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Introduction and overview

Main objective: To analyze a reaction-diffusion equation
containing some nonlocal character as well as memory terms.

• Importance of the effects that memory terms (or the past history
of a phenomenon) produce on the evolution of a dynamical system

1 T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß, J. Valero, Global attractor for a non-autonomous
integro-differential equation in materials with memory, Nonlinear Analysis 73 (2010), 183-201.

2 T. Caraballo, J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations 205
(2004), 271-297.

3 M. Conti, V. Pata, M. Squassina, Singular limit of differential systems with memory, Indiana U. Math. J. 1
(2006), 169-215.

4 M. Fabrizio, C. Giorgi, V. Pata, A new approach to equations with memory, Arch. Rational Mech. Anal.
198(2010), 189-232.

5 M. Grasselli, V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, Evolution
Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential Equations Appl. 50 (2002),
155-178.

6 C. Giorgi, Vittorino Pata, A. Marzochi, Asymptotic behavior of a semilinear problem in heat conduction
with memory, Nonlinear Differ. Equ. Appl. 5 (1998), 333-354.
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Introduction and overview

• Importance of nonlocal PDE:
1 P. M. Berná, J. D. Rossi, Nonlocal diffusion equations with dynamical boundary conditions, Nonlinear

Anal,. 195 (2020), 111751.

2 Z. Szymańska, C. Morales-Rodrigo, M. Lachowicz, M. A. J. Chaplain, Mathematical modelling of cancer
invasion of tissue: the role and effect of nonlocal interaction, Math. Models Methods Appl. Sci., 19
(2009), 257-281.

3 N. I. Kavallaris, Explosive solutions of a stochastic non-local reaction-diffusion equation arising in shear
band formation, Math. Meth. Appl. Sci., 38 (2015), 3564-3574.

4 Chipot et al. (Rend. Sem. Mat. Univ. Padova, 110 (2003), 199-220; RAIRO Modél. Math. Anal. Numér.,
26 (1992), 447-467; Asymptot. Anal., 45 (2005), 301-312.): population of bacteria with nonlocal term

a(
∫

Ω u) in a container, extended to a general nonlocal operator a(l(u)), where l ∈ L(L2(Ω); R), for

instance, if g ∈ L2(Ω), l(u) = lg (u) =
∫

Ω g(x)u(x)dx.

∂u

∂t
− a(l(u))∆u = f (u), (1)

5 P. Maŕın-Rubio, M. Herrera-Cobos, T.C: non-autonomous versions and their global dynamics (Proc. Roy.
Soc. Edinburgh Sect. A 148 (2018), no. 5, 957981; Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 3,
10111036; J. Math. Anal. Appl. 459 (2018), no. 2, 9971015; Discrete Contin. Dyn. Syst. Ser. B 22
(2017), no. 5, 18011816).
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Introduction and overview

Motivated by some physical problems from thermal memory or
materials with memory, V. Pata and collaborators studied a
semilinear partial differential equation to model the heat flow in a
rigid, isotropic, homogeneous heat conductor with linear memory,

c0∂tu − k0∆u −
∫ t

−∞
k(t − s)∆u(s)ds + f (u) = h,

u(x , t) = 0,

u(x , τ + t) = u0(x , t),

in Ω× (τ,+∞),

on ∂Ω× (τ,+∞),

in Ω× (−∞, 0],

(2)

where Ω ⊂ RN is a bounded domain with regular boundary,
u : Ω× R→ R is the temperature field, k : R+ → R is the heat
flux memory kernel, R+ denotes the interval (0,+∞), c0 and k0

denote the specific heat and the instantaneous conductivity,
respectively.
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Introduction and overview

To solve (2) successfully, they made the past history of u from
−∞ to 0− be part of the forcing term given by the causal function
g , which is defined by

g(x , t) = h(x , t) +

∫ τ

−∞
k(t − s)∆u0(x , s)ds, x ∈ Ω, t ≥ τ.

Thus, (2) becomes an initial value problem without delay or
memory,

c0∂tu − k0∆u −
∫ t

τ
k(t − s)∆u(s)ds + f (u) = g ,

u(x , t) = 0,

u(x , τ) = u0(x , 0),

in Ω× (τ,+∞),

on ∂Ω× (τ,+∞),

in Ω.

(3)

But, it does not generate a dynamical system ((3) depends on the
past history and we just fix an initial value at time τ).
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Introduction and overview

Therefore, two alternatives are possible.
• Alternative 1: Based on Dafermos’ idea, for linear viscoelasticity,
in the 70’s. Define new variables,

ut(x , s) = u(x , t − s), s ≥ 0, t ≥ τ,

ηt(x , s) =

∫ s

0
ut(x , r)dr =

∫ t

t−s
u(x , r)dr , s ≥ 0, t ≥ τ. (4)

Assume k(∞) = 0, a ch. of variable and a formal integ. by parts∫ t

−∞
k(t − s)∆u(s)ds = −

∫ ∞
0

k ′(s)∆ηt(s)ds.

Setting
µ(s) = −k ′(s),

the original eq. (2) becomes an autonomous system without delay,
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c0
∂u
∂t − k0∆u −

∫ ∞
0

µ(s)∆ηt(s)ds + f (u) = h,

ηtt (s) = −ηts (s) + u(t),

u(x , t) = ηt(x , s) = 0,

u(x , τ) = u0(0),

ητ (x , s) = η0(s),

in Ω× (τ,∞),

in Ω× (τ,∞)× R+,

on ∂Ω× R× R+,

in Ω,

in Ω× R+,

(5)

where, ηts denotes the distributional derivative of ηt(s) with
respect to the internal variable s. From the definition of ηt(x , s)
(see (4)) we have

η0(s) =

∫ τ

τ−s
u(r)dr =

∫ τ

τ−s
u0(r − τ)dr =

∫ 0

−s
u0(r)dr , (6)

which is the initial integrated past history of u with vanishing
boundary. Consequently, any solution to (2) is a solution to (5) for
the corresponding initial values (u0(0), η0) given by (6).
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Introduction and overview
However, problem (5) can be solved for arbitrary initial values
(u0, η0) in a proper phase space L2(Ω)× L2

µ(R+;H1
0 (Ω)), i.e., the

second component η0 does not necessarily depend on u0(·).
Here L2

µ(R+;H1
0 (Ω)) is defined as follows:

Let µ satisfy the hypotheses:

(h1) µ ∈ C 1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ R+;
(h2) µ′(s) + