On s-stability of $W^{s,\frac{n}{s}}$ $\ddot{\bar{s}}$ -minimizing maps between spheres, in homotopy classes

Armin Schikorra (University of Pittsburgh)

IASM BIRS Hangzhou September 18, 2024

based on joint work with K . MAZOWIECKA

Funding: NSF Career DMS-2044898, Alexander von Humboldt Fellowship

Minimizing energies with geometry

Fix manifolds $\mathcal{N}, \mathcal{M}, p \in (1, \infty)$.

Basic Question:

What are the

- ▶ minimizers, properties of minimizers
- ▶ minimum energy

for energy

$$
\int_{\mathcal{N}} |\nabla u|^p: \quad \text{subject to } u: \mathcal{N} \to \mathcal{M}
$$

Warm-up in 1D: Minimizing curves - with boundary data Fix manifold M , $p \in (1, \infty)$. Find $\gamma : [0, 1] \to M$ that minimizes

$$
\int_0^1 |\gamma'(t)|^p dt: \quad \gamma:[0,1]\to \mathcal{M}
$$

subject to boundary data $\gamma(0) = \vec{p}_0$, $\gamma(1) = \vec{p}_1$.

 \blacktriangleright Minimizer exist, end of story (bit more work if $p = 1$), by the direct method of CalcVar.

 \blacktriangleright Set

$$
X := \left\{ \gamma : [0,1] \to \mathcal{M} \text{ s.t. } \inf_{[0,1]} |\gamma'(t)|^p dt < \infty, \ \gamma_k(0) = \vec{p}_0, \ \gamma_k(1) = \vec{p}_1 \right\}
$$

Goal: find $\overline{\gamma} \in X$ such that

$$
\mathrm{INF}:=\int_{[0,1]}|\overline{\gamma}'(t)|^pdt=\inf_{\gamma\in X}\int_{[0,1]}|\gamma'(t)|^pdt
$$

▶ Take a minimizing sequence $\gamma_k : [0,1] \to \mathcal{M}$, $\gamma_k(0) = \vec{p}_0$, $\gamma_k(1) = \vec{p}_1$ such that

$$
INF = \lim_{k \to \infty} \int_{[0,1]} |\gamma_k'(t)|^p dt
$$

The energy is coercive, so up to subsequence convergent to some $\overline{\gamma}$: $[0,1] \rightarrow \mathcal{M}$. ▶ Since $\overline{\gamma} \in X$ it is the minimizer, indeed:

$$
\int_{[0,1]}|\overline{\gamma}'(t)|^pdt\stackrel{l.s.c}{\leq}\lim_{k\to\infty}\int_{[0,1]}|\gamma_k'(t)|^pdt\stackrel{\text{minseq}}{=} \text{INF}\stackrel{\overline{\gamma}\in X}{\leq} \int_{[0,1]}|\overline{\gamma}'(t)|^pdt
$$

▶ These minimizers are just the geodesics (shortest curves)

Warm-up in 1D: Minimizing curves - with boundary data Fix manifold $\mathcal M$, $\boldsymbol \rho \in (1,\infty)$. Find $\gamma:\mathbb S^1 \to \mathcal M$ that minimizes

$$
\int_{\mathbb{S}^1} |\gamma'(t)|^p dt: \quad \gamma: \mathbb{S}^1 \to \mathcal{M}
$$

subject to ???.

- \blacktriangleright Minimizer exist, end of story (bit more work if $p = 1$), by the direct method of CalcVar.
- \blacktriangleright These minimizers are just the geodesics (shortest curves)
- \blacktriangleright If we are in the periodic setting "closed curves", i.e.

$$
\gamma:\mathbb{S}^1\to\mathcal{M},
$$

minimizers all constant and minimum energy is 0

Warm-up in 1D: Minimizing curves - with boundary data Fix manifold $\mathcal M$, $\boldsymbol \rho \in (1,\infty)$. Find $\gamma:\mathbb S^1 \to \mathcal M$ that minimizes

$$
\int_{\mathbb{S}^1} |\gamma'(t)|^p dt: \quad \gamma: \mathbb{S}^1 \to \mathcal{M}
$$

subject to topology.

- \blacktriangleright Minimizer exist, end of story (bit more work if $p = 1$), by the direct method of CalcVar.
- \blacktriangleright These minimizers are just the geodesics (shortest curves)
- \blacktriangleright If we are in the periodic setting "closed curves", i.e.

$$
\gamma:\mathbb{S}^1\to \mathcal{M},
$$

minimizers all constant and minimum energy is 0 (boring)

▶ So let us introduce some topology:

▶

Let $\gamma:\mathbb{S}^1\to\mathbb{S}^1$ continuous. Draw its image with orientation (clockwise).

▶ Sit on the northpole, and watch the curve pass by.

- \triangleright Sit on the northpole, and watch the curve pass by.
- \triangleright Start from 0. If curve passes clockwise add $+1$, if anti-clockwise add -1
- \blacktriangleright The winding number is the sum of those numbers.

