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Main problem

Eigenvalue of nonlocal diffusion operators with advection

(aϕ)′(x) + r̃(x)ϕ(x) +

∫
S
K (x , y)(ϕ(y)− φ(x))dy = λϕ(x),

ϕ ∈ L1(S) (S: Circle with length 1)

I
∫
S K (x , y)(ϕ(y)− ϕ(x))dy : Nonlocal diffusion

e.g. K (x , y) = k(x − y)

I (aϕ)′(x): Advection (drift)

I r̃(x)ϕ(x) : Growth



Main problem

(aϕ)′(x) + r̃(x)ϕ(x) +

∫
S
K (x , y)(ϕ(y)− φ(x))dy = λϕ(x),

can be rewritten as

a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy = λϕ(x),

with r(x) = r̃(x) + a′(x) +
∫
S K (x , y)dy simply.

I Bϕ :=
∫
S K (x , y)ϕ(y)dy

I Aϕ := a(x)ϕ′(x) + r(x)ϕ(x)



Main problem

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

Some assumptions

I K : S× S→ S continuous and positive

I a : S→ R and r : S→ R, of class C 1 and C 0 respectively.

Similar to random diffusion operator (Laplacian or general 2-order
elliptic operator)

Principal eigenvalue probelm



Main problem

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

Principal eigenpair (eigenvalue and eigenfunction)

I principal eigenvalue: “the largest eigenvalue”
I More precisely, consider a operator L

I σ(L): spectrum set
I ρ(L): resolvent set
I the spectral bound of L:

s(L) = sup {Reλ, λ ∈ σ(L)} .

I s(L) is called the principal eigenvalue if s(L) is an eigenvalue

with algebraic multiplicity one

Rk: In many cases (elliptic operator, diffusion operator,

nonnegative matrix...), because of the maximum principle , the

respective eigenfunction of s(L) is a positive one.



Main problem

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

Main Question

I Is the spectral bound s(A + B) the principal eigenvalue in
L1(S)(C 0(S)) with a positive eigenfunction?



Main problem

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

Rk. An equivalent operator in periodic media in R:

Lφ := ā(x)φ′(x) + r̄(x)φ(x) +

∫
R
K̄ (x , y)φ(y)dy

ā, r̄ , K̄ (·, y): 1-periodic in R
φ ∈ L1

local(R) and 1-periodic



Background

Heat equation, parabolic equation and diffusion in biology{
ut = O(A(x)Ou) + a(x) · Ou + r(x)u, x ∈ Ω

Homogeneous boundary condition on ∂Ω

I random diffusion + advection + local growth

I Homogeneous boundary condition:
Dirichlet, Neumann, Robin or periodic

Generator of the semigroup of above linear parabolic equation{
Lu := O(A(x)Ou) + a(x) · Ou + r(x)u, x ∈ Ω

Homogeneous boundary condition on ∂Ω



Background

{
Lu := O(A(x)Ou) + a(x) · Ou + r(x)u, x ∈ Ω

Homogeneous boundary condition on ∂Ω

With some assumptions on the smoothness and boundedness of
A, a, r ,Ω,
the existence of the principal eigenvalue λ of L is a standard result.

I u(x , t): density of some species,
I the principal eigenvalue λ

I averaged growth rate
(it may be larger than r̄ , the averaged value of r )

I to describe the basic reproduction number R0

I to describe the propagation speed of one invaded species



One obsevion
Let T (t) be the solution semigroup of{

ut = O(A(x)Ou) + a(x) · Ou + r(x)u, x ∈ Ω

Homogeneous boundary condition on ∂Ω

I T (t): compact (smoothness of the solution),
strongly positive (maximum principle, order-preserving)
for fixed t > 0

I The spectral radius of T (t), ρ(T (t)) is
the principal eigenvalue of T (t): Krein-Rutmann theorem.

I The spectral bound s(L) of L is the principal eigenvalue of{
Lu := O(A(x)Ou) + a(x) · Ou + r(x)u, x ∈ Ω

Homogeneous boundary condition on ∂Ω

s(L) = ln ρ(T (t)))
t , t > 0



One obsevion

Let T (t) be the solution semigroup of{
ut = O(A(x)Ou) + a(x) · Ou + r(x)u, x ∈ Ω

Homogeneous boundary condition on ∂Ω

I The advection a(x) · Ou and growth r(x)u may yield some
singularity of T (t)

I The random diffusion O(A(x)Ou) can eliminate such
singularity, and yield smoothness and compactness...



