\beta_j$ is attained.

$$\#_{\mathbf{s}}\alpha := \min \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} \, dx \, dy : \quad \text{s.t. } u \in \alpha \qquad (H_{\mathbf{s}})$$

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- ► There exists a generating set {α₁,..., α_N} ⊂ π_n(M) such that minimizer of (H₁) exists for each α_i
- Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$\#_{\mathbf{s}} \alpha = \sum_{j=1}^{L} \#_{\mathbf{s}} \beta_j \quad \text{and} \quad \alpha = \sum_{j=1}^{L} \beta_j$$

and $\#_{s}\beta_{j}$ is attained. Question: How stable are these results as s changes?

$$\#_{\mathbf{s}}\alpha := \min \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} \, dx \, dy : \quad \text{s.t. } u \in \alpha \qquad (H_{\mathbf{s}})$$

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- ► There exists a generating set {α₁,..., α_N} ⊂ π_n(M) such that minimizer of (H₁) exists for each α_i
- Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$\#_{\mathbf{s}} \alpha = \sum_{j=1}^{L} \#_{\mathbf{s}} \beta_j$$
 and $\alpha = \sum_{j=1}^{L} \beta_j$

and $\#_{s}\beta_{j}$ is attained. QUESTION: How stable are these results as s changes? Fix α . If s-minimizer is attained, what about $\tilde{s} \approx s$ and the \tilde{s} -minimizer?

$$\#_{\mathbf{s}}\alpha := \min \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} \, dx \, dy : \quad \text{s.t. } u \in \alpha \qquad (H_{\mathbf{s}})$$

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- ► There exists a generating set {α₁,..., α_N} ⊂ π_n(M) such that minimizer of (H₁) exists for each α_i
- Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$\#_{\mathbf{s}} \alpha = \sum_{j=1}^{L} \#_{\mathbf{s}} \beta_j$$
 and $\alpha = \sum_{j=1}^{L} \beta_j$

and $\#_{s}\beta_{j}$ is attained. QUESTION: How stable are these results as s changes? Fix α . If s-minimizer is attained, what about $\tilde{s} \approx s$ and the \tilde{s} -minimizer? Is $s \mapsto \#_{s}\alpha$ continuous?

$$\#_{\mathbf{s}}\alpha := \min \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} \, dx \, dy : \quad \text{s.t. } u \in \alpha \qquad (H_{\mathbf{s}})$$

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- ► There exists a generating set {α₁,..., α_N} ⊂ π_n(M) such that minimizer of (H₁) exists for each α_i
- Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$\#_{\mathbf{s}} \alpha = \sum_{j=1}^{L} \#_{\mathbf{s}} \beta_j$$
 and $\alpha = \sum_{j=1}^{L} \beta_j$

and $\#_{s}\beta_{j}$ is attained. **Question:** How stable are these results as *s* changes? • Fix α . If *s*-minimizer is attained, what about $\tilde{s} \approx s$ and the \tilde{s} -minimizer? • Is $s \mapsto \#_{s}\alpha$ continuous?

▶ Is the Sacks-Uhlenbeck generating set $\{\alpha_1, \ldots, \alpha_N\}$ the same for all *s*?

What to expect: mappings between spheres

Summary of what we know:

- ▶ $\mathbb{S}^2 \to \mathbb{S}^2$, $W^{1,2}$ -minimizer exist for any degree²
- ▶ $\mathbb{S}^n \to \mathbb{S}^n$, $n \ge 3$, $W^{1,n}$ -minimizer only exist at degree $1, -1, 0^3$
- ▶ $\mathbb{S}^3 \to \mathbb{S}^2$: $W^{1,3}$ there exists infinitely many homotopy classes where minimizers are attained (RIVIÈRE)⁴
- ▶ $S^1 \to S^1$: $W^{\frac{1}{2},2}$: minimizers are attained for any degree BERLYAND, MIRONESCU, PISANTE, RYBALKO, SANDIER⁵

²meromorphic maps minimize area

- ³reason: minimizer are conformal
- ⁴power law for the energy w.r.t. Hopf degree

⁵explicit computations & Fourier transform – not easily generalizable

What to expect: mappings between spheres

Summary of what we know:

- ▶ $\mathbb{S}^2 \to \mathbb{S}^2$, $W^{1,2}$ -minimizer exist for any degree²
- ▶ $\mathbb{S}^n \to \mathbb{S}^n$, $n \ge 3$, $W^{1,n}$ -minimizer only exist at degree $1, -1, 0^3$
- ▶ $\mathbb{S}^3 \to \mathbb{S}^2$: $W^{1,3}$ there exists infinitely many homotopy classes where minimizers are attained (RIVIÈRE)⁴
- ▶ $S^1 \to S^1$: $W^{\frac{1}{2},2}$: minimizers are attained for any degree BERLYAND, MIRONESCU, PISANTE, RYBALKO, SANDIER⁵

Theorem (MIRONESCU)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{5}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

▶ One-sided because: embedding theorem $W^{s,\frac{n}{s}}(\mathbb{S}^n) \subset W^{t,\frac{n}{t}}(\mathbb{S}^n)$ for $s \ge t$.