- \triangleright Sit on the northpole, and watch the curve pass by.
- \triangleright Start from 0. If curve passes clockwise add $+1$, if anti-clockwise add -1
- \blacktriangleright The winding number is the sum of those numbers.

Here:
$$
w(\gamma) = +1
$$

- \triangleright Sit on the northpole, and watch the curve pass by.
- \triangleright Start from 0. If curve passes clockwise add $+1$, if anti-clockwise add -1
- \blacktriangleright The winding number is the sum of those numbers.

Here:
$$
w(\gamma) = +1 + 1
$$

- \triangleright Sit on the northpole, and watch the curve pass by.
- \triangleright Start from 0. If curve passes clockwise add $+1$, if anti-clockwise add -1
- \blacktriangleright The winding number is the sum of those numbers.

Here:
$$
w(\gamma) = +1 + 1 + 1
$$

- \triangleright Sit on the northpole, and watch the curve pass by.
- \triangleright Start from 0. If curve passes clockwise add $+1$, if anti-clockwise add -1
- \blacktriangleright The winding number is the sum of those numbers.
- ▶ Here: $w(\gamma) = +1 + 1 + 1 1$

$$
\blacktriangleright \ w(\gamma) = 2
$$

Let $\gamma:\mathbb{S}^1\to\mathbb{S}^1$ continuous. Draw its image with orientation (clockwise).

 \blacktriangleright $w(\gamma) = 2$

▶ Winding number is independent of where Ada sits!

- \blacktriangleright $w(\gamma) = 2$
- ▶ Winding number is independent of where Ada sits!
- \blacktriangleright It is homotopy invariant: If we change γ continuously, the winding number does not change.

- \blacktriangleright w(γ) = 2
- ▶ Winding number is independent of where Ada sits!
- \blacktriangleright It is homotopy invariant: If we change γ continuously, the winding number does not change.
- **►** For fixed γ : If $\tilde{\gamma}$ is uniformly close to γ , then winding numbers are the same.

- \blacktriangleright w(γ) = 2
- ▶ Winding number is independent of where Ada sits!
- It is homotopy invariant: If we change γ continuously, the winding number does not change.
- **►** For fixed γ : If $\tilde{\gamma}$ is uniformly close to γ , then winding numbers are the same.
- ▶ More generally: Homotopy groups: $\alpha \in \pi_n(\mathcal{M})$ all maps $f : \mathbb{S}^n \to \mathcal{M}$ with $[f] = \alpha$.

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$
\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t.} \ \ u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \tag{H_1}
$$

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

#1^α := min ^Z S n |∇u| p : s.t. u : S ⁿ → M, [u] ∈ α (H1)

If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

#1^α := min ^Z S n |∇u| p : s.t. u : S ⁿ → M, [u] ∈ α (H1)

If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist. If $p < n$: minimal energy is zero: minimum not attained.

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

#1^α := min ^Z S n |∇u| p : s.t. u : S ⁿ → M, [u] ∈ α (H1)

If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

If $p < n$: minimal energy is zero: minimum not attained.

 \blacktriangleright If $p = n$: "conformal case" – things get interesting, due to bubbling.

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$
\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t.} \ \ u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \tag{H_1}
$$

- If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.
- If $p < n$: minimal energy is zero: minimum not attained.
- \blacktriangleright If $p = n$: "conformal case" things get interesting, due to bubbling.
	- **Take a minimizer** $u : \mathbb{S}^n \to \mathcal{M}$ in α (assume it exists)
	- \triangleright We can mess with *u* without changing the energy:
	- \blacktriangleright Take $\tau_k : \mathbb{S}^n \to \mathbb{S}^n$ that maps most of the domain \mathbb{S}^n to {north pole $\pm \frac{1}{k}$ $\frac{1}{k}$
	- \triangleright Consider the new minimizing map

 $u_k := u \circ \tau_k \in \alpha$

but $u_k \xrightarrow{k \to \infty} const$ (i.e. it leaves the homotopy class).

- \triangleright We can choose τ_k conformal, the energy is conformally invariant: energy of $u \circ \tau_k$ is same as energy of *.*
- ▶ These "bubbles" could appear for any minimizing sequence!

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

#1^α := min ^Z S n |∇u| p : s.t. u : S ⁿ → M, [u] ∈ α (H1)

If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

If $p < n$: minimal energy is zero: minimum not attained.

 \blacktriangleright If $p = n$: "conformal case" – things get interesting, due to bubbling. \triangleright In general we have $SACKS-UHLENBECK-theory¹$

 $1p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: n-harmonic, polyharmonic...

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

$$
\#_1 \alpha := \min \int_{\mathbb{S}^n} |\nabla u|^p : \quad \text{s.t.} \ \ u : \mathbb{S}^n \to \mathcal{M}, \ [u] \in \alpha \tag{H_1}
$$

If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

If $p < n$: minimal energy is zero: minimum not attained.