Known result about Nonlocal diffusion

To consider the principal eigenvalues of

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

we transfer it to the principal eigenvalues of the solution semigroup
TA+B(t) of

ut = a(x)ux + r(x)u +

∫
S
K (x , y)u(t, y)dy

Rk. Comparing with A + B, TA+B(t) has better properties.
Moreover, we can explain the concepts, results and methods
clearer in natural language.



Known result about Nonlocal diffusion

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

I a ≡ 0, non-advection; x ∈ S
W. Shen and A. Zhang; J.Coville...

Theorem (See W.Shen and A.Zhang)

Suppose that r is local Lip-continuous near its maximum

points. Then the spectral bound of r(x)ϕ(x) +
∫
S K (x , y)ϕ(y)dy

is an eigenvalue with algebraic multiplicity one. Moreover, the
respective eigenfunction is positive.

I a > 0 but x ∈ [0, 1] not S,
J.Coville, F.Li and X.Wang



Nonlocal diffusion with positive advection

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

I a > 0; x ∈ S

Theorem (A.Ducrot, G. Griette, X.L.)

Suppose that a > 0. Then the spectral bound of A + B is an
eigenvalue with algebraic multiplicity one. Moreover, the respective
eigenfunction is positive.

Rk. Comparing with the result in the case without advection
(W.Shen and A.Zhang), here the effect of advection yields we do
not need thorough assumption on r .



Nonlocal diffusion with positive advection

Before prove this theorem, we explain how the growth part r(x)u

generates singularity and how the advection can help to eliminate
such singularity.

I L1u := r(x)u. σ(L1) = {r(x0), x0 ∈ R}. s(L1) = max
x∈S

r(x) is

not an isolate spectral points

I Consider the evolution equation ut = r(x)u. For example, let
r(x0) = 0 and r(x) < 0 for x 6= x0. u(+∞, x0) = u(0, x0) and
u(+∞, x) = 0, x 6= x0. The spatial heterogeneity of the
growth generates singularity finally.



Proof

I ∂tπ(t, s; x) = −a(π(t, s; x)), π(s, s; x) = x , x ∈ S;
Specially, let t0 =

∫
S

1
a(x)dx > 0.

Then π(t + t0, t; x) = x , x ∈ S
I

∫ t0

0 r(π(s, t; y))ds =
∫
S r(π(s(x), t; y)(−1/a(x))dx =: r̄

r̄ : independent y

I Solve{
∂tu(t, x) = Au := a(x)∂xu(t, x) + r(x)u(t, x), x ∈ S
u(0, .) = ϕ.

TA(t)ϕ(x) := u(t, x) = ϕ(π(0, t; x)) exp
[∫ t

0 r(π(s, t; x)ds
]

I Fix t = t0, TA(t0)ϕ(x) = ϕ(x)e r̄ , that is, TA(t0) = e r̄ I



Proof: continued

I 
∂tu(t, x) = (A + B)u, x ∈ S
Au = a(x)∂xu(t, x) + r(x)u(t, x)

Bu =
∫
S K (x , y)u(t, y)dy

u(0, .) = ϕ.

I The solution semigroup TA+B(t)ϕ(x) = u(t, x)

I Use variation of constant. At t = t0

[TA+B(t0)ϕ](x) = [TA(t0)ϕ](x) +
∫ t0

0 TA(s)(B(u(t0− s, ·)))ds
=: e r̄φ(x) + [L2φ](x)



Proof: continued

I For any t ∈ R, TA(t):
strictly positive bounded linear operator on C (S)

I The integral operator B:
strongly positive compact linear operator on C (S)
(Ascoli-Arzel theorem)

I L2ϕ :=
∫ t0

0 TA(s)(B(u(t0 − s, ·)))ds: strongly positive
compact

I Krein-Rutmann theorem can be applied for L2,
the spectral radius λ of L2 is its principal eigenvalue with a
respective positive eigenfunction ϕ0

I e r̄ + λ, the spectral radius of TA+B(t0) = e r̄ I + L2 is its
principal eigenvalue with the respective positive eigenfunction
ϕ0.

I µ := ln(e r̄+λ)
t0

, the spectral bound of A + B is its principal
eigenvalue with the respective positive eigenfunction ϕ0.



Remark

Rk. 1. For mass conservation, a evolution equation on advection
should be

ut = (a(x)u)x , x ∈ S

2. Our theorem may be proved by the “touch lemma” developed in
the work of J.Coville, F.Li and X.Wang



Nonlocal diffusion with sign-change advection

A more interesting but difficult case is a change sign .

For some species with density u(t, x), ut = a(x)ux .

I Let a(x0) = 0, a(x) < 0 for x < x0 and a(x) > 0 for x > x0.