²meromorphic maps minimize area

³reason: minimizer are conformal

⁴power law for the energy w.r.t. Hopf degree

⁵explicit computations & Fourier transform – not easily generalizable

What to expect: mappings between spheres

Summary of what we know:

- ▶ $\mathbb{S}^2 \to \mathbb{S}^2$, $W^{1,2}$ -minimizer exist for any degree²
- ▶ $\mathbb{S}^n \to \mathbb{S}^n$, $n \ge 3$, $W^{1,n}$ -minimizer only exist at degree $1, -1, 0^3$
- ▶ $\mathbb{S}^3 \to \mathbb{S}^2$: $W^{1,3}$ there exists infinitely many homotopy classes where minimizers are attained (RIVIÈRE)⁴
- ▶ $S^1 \to S^1$: $W^{\frac{1}{2},2}$: minimizers are attained for any degree BERLYAND, MIRONESCU, PISANTE, RYBALKO, SANDIER⁵

Theorem (MIRONESCU)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

▶ One-sided because: embedding theorem $W^{s,\frac{n}{s}}(\mathbb{S}^n) \subset W^{t,\frac{n}{t}}(\mathbb{S}^n)$ for $s \ge t$.

Conjecture (Natural conjecture?)

For any $s \in (0, 1]$, for any $n \in \mathbb{N}$, there exists a $W^{s, \frac{n}{s}}$ -minimizing degree 1 map.

²meromorphic maps minimize area

³reason: minimizer are conformal

⁴power law for the energy w.r.t. Hopf degree

⁵explicit computations & Fourier transform – not easily generalizable

continuous dependence of minimal energy

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$, *i.e. consider maps* $\boldsymbol{u} : \mathbb{S}^n \to \mathbb{S}^{\ell}$. Then

$$s \mapsto \#_s \alpha = \inf_{u \in \alpha} \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} dx dy$$

is continuous.

continuous dependence of minimal energy

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$, i.e. consider maps $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$. Then

$$s \mapsto \#_s \alpha = \inf_{u \in \alpha} \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} dx dy$$

is continuous.

By smooth approximation we get

$$\#_s \alpha \ge \limsup_{t \to s} \#_t \alpha$$

▶ Observe if [u]_{W^t, n/t} < ∞ then not necessarily [u]_{W^s, n/s} < ∞ for s > t!
 ▶ Proof is based on a new conformal regularity theorem (more: later).
 ▶ Let us first discuss some immediate consequences.

Let us first discuss some immediate consequences

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta]$.

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta]$.

Proof.

If $\#_s 1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$\#_{s}1 \stackrel{\text{energy ident.}}{=} \sum_{i=1}^{N} \#_{s}d_{i}$$

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{5}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta]$.

Proof.

If $\#_s 1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$\#_{\frac{1}{2}} 1 \overset{\text{cont.}}{\approx} \#_{s} 1 \overset{\text{energy ident.}}{=} \sum_{i=1}^{N} \#_{s} d_{i} \overset{\text{cont.}}{\approx} \sum_{i=1}^{N} \#_{\frac{1}{2}} d_{i}$$

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{5}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta]$.

Proof.

If $\#_s 1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$\#_{\frac{1}{2}}1 \overset{\text{cont.}}{\approx} \#_{s}1 \overset{\text{energy ident.}}{=} \sum_{i=1}^{N} \#_{s}d_{i} \overset{\text{cont.}}{\approx} \sum_{i=1}^{N} \#_{\frac{1}{2}}d_{i}$$

But Berlyand-Mironescu-Rybalko-Sandier:

$$\#_{\frac{1}{2}}d=4\pi^2|d|.$$

Contradiction.

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{5}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta]$.

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s,\frac{1}{5}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta]$.

Proof.

If $\#_s 1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$\#_{\frac{1}{2}}1 \overset{\text{cont.}}{\approx} \#_{s}1 \overset{\text{energy ident.}}{=} \sum_{i=1}^{N} \#_{s}d_{i} \overset{\text{cont.}}{\approx} \sum_{i=1}^{N} \#_{\frac{1}{2}}d_{i}$$

But Berlyand-Mironescu-Rybalko-Sandier:

$$\#_{\frac{1}{2}}d = 4\pi^2|d|.$$

Contradiction.