- \blacktriangleright If $p = n$: "conformal case" things get interesting, due to bubbling. \triangleright In general we have $SACKS-UHLENBECK-theory¹$
	- **►** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$: minimizer of (H_1) exists for each α_i

 $1p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: n -harmonic, polyharmonic...

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

#1^α := min ^Z S n |∇u| p : s.t. u : S ⁿ → M, [u] ∈ α (H1)

If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

If $p < n$: minimal energy is zero: minimum not attained.

- \blacktriangleright If $p = n$: "conformal case" things get interesting, due to bubbling. \triangleright In general we have $SACKS-UHLENBECK-theory¹$
	- **►** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$: minimizer of (H_1) exists for each α_i
	- **►** Energy identity: for any $\alpha \in \pi_2(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_2(\mathcal{M})$ s.t.

$$
\#_1\alpha=\sum_{j=1}^L\#_1\beta_j,\quad\text{and}\quad\alpha=\sum_{j=1}^L\beta_j
$$

and $\#_1\beta_j$ is attained.

 $1p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: n-harmonic, polyharmonic...

Minimizing maps: Fix M compact manifold, $\alpha \in \pi_n(\mathcal{M})$.

#1^α := min ^Z S n |∇u| p : s.t. u : S ⁿ → M, [u] ∈ α (H1)

If $p > n$: $W^{1,p}(\mathbb{S}^n, \mathcal{M})$ embedds in C^0 compactly: Minimizers exist.

If $p < n$: minimal energy is zero: minimum not attained.

- \blacktriangleright If $p = n$: "conformal case" things get interesting, due to bubbling. \triangleright In general we have $SACKS-UHLENBECK-theory¹$
	- **►** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$: minimizer of (H_1) exists for each α_i
	- **►** Energy identity: for any $\alpha \in \pi_2(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_2(\mathcal{M})$ s.t.

$$
\#_1\alpha=\sum_{j=1}^L\#_1\beta_j,\quad\text{and}\quad \alpha=\sum_{j=1}^L\beta_j
$$

and $\#_1\beta_j$ is attained.

 \blacktriangleright There are indeed examples of α where minimizers do not exist (FUTAKI)

 $1p = n = 2$: SACKS-UHLENBECK. Many generalizations, STRUWE, WHITE, KAWAI, NAKAUCHI, TAKEUCHI, KUWERT, DUZAAR and many more: n-harmonic, polyharmonic...

#s^α := min ^Z S n Z S n |u(x) − u(y)| n s |x − y| 2n dx dy : s.t. u ∈ α (Hs)

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant.

#s^α := min ^Z S n Z S n |u(x) − u(y)| n s |x − y| 2n dx dy : s.t. u ∈ α (Hs)

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- **▶** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$ such that minimizer of (H_1) exists for each α_i
- **►** Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$
\#_s \alpha = \sum_{j=1}^L \#_s \beta_j \quad \text{and} \quad \alpha = \sum_{j=1}^L \beta_j
$$

and $\#_{{\color{red} {s}}}\beta_j$ is attained.

#s^α := min ^Z S n Z S n |u(x) − u(y)| n s |x − y| 2n dx dy : s.t. u ∈ α (Hs)

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- **▶** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$ such that minimizer of (H_1) exists for each α_i
- **►** Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$
\#_s \alpha = \sum_{j=1}^L \#_s \beta_j \quad \text{and} \quad \alpha = \sum_{j=1}^L \beta_j
$$

and $\#_{{\color{red} {s}}}\beta_j$ is attained. **How stable are these results as** s **changes?**

#s^α := min ^Z S n Z S n |u(x) − u(y)| n s |x − y| 2n dx dy : s.t. u ∈ α (Hs)

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- **▶** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$ such that minimizer of (H_1) exists for each α_i
- **►** Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$
\#_s \alpha = \sum_{j=1}^L \#_s \beta_j \quad \text{and} \quad \alpha = \sum_{j=1}^L \beta_j
$$

and $\#_{{\color{red} {s}}}\beta_j$ is attained. $\mathbf \Omega$ UES ti on: How stable are these results as s changes? **►** Fix α . If s-minimizer is attained, what about $\tilde{s} \approx s$ and the \tilde{s} -minimizer?

#s^α := min ^Z S n Z S n |u(x) − u(y)| n s |x − y| 2n dx dy : s.t. u ∈ α (Hs)

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- **▶** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$ such that minimizer of (H_1) exists for each α_i
- **►** Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$
\#_s \alpha = \sum_{j=1}^L \#_s \beta_j \quad \text{and} \quad \alpha = \sum_{j=1}^L \beta_j
$$

and $\#_{{\color{red} {s}}}\beta_j$ is attained. $\mathbf \Omega$ UES ti on: How stable are these results as s changes? **►** Fix α . If s-minimizer is attained, what about $\tilde{s} \approx s$ and the \tilde{s} -minimizer? **►** Is $s \mapsto \#_s \alpha$ continuous?