I the species gather to the sink x0 in long term. Dirac’s δ
function may appear at x0

On the other hand,

I Let a(x1) = 0, a(x) > 0 for x < x1 and a(x) < 0 for x > x1.

I the species leave from the source x1. To support such motion
in long term, the density of the species at x1 should be large
enough,Dirac’s δ function may appear at x1



Nonlocal diffusion with sign-change advection

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

or rewrite A as
Aϕ = (aϕ)′ + λ(x)ϕ

with λ = r − a′

I Assumption1. There exists x0 < x1 such that

a(x0) = a(x1) = 0, a(x) 6= 0, x 6= x0, x1

and
a′(x0) > 0, a′(x1) < 0.

I Assumption2.
λ(x0) < λ(x1)



Nonlocal diffusion with sign-change advection

We first give a rough description of our results.

Theorem (A.Ducrot, G. Griette, X.L.)

(A + sB)ϕ := (aϕ)′ + λ(x)ϕ+

∫
S
sK (x , y)ϕ(y)dy

Under Assumptions 1,2, we have the following conclusion:
There is some parameter s0 > 0, a function ρ(s) and some
ϕs ∈ L1(S) positive almost everywhere for any s > 0, such that

I ρ(s) ≡ λ(x1) for s ≤ s0, ρ(s) > λ(x1) for s ≤ s0

I (A + sB)ϕ = ρ(s)ϕ for s ≥ s0

I (A + sB)(ϕ+ δx1(x)) = ρ(s)(ϕ+ δx1(x)) = λ(x1)(ϕ+ δx1(x))
in the weak sense for s < s0.

Rk. If the diffusion is strong enough, we have a real principal
eigenvalue, otherwise, we only have a weak one.



Some useful conclusion and techniques

I Theorem (Krein-Rutmann theorem for noncompact positive
operator and semigroup)

Let L : D(L) ⊂ X → X be the infinitesimal generator of a strongly
continuous semigroup {TL(t)}t≥0 on the Banach lattice X such
that TL is positive and irreducible. Assume furthermore that
ρess(TL(t)) < ρ(TL(t)) for t > 0 then there exists y ∈ X+, strictly
positive such that

Ly = s(L)y .

ρess(TL(t)): essential spectral radius,
ρ(TL(t)): spectral radius,

s(L): spectral bound, s(L) = ln ρ(TL(t))
t

I Theorem
LetO = O1 + O2,where O1,O2 are linear bounded operators on
some Banach space. Moreover, suppose that O2 is compact, then
ρess(O) = ρess(O1)

,



Some useful conclusion and techniques

Techniques

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

I Use variation of constant.

TA+B(t)ϕ(x) = TA(t)ϕ(x) +
∫ t

0 TA(s)(B(u(t − s, ·)))ds

I Since the second part
∫ t

0 TA(s)(B(u(t − s, ·)))ds is compact,
ρess(TA+B(t)) = ρess(TA(t)) ≤ ρ(TA(t))

I Then after estimating ρ(TA(t)) and ρ(TA+B(t)), we can find
some conditions on ρess(TA+B(t)) < ρ(TA+B(t))

I the abstract theorem +

the condition onρess(TA+B(t)) < ρ(TA+B(t))

⇒ s(A + B) is the principal eigenvalue.



Some useful conclusion and techniques

Techniques

(A + B)ϕ := a(x)ϕ′(x) + r(x)ϕ(x) +

∫
S
K (x , y)ϕ(y)dy

I Define (A− λ(x1))−1. In other words, solve

(aϕ)′ + (λ(x)− λ(x1))ϕ(x) = f

I Difficulty: a(x0), a(x1) = 0, and the solution are not unique.
We need to choose a suitable one.



Some useful conclusion and techniques

Lemma (Special strongly ergodic theorem)

For all continuous function Φ on S, one has

lim sup
t→∞

sup
x∈S

1

t

∫ t

0
Φ(π(`, 0; x))d` = max{Φ(x0),Φ(x1)}.

where π(`, 0; x) is the solution of dx/dt = −a(x) with the initial
value x.

Rk. This useful lemma can be considered as one on the ergodic
property of the solution of dx/dt = a(x).

Lemma
ρ(TA(t)) = eλ(x1)t .
Then
ρess(TA+B(t)) = ρess(TA(t)) ≤ ρ(TA(t)) = eλ(x1)t



Some new problem

I finitely many zero-points of a(x), all zero-points are
non-degenerate (trivial extension)

I degenerate zero-points of a(x) (on-going)

I high-dimensional problem

I fractional diffusion ((−∆)s)



Thank you for your attention!