(Works with minimal energy homotopy classes - any dimension)

For each s there exists generating set $X_s = \{\alpha_1, \ldots, \alpha_N\} \subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s \alpha_i$ is attained for each $i = 1, \ldots, N$.

For each s there exists generating set $X_s = \{\alpha_1, \ldots, \alpha_N\} \subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s \alpha_i$ is attained for each $i = 1, \ldots, N$.

Theorem (MAZOWIECKA-S.)

For each s there exist generating set For each s there exists generating set $X_s = \{\alpha_1, \ldots, \alpha_N\} \subset \pi_n(\mathbb{S}^\ell)$ such that $\#_t \alpha_i$ is attained for each $i = 1, \ldots, N$, and $t \approx s$

Proof.

If $\#_t \alpha$ is not attained for some α and some $t \approx s$ then there exists (depending on t) generator $(\alpha_i)_{i=1}^N$ of α

$$\#_t \alpha = \sum_{i=1}^N \#_t \alpha_i$$

For each s there exists generating set $X_s = \{\alpha_1, \ldots, \alpha_N\} \subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s \alpha_i$ is attained for each $i = 1, \ldots, N$.

Theorem (MAZOWIECKA-S.)

For each s there exist generating set For each s there exists generating set $X_s = \{\alpha_1, \ldots, \alpha_N\} \subset \pi_n(\mathbb{S}^\ell)$ such that $\#_t \alpha_i$ is attained for each $i = 1, \ldots, N$, and $t \approx s$

Proof.

If $\#_t \alpha$ is not attained for some α and some $t \approx s$ then there exists (depending on t) generator $(\alpha_i)_{i=1}^N$ of α

$$\#_{\mathbf{s}}\alpha \overset{\text{continuity}}{\approx} \#_{t}\alpha = \sum_{i=1}^{N} \#_{t}\alpha_{i} \overset{\text{continuity}}{\approx} \sum_{i=1}^{N} \#_{\mathbf{s}}\alpha_{i}$$

For each s there exists generating set $X_s = \{\alpha_1, \ldots, \alpha_N\} \subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s \alpha_i$ is attained for each $i = 1, \ldots, N$.

Theorem (MAZOWIECKA-S.)

For each s there exist generating set For each s there exists generating set $X_s = \{\alpha_1, \ldots, \alpha_N\} \subset \pi_n(\mathbb{S}^\ell)$ such that $\#_t \alpha_i$ is attained for each $i = 1, \ldots, N$, and $t \approx s$

Proof.

If $\#_t \alpha$ is not attained for some α and some $t \approx s$ then there exists (depending on t) generator $(\alpha_i)_{i=1}^N$ of α

$$\#_{\mathbf{s}}\alpha \overset{\text{continuity}}{\approx} \#_{t}\alpha = \sum_{i=1}^{N} \#_{t}\alpha_{i} \overset{\text{continuity}}{\approx} \sum_{i=1}^{N} \#_{\mathbf{s}}\alpha_{i}$$

- We can repeat this argument for α_i on the right hand side, whenever for some t ≈ s there is no minimizer for α_i
- ▶ no term from the left-hand side can reappear again on the right-hand side
 ▶ finitely many choices of α_i, eventually stop or contradiction.

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $[u]_{W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n)})$

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $[u]_{W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n)})$

Stability of Sobolev norm:

$$\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim [u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^\ell)} \varepsilon \quad \forall |s-t| \ll 1.$$

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $[u]_{W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n)})$

Stability of Sobolev norm:

$$\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim [u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^\ell)} \varepsilon \quad \forall |s-t| \ll 1.$$

So

$$\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \text{for all } t \text{ s.t. } |t - s| \leq \delta_{[u]_{W^{s, \frac{n}{s}}}}$$

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$ is a $W^{s,\frac{n}{s}}$ -minimizer of $\#_s \alpha$. (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

Stability of Sobolev norm:

$$\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim [u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^\ell)} \varepsilon \quad \forall |s-t| \ll 1.$$

So

$$\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \text{for all } t \text{ s.t. } |t - s| \leq \delta_{[u]_{W^{s, \frac{n}{s}}}}$$

If no minimizer exist: energy identity

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$ is a $W^{s,\frac{n}{s}}$ -minimizer of $\#_s \alpha$. (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

Stability of Sobolev norm:

$$\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim [u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^\ell)} \varepsilon \quad \forall |s-t| \ll 1.$$