#s^α := min ^Z S n Z S n |u(x) − u(y)| n s |x − y| 2n dx dy : s.t. u ∈ α (Hs)

The energy on the right is the $W^{s,\frac{n}{s}}$ -seminorm, it is still conformally invariant. We have Sacks-Uhlenbeck theory (MAZOWIECKA-S. 2023)

- **▶** There exists a *generating* set $\{\alpha_1, \ldots, \alpha_N\}$ $\subset \pi_n(\mathcal{M})$ such that minimizer of (H_1) exists for each α_i
- **►** Energy identity for any $\alpha \in \pi_n(\mathcal{M})$ there exists $\beta_1, \ldots, \beta_L \in \pi_n(\mathcal{M})$ s.t.

$$
\#_s \alpha = \sum_{j=1}^L \#_s \beta_j \quad \text{and} \quad \alpha = \sum_{j=1}^L \beta_j
$$

and $\#_{{\color{red} {s}}}\beta_j$ is attained. $\mathbf \Omega$ UES ti on: How stable are these results as s changes? **►** Fix α . If s-minimizer is attained, what about $\tilde{s} \approx s$ and the \tilde{s} -minimizer? **►** Is $s \mapsto \#_s \alpha$ continuous?

 \blacktriangleright Is the Sacks-Uhlenbeck generating set $\{\alpha_1, \ldots, \alpha_N\}$ the same for all s?

What to expect: mappings between spheres

Summary of what we know:

- \triangleright $\mathbb{S}^2 \to \mathbb{S}^2$, $W^{1,2}$ -minimizer exist for any degree²
- ▶ $\mathbb{S}^n \to \mathbb{S}^n$, $n \geq 3$, $W^{1,n}$ -minimizer only exist at degree $1, -1, 0^3$
- \blacktriangleright $\mathbb{S}^3 \to \mathbb{S}^2$: $W^{1,3}$ there exists infinitely many homotopy classes where minimizers are attained $(\text{RIVIÈRE})^4$
- \blacktriangleright $\mathbb{S}^1 \rightarrow \mathbb{S}^1$: $W^{\frac{1}{2}}$ $^{\frac{1}{2}, 2}$: minimizers are attained for any degree $\rm BERLYAND$, MIRONESCU, PISANTE, RYBALKO, SANDIER⁵

- 3 reason: minimizer are conformal
- ⁴ power law for the energy w.r.t. Hopf degree

5 explicit computations & Fourier transform – not easily generalizable

What to expect: mappings between spheres

Summary of what we know:

- \triangleright $\mathbb{S}^2 \to \mathbb{S}^2$, $W^{1,2}$ -minimizer exist for any degree²
- ▶ $\mathbb{S}^n \to \mathbb{S}^n$, $n \geq 3$, $W^{1,n}$ -minimizer only exist at degree $1, -1, 0^3$
- \blacktriangleright $\mathbb{S}^3 \to \mathbb{S}^2$: $W^{1,3}$ there exists infinitely many homotopy classes where minimizers are attained $(\text{RIVIÈRE})^4$
- \blacktriangleright $\mathbb{S}^1 \rightarrow \mathbb{S}^1$: $W^{\frac{1}{2}}$ $^{\frac{1}{2}, 2}$: minimizers are attained for any degree $\rm BERLYAND$, MIRONESCU, PISANTE, RYBALKO, SANDIER⁵

Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

▶ One-sided because: embedding theorem $W^{s, \frac{n}{s}}(\mathbb{S}^n) \subset W^{t, \frac{n}{t}}(\mathbb{S}^n)$ for $s \geq t$.

²meromorphic maps minimize area

³ reason: minimizer are conformal

 4 power law for the energy w.r.t. Hopf degree

⁵ explicit computations & Fourier transform – not easily generalizable

What to expect: mappings between spheres

Summary of what we know:

- \triangleright $\mathbb{S}^2 \to \mathbb{S}^2$, $W^{1,2}$ -minimizer exist for any degree²
- ▶ $\mathbb{S}^n \to \mathbb{S}^n$, $n \geq 3$, $W^{1,n}$ -minimizer only exist at degree $1, -1, 0^3$
- \blacktriangleright $\mathbb{S}^3 \to \mathbb{S}^2$: $W^{1,3}$ there exists infinitely many homotopy classes where minimizers are attained $(\text{RIVIÈRE})^4$
- \blacktriangleright $\mathbb{S}^1 \rightarrow \mathbb{S}^1$: $W^{\frac{1}{2}}$ $^{\frac{1}{2}, 2}$: minimizers are attained for any degree $\rm BERLYAND$, MIRONESCU, PISANTE, RYBALKO, SANDIER⁵

Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

▶ One-sided because: embedding theorem $W^{s, \frac{n}{s}}(\mathbb{S}^n) \subset W^{t, \frac{n}{t}}(\mathbb{S}^n)$ for $s \geq t$.

Conjecture (Natural conjecture?)

For any $s\in(0,1]$, for any $n\in\mathbb{N}$, there exists a $W^{s,\frac{n}{s}}$ -minimizing degree 1 map.

²meromorphic maps minimize area

³ reason: minimizer are conformal

 4 power law for the energy w.r.t. Hopf degree

⁵ explicit computations & Fourier transform – not easily generalizable

continuous dependence of minimal energy

Theorem (MAZOWIECKA-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$, i.e. consider maps $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$. Then

$$
s \mapsto \#_s \alpha = \inf_{u \in \alpha} \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} dx dy
$$

is continuous.

continuous dependence of minimal energy

Theorem (Mazowiecka-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$, i.e. consider maps $u : \mathbb{S}^n \to \mathbb{S}^{\ell}$. Then

$$
s \mapsto \#_s \alpha = \inf_{u \in \alpha} \int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s}}}{|x - y|^{2n}} dx dy
$$

is continuous.

 \triangleright By smooth approximation we get

$$
\#_s \alpha \geq \limsup_{t \to s} \#_t \alpha
$$

▶ Observe if $[u]_{W_t}$, $\frac{n}{t}<\infty$ then not necessarily $\left[u\right]_{W^{s,\frac{n}{s}}}<\infty$ for $s>t!$ ▶ Proof is based on a new conformal regularity theorem (more: later). ▶ Let us first discuss some immediate consequences

Consequences (1): Progress on Mironescu's problem Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta].$

Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta].$

Proof.

If $\#_s1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$
\#_s 1 \stackrel{\text{energy ident.}}{=} \sum_{i=1}^N \#_s d_i
$$

Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta].$

Proof.

If $\#_s1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$
\#_{\frac{1}{2}}1 \stackrel{\text{cont.}}{\approx} \#_{s}1 \stackrel{\text{energy ident.}}{=} \sum_{i=1}^{N} \#_{s}d_{i} \stackrel{\text{cont.}}{\approx} \sum_{i=1}^{N} \#_{\frac{1}{2}}d_{i}
$$

Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta].$

Proof.

If $\#_s1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$
\#_{\frac{1}{2}}1 \stackrel{\text{cont.}}{\approx} \#_{s}1 \stackrel{\text{energy ident.}}{=} \sum_{i=1}^{N} \#_{s}d_{i} \stackrel{\text{cont.}}{\approx} \sum_{i=1}^{N} \#_{\frac{1}{2}}d_{i}
$$

But Berlyand–Mironescu–Rybalko–Sandier:

$$
\#_{\frac{1}{2}}d=4\pi^2|d|.
$$

Contradiction.

Theorem (Mironescu)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2, 1/2 + \delta].$

Theorem (MAZOWIECKA-S.)

There exists $\delta > 0$ such that degree 1 minimizer exists in $W^{s, \frac{1}{s}}(\mathbb{S}^1, \mathbb{S}^1)$ for $s \in [1/2-\delta, 1/2+\delta].$

Proof.

If $\#_s1$ is not attained, there must be $(d_i)_{i=1}^N$ with $\sum_i d_i = 1$ (depending on s) such that

$$
\#_{\frac{1}{2}}1 \stackrel{\text{cont.}}{\approx} \#_{s}1 \stackrel{\text{energy ident.}}{=} \sum_{i=1}^{N} \#_{s}d_{i} \stackrel{\text{cont.}}{\approx} \sum_{i=1}^{N} \#_{\frac{1}{2}}d_{i}
$$

But Berlyand–Mironescu–Rybalko–Sandier:

$$
\#_{\frac{1}{2}}d=4\pi^2|d|.
$$

Contradiction.

(Works with minimal energy homotopy classes – any dimension)

For each s there exists generating set $X_s=\{\alpha_1,\ldots,\alpha_N\}\subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s\alpha_i$ is attained for each $i=1,\ldots,N.$

For each s there exists generating set $X_s=\{\alpha_1,\ldots,\alpha_N\}\subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s\alpha_i$ is attained for each $i=1,\ldots,N.$

Theorem (MAZOWIECKA-S.)

For each s there exist generating set For each s there exists generating set $\mathcal{X}_\mathsf{s}=\{\alpha_1,\ldots,\alpha_N\}\subset \pi_\mathsf{n}(\mathbb{S}^\ell)$ such that $\#_t\alpha_i$ is attained for each $i=1,\ldots,N$, and $t \approx s$

Proof.

If $\#_t\alpha$ is not attained for some α and some $t \approx s$ then there exists (depending on $t)$ generator $(\alpha_i)_{i=1}^N$ of α

$$
\#_t \alpha = \sum_{i=1}^N \#_t \alpha_i
$$

For each s there exists generating set $X_s=\{\alpha_1,\ldots,\alpha_N\}\subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s\alpha_i$ is attained for each $i=1,\ldots,N.$

Theorem (MAZOWIECKA-S.)