So

$$\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \text{for all } t \text{ s.t. } |t - s| \leq \delta_{[u]_{W^{s, \frac{n}{s}}}}$$

If no minimizer exist: energy identityWe have

$$#_t \alpha \leq \#_s \alpha + \varepsilon \quad \forall s \approx t.$$

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $[u]_{W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n)})$

Stability of Sobolev norm:

$$\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim [u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^\ell)} \varepsilon \quad \forall |s-t| \ll 1.$$

So

$$\#_t \alpha \leq \#_s \alpha + \varepsilon$$
 for all t s.t. $|t - s| \leq \delta_{[u]_{W^{s, \frac{n}{s}}}}$

If no minimizer exist: energy identity
We have

$$#_t \alpha \leq #_s \alpha + \varepsilon \quad \forall s \approx t.$$

Interchanging roles of s and t we conclude.

Conformal higher regularity for minimizers Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous.

Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous. However

- ► This is usually ε -regularity: if $[u]_{W^{s,\frac{n}{s}}(B(0,R))} \ll 1$ then $u \in C^{\alpha}(B(0, R/2))$ with suitable estimates
- No way we have uniform higher regularity: Indeed, take any minimizer, rescale it conformally (almost bubble), the modulus of continuity is arbitarily bad.
- Idea: Obtain better regularity for another conformally invariant energy.

Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous. However

- ► This is usually ε -regularity: if $[u]_{W^{s,\frac{n}{s}}(B(0,R))} \ll 1$ then $u \in C^{\alpha}(B(0, R/2))$ with suitable estimates
- No way we have uniform higher regularity: Indeed, take any minimizer, rescale it conformally (almost bubble), the modulus of continuity is arbitarily bad.
- Idea: Obtain better regularity for another conformally invariant energy.

Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \textit{for some } s_0 > s.$$

Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous. However

- ► This is usually ε -regularity: if $[u]_{W^{s,\frac{n}{s}}(B(0,R))} \ll 1$ then $u \in C^{\alpha}(B(0, R/2))$ with suitable estimates
- No way we have uniform higher regularity: Indeed, take any minimizer, rescale it conformally (almost bubble), the modulus of continuity is arbitarily bad.
- Idea: Obtain better regularity for another conformally invariant energy.

Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$$

- ► We show this for critical points, not only minimizers.
- ▶ No idea how to use minimizing property (no ε -regularity result!)
- Can't do it for general target manifolds

Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$[\boldsymbol{u}]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([\boldsymbol{u}]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \textit{for some } s_0 > s.$$

Conformal higher regularity for minimizers Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

 $[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$

▶ For classical $W^{1,2}$ -harmonic maps $\mathbb{S}^2 \to \mathbb{S}^\ell$:

 $-\Delta \boldsymbol{u} = \boldsymbol{u} |\nabla \boldsymbol{u}|^2$

► HÈLEIN, COIFMAN-LIONS-MEYER-SEMMES:

 $|\nabla u|^2 \in \mathcal{H}^1(\mathbb{R}^2).$

 $\|\nabla^2 u\|_{L^1} \lesssim \|\Delta u\|_{\mathcal{H}^1} \lesssim \|\nabla u\|_{L^2}^3$ This is a global (scaling-invariant!) estimate!

Conformal higher regularity for minimizers Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres \mathbb{S}^{ℓ} , then

$$[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$$

Euler-Lagrange equations

$$-\Delta)^{s}_{\frac{n}{s},\mathbb{S}^{n}}\boldsymbol{u}\perp T_{\boldsymbol{u}}\mathbb{S}^{\ell}.$$

where

$$(-\Delta)_{\frac{n}{s},\mathbb{S}^{n}}^{s}u[\varphi] =$$

$$\int_{\mathbb{S}^{n}}\int_{\mathbb{S}^{n}}\frac{|u(x) - u(y)|^{\frac{n}{s}-2}(u(x) - u(y)) \cdot (\varphi(x) - \varphi(y))}{|x - y|^{n + sp}} d(x, y)$$

$$In S.'16, I rewrote this as (for $t < s$)
$$(-\Delta)_{\frac{n}{s},\mathbb{S}^{n}}^{s}u = (-\Delta)^{\frac{t}{2}}T_{t}u$$
where $T_{t}v(z)$ roughly corresponds to $|\sqrt{(-\Delta)}^{\frac{sp-t}{p-1}}v|^{p-1}$,
$$\int_{\mathbb{S}^{n}}\int_{\mathbb{S}^{n}}\frac{|v(x) - v(y)|^{p-2}(v(x) - v(y))(|x - z|^{t-n} - |y - z|^{t-n})}{|x - y|^{n + sp}} d(x, y)$$$$

Conformal higher regularity for minimizers Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$$

Euler-Lagrange equations

$$(-\Delta)^{\frac{s}{2}}T_{s}\boldsymbol{u}\perp T_{\boldsymbol{u}}\mathbb{S}^{\ell}.$$

We observe even though t < s, since $T_t u$ is "somewhat tangential"

$$\|\boldsymbol{u}\cdot\boldsymbol{T}_{t}\boldsymbol{u}\|_{L^{\frac{n}{n-t}}} \lesssim C([\boldsymbol{u}]_{W^{s,\frac{n}{s}}})$$

and by the PDE and compensation phenomena we have

$$\|\mathbf{u}\wedge T_{t,\Omega}\mathbf{u}\|_{L^{\frac{n}{n-t}}} \lesssim C([\mathbf{u}]_{W^{s,\frac{n}{s}}})$$

Thus

$$\|T_t u\|_{L^{\frac{n}{n-t}}} \lesssim C([u]_{W^{s,\frac{n}{s}}})$$

▶ Iwaniec' stability then implies $u \in W^{r,\frac{n}{r}}(\mathbb{S}^n)$ for $r := s\frac{n-t}{n-s}$ with the corresponding estimate.

► Conformal higher regularity: Critical $W^{s,\frac{n}{s}}$ -harmonic maps *into spheres* belong to $W^{s_0,\frac{n}{s_0}}$,

$$[\boldsymbol{u}]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([\boldsymbol{u}]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$$

► Conformal higher regularity: Critical $W^{s,\frac{n}{s}}$ -harmonic maps *into spheres* belong to $W^{s_0,\frac{n}{s_0}}$,

$$[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$$

► ⇒ for any $\alpha \in \pi_n(\mathbb{S}^{\ell})$

$$s \mapsto \#_s \alpha \equiv \inf_{[u] \in \alpha} [u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathbb{S}^\ell)}^{\frac{n}{s}}$$

is continuous

► Conformal higher regularity: Critical $W^{s,\frac{n}{s}}$ -harmonic maps *into spheres* belong to $W^{s_0,\frac{n}{s_0}}$,

$$[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$$

$$\blacktriangleright \Rightarrow$$
 for any $\pmb{lpha} \in \pi_{\it n}(\mathbb{S}^\ell)$

$$s \mapsto \#_s \alpha \equiv \inf_{[u] \in \alpha} [u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathbb{S}^\ell)}^{\frac{n}{s}}$$

is continuous

► ⇒ If for some
$$\bar{s}$$
 and $\alpha \in \pi_n(\mathbb{S}^{\ell})$ we have

$$\#_{\overline{s}} \alpha \leq \#_{\overline{s}} \beta$$
 for all $\beta \in \pi_n(\mathbb{S}^\ell) \setminus \{0\}$

Then $\#_s \alpha$ is attained for all $s \approx \bar{s}$

Conformal higher regularity: Critical W^{s, ⁿ/_s}-harmonic maps into spheres belong to W^{s₀, ⁿ/_{s₀},</sup>}

$$[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.$$

$$\blacktriangleright \Rightarrow$$
 for any $\pmb{lpha} \in \pi_{\it n}(\mathbb{S}^\ell)$

$$s \mapsto \#_s \alpha \equiv \inf_{[u] \in \alpha} [u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathbb{S}^\ell)}^{\frac{n}{s}}$$

is continuous

▶ ⇒ If for some
$$\bar{s}$$
 and $\alpha \in \pi_n(\mathbb{S}^\ell)$ we have

$$\#_{\bar{s}} \alpha \leq \#_{\bar{s}} \beta$$
 for all $\beta \in \pi_n(\mathbb{S}^\ell) \setminus \{0\}$

Then $\#_s \alpha$ is attained for all $s \approx \overline{s}$ $\blacktriangleright \Rightarrow$ For any \overline{s} there exists a generating set $\{\alpha_1, \ldots, \alpha_k\} \in \pi_n(\mathbb{S}^\ell)$ such that

 $\#_s \alpha_i$ is attained for all $s \approx \bar{s}$

Things to do

- ► It would be very interesting to investigate the stability s → 1⁻ (for spheres this *might* be doable)
- ▶ What about $s \rightarrow 0^+$?
- What about general manifolds? Higher *conformal* regularity for *minimizers* into general manifolds?

Thank you for your attention

- MAZOWIECKA, S.: Minimal W^{s, n/s}-harmonic maps in homotopy classes (J. Lond. Math. Soc., 2023)
- MAZOWIECKA, S.: s-stability for W^{s,n/s}-harmonic maps in homotopy groups (preprint)