For each s there exist generating set For each s there exists generating set $\mathcal{X}_\mathsf{s}=\{\alpha_1,\ldots,\alpha_N\}\subset \pi_\mathsf{n}(\mathbb{S}^\ell)$ such that $\#_t\alpha_i$ is attained for each $i=1,\ldots,N$, and $t \approx s$

Proof.

If $\#_{t}\alpha$ is not attained for some α and some $t \approx s$ then there exists (depending on $t)$ generator $(\alpha_i)_{i=1}^N$ of α

#sα continuity ≈ #tα = X N i=1 #tαⁱ continuity ≈ X N i=1 #sαⁱ

For each s there exists generating set $X_s=\{\alpha_1,\ldots,\alpha_N\}\subset \pi_n(\mathbb{S}^\ell)$ such that $\#_s\alpha_i$ is attained for each $i=1,\ldots,N.$

Theorem (MAZOWIECKA-S.)

For each s there exist generating set For each s there exists generating set $\mathcal{X}_\mathsf{s}=\{\alpha_1,\ldots,\alpha_N\}\subset \pi_\mathsf{n}(\mathbb{S}^\ell)$ such that $\#_t\alpha_i$ is attained for each $i=1,\ldots,N$, and $t \approx s$

Proof.

If $\#_t\alpha$ is not attained for some α and some $t \approx s$ then there exists (depending on $t)$ generator $(\alpha_i)_{i=1}^N$ of α

$$
\#_s \alpha \stackrel{\text{continuity}}{\approx} \#_t \alpha = \sum_{i=1}^N \#_t \alpha_i \stackrel{\text{continuity}}{\approx} \sum_{i=1}^N \#_s \alpha_i
$$

- \blacktriangleright We can repeat this argument for α_i on the right hand side, whenever for some $t \approx s$ there is no minimizer for α_i
- ▶ no term from the left-hand side can reappear again on the right-hand side Initely many choices of α_i , eventually stop or contradiction.

■

Theorem (Mazowiecka-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^\ell$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. ▶ (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $\left[u\right]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

Theorem (Mazowiecka-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^\ell$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. ▶ (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $\left[u\right]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

▶ Stability of Sobolev norm:

$$
\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim_{[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^{\ell})}} \varepsilon \quad \forall |s-t| \ll 1.
$$

Theorem (Mazowiecka-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^\ell$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. ▶ (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $\left[u\right]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

▶ Stability of Sobolev norm:

$$
\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim_{[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^{\ell})}} \varepsilon \quad \forall |s-t| \ll 1.
$$

 \blacktriangleright So

$$
\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \text{for all } t \text{ s.t. } |t - s| \leq \delta_{[u]_{W^{s,\frac{n}{s}}}}
$$

Theorem (Mazowiecka-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^\ell$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. ▶ (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $\left[u\right]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

▶ Stability of Sobolev norm:

$$
\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim_{[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^{\ell})}} \varepsilon \quad \forall |s-t| \ll 1.
$$

 \blacktriangleright So

$$
\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \text{for all } t \text{ s.t. } |t - s| \leq \delta_{[u]_{W^{s,\frac{n}{s}}}}
$$

▶ If no minimizer exist: energy identity

Theorem (Mazowiecka-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^\ell$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. ▶ (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $\left[u\right]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

▶ Stability of Sobolev norm:

$$
\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim_{[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^\ell)}} \varepsilon \quad \forall |s-t| \ll 1.
$$

 \blacktriangleright So

$$
\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \text{for all } t \text{ s.t. } |t - s| \leq \delta_{[u]_{W^{s,\frac{n}{s}}}}
$$

▶ If no minimizer exist: energy identity \blacktriangleright We have

$$
\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \forall s \approx t.
$$

Theorem (Mazowiecka-S. (2023)) Fix $\alpha \in \pi_n(\mathbb{S}^{\ell})$. Then $s \mapsto \#_s \alpha$ is continuous. Proof. Assume $u : \mathbb{S}^n \to \mathbb{S}^\ell$ is a $W^{s, \frac{n}{s}}$ -minimizer of $\#_s \alpha$. ▶ (Conformal higher regularity:) then for $s_0 > s$, $u \in W^{s_0, \frac{n}{s_0}}(\mathbb{S}^n, \mathbb{S}^{\ell})$ and $\left[u\right]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)})$

▶ Stability of Sobolev norm:

$$
\left| [u]_{W^{t,\frac{n}{t}}(\mathbb{S}^n)} - [u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)} \right| \lesssim_{[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n,\mathbb{S}^{\ell})}} \varepsilon \quad \forall |s-t| \ll 1.
$$

 \blacktriangleright So

$$
\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \text{for all } t \text{ s.t. } |t - s| \leq \delta_{[u]_{W^{s,\frac{n}{s}}}}
$$

▶ If no minimizer exist: energy identity \blacktriangleright We have

$$
\#_t \alpha \leq \#_s \alpha + \varepsilon \quad \forall s \approx t.
$$

■

 \blacktriangleright Interchanging roles of s and t we conclude.

Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $\left[u\right]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous.

Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $\left[u\right]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous. However

- This is usually ε -regularity: if $[u]_{W^{s}}$, $\frac{n}{s}(B(0,R))\ll 1$ then $u\in C^\alpha(B(0,R/2))$ with suitable estimates
- ▶ No way we have uniform higher regularity: Indeed, take any minimizer, rescale it conformally (almost bubble), the modulus of continuity is arbitarily bad.
- ▶ Idea: Obtain better regularity for another conformally invariant energy.

Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $\left[u\right]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous. However

- This is usually ε -regularity: if $[u]_{W^{s}}$, $\frac{n}{s}(B(0,R))\ll 1$ then $u\in C^\alpha(B(0,R/2))$ with suitable estimates
- ▶ No way we have uniform higher regularity: Indeed, take any minimizer, rescale it conformally (almost bubble), the modulus of continuity is arbitarily bad.
- ▶ Idea: Obtain better regularity for another conformally invariant energy.

Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

Theorem (S.'15, MAZOWIECKA-S.'18)

Critical points of the $\left[u\right]_{W^{s,\frac{n}{s}}}$ -energy between spheres are Hölder continuous. However

- This is usually ε -regularity: if $[u]_{W^{s}}$, $\frac{n}{s}(B(0,R))\ll 1$ then $u\in C^\alpha(B(0,R/2))$ with suitable estimates
- ▶ No way we have uniform higher regularity: Indeed, take any minimizer, rescale it conformally (almost bubble), the modulus of continuity is arbitarily bad.
- ▶ Idea: Obtain better regularity for another conformally invariant energy.

Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

- \triangleright We show this for critical points, not only minimizers.
- \blacktriangleright No idea how to use minimizing property (no ε -regularity result!)
- ▶ Can't do it for general target manifolds

Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

Conformal higher regularity for minimizers Theorem (S., MAZOWIECKA-S.) Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

 $\left[\boldsymbol{\mathsf{u}}\right]$ $\frac{1}{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \textit{for some $s_0 > s$}.$

▶ For classical $W^{1,2}$ -harmonic maps $\mathbb{S}^2 \to \mathbb{S}^{\ell}$:

 $-\Delta u = u |\nabla u|^2$

HÈLEIN, COIFMAN-LIONS-MEYER-SEMMES:

▶

 $|u|\nabla u|^2\in\mathcal{H}^1(\mathbb{R}^2).$

 $\|\nabla^2 u\|_{L^1} \lesssim \|\Delta u\|_{\mathcal{H}^1} \lesssim \|\nabla u\|_{L^1}^3$ L^2 This is a global (scaling-invariant!) estimate!

Conformal higher regularity for minimizers Theorem (S., MAZOWIECKA-S.)

Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres \mathbb{S}^{ℓ} , then

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

▶ Euler-Lagrange equations

$$
(-\Delta)^s_{\frac{n}{s},\mathbb{S}^n}u\perp \mathcal{T}_u\mathbb{S}^\ell.
$$

where

$$
(-\Delta)^s_{\frac{p}{s},\mathbb{S}^n}u[\varphi] =
$$
\n
$$
\int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|u(x) - u(y)|^{\frac{n}{s} - 2}(u(x) - u(y)) \cdot (\varphi(x) - \varphi(y))}{|x - y|^{n + sp}} d(x, y)
$$
\nIn S. 16, I rewrote this as (for $t < s$)\n
$$
(-\Delta)^s_{\frac{n}{s},\mathbb{S}^n}u = (-\Delta)^{\frac{t}{2}} T_t u
$$
\nwhere $T_t v(z)$ roughly corresponds to $|\sqrt{(-\Delta)^{\frac{sp-t}{p-1}}}v|^{p-1}$,\n
$$
\int_{\mathbb{S}^n} \int_{\mathbb{S}^n} \frac{|v(x) - v(y)|^{p-2}(v(x) - v(y)) (|x - z|^{t-n} - |y - z|^{t-n})}{|x - y|^{n + sp}} d(x, y)
$$

Conformal higher regularity for minimizers Theorem (S., MAZOWIECKA-S.) Critical points of the $[u]_{W^{s,\frac{n}{s}}}$ -energy into spheres, then

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

▶ Euler-Lagrange equations

$$
(-\Delta)^{\frac{s}{2}}T_s u \perp T_u\mathbb{S}^{\ell}.
$$

We observe even though $t < s$, since $T_t u$ is "somewhat tangential"

$$
\|u\cdot T_t u\|_{L^{\frac{n}{n-t}}} \lesssim C([u]_{W^{s,\frac{n}{s}}})
$$

and by the PDE and compensation phenomena we have

$$
\|u\wedge T_{t,\Omega}u\|_{L^{\frac{n}{n-t}}}\lesssim C([u]_{W^{s,\frac{n}{s}}})
$$

Thus

$$
\|T_t u\|_{L^{\frac{n}{n-t}}} \lesssim C([u]_{W^{s,\frac{n}{s}}})
$$

▶ Iwaniec' stability then implies $u \in W^{r, \frac{n}{r}}(\mathbb{S}^n)$ for $r := s \frac{n-r}{n-r}$ $\frac{n-t}{n-s}$ with the corresponding estimate.

 \blacktriangleright Conformal higher regularity: Critical $W^{s, \frac{n}{s}}$ -harmonic maps *into spheres* belong to $W^{\frac{5}{s_0}, \frac{n}{s_0}}$ $\overline{s_0}$,

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

 \blacktriangleright Conformal higher regularity: Critical $W^{s, \frac{n}{s}}$ -harmonic maps *into spheres* belong to $W^{\frac{5}{s_0}, \frac{n}{s_0}}$ $\overline{s_0}$,

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

 $\blacktriangleright \Rightarrow$ for any $\alpha \in \pi_n(\mathbb{S}^{\ell})$

$$
s\mapsto \#_s \alpha \equiv \inf_{[u]\in \alpha}[u]^{\frac{n}{s}}_{W^{s,\frac{n}{s}}(\mathbb{S}^n,\mathbb{S}^\ell)}
$$

is continuous

 \blacktriangleright Conformal higher regularity: Critical $W^{s, \frac{n}{s}}$ -harmonic maps *into spheres* belong to $W^{\frac{5}{s_0}, \frac{n}{s_0}}$ $\overline{s_0}$,

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

$$
\blacktriangleright \Rightarrow \text{for any } \alpha \in \pi_n(\mathbb{S}^{\ell})
$$

$$
s \mapsto \#_s \alpha \equiv \inf_{[u] \in \alpha} [u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathbb{S}^\ell)}^{\frac{n}{s}}
$$

is continuous

$$
\blacktriangleright \Rightarrow \text{If for some } \bar{s} \text{ and } \alpha \in \pi_n(\mathbb{S}^{\ell}) \text{ we have}
$$

$$
\#_{\bar{s}}\alpha \leq \#_{\bar{s}}\beta \quad \text{ for all } \beta \in \pi_n(\mathbb{S}^{\ell}) \setminus \{0\}
$$

Then $\#_s \alpha$ is attained for all $s \approx \bar{s}$

 \blacktriangleright Conformal higher regularity: Critical $W^{s, \frac{n}{s}}$ -harmonic maps *into spheres* belong to $W^{\frac{5}{s_0}, \frac{n}{s_0}}$ $\overline{s_0}$,

$$
[u]_{W^{s_0,\frac{n}{s_0}}(\mathbb{S}^n)} \lesssim C([u]_{W^{s,\frac{n}{s}}(\mathbb{S}^n)}) \quad \text{for some } s_0 > s.
$$

$$
\blacktriangleright \Rightarrow \text{for any } \alpha \in \pi_n(\mathbb{S}^{\ell})
$$

$$
s \mapsto \#_s \alpha \equiv \inf_{[u] \in \alpha} [u]_{W^{s, \frac{n}{s}}(\mathbb{S}^n, \mathbb{S}^\ell)}^{\frac{n}{s}}
$$

is continuous

$$
\blacktriangleright \Rightarrow \text{If for some } \bar{s} \text{ and } \alpha \in \pi_n(\mathbb{S}^{\ell}) \text{ we have}
$$

$$
\#_{\bar{s}}\alpha \leq \#_{\bar{s}}\beta \quad \text{ for all } \beta \in \pi_n(\mathbb{S}^{\ell}) \setminus \{0\}
$$

Then $\#_s\alpha$ is attained for all $s \approx \bar{s}$ $\blacktriangleright \Rightarrow$ For any \bar{s} there exists a generating set $\{\alpha_1,\ldots,\alpha_k\} \in \pi_n(\mathbb{S}^\ell)$ such that

 $\#_s\alpha_i$ $\;$ is attained for all $s\approx\bar s$

Things to do

- ▶ It would be very interesting to investigate the stability $s \to 1^{-}$ (for spheres this might be doable)
- ▶ What about $s \rightarrow 0^+$?
- ▶ What about general manifolds? Higher conformal regularity for minimizers into general manifolds?

Thank you for your attention

- \blacktriangleright MAZOWIECKA, S.: Minimal $W^{s,\frac{n}{s}}$ -harmonic maps in homotopy classes (J. Lond. Math. Soc., 2023)
- \blacktriangleright MAZOWIECKA, S.: s-stability for $W^{s,n/s}$ -harmonic maps in homotopy groups (preprint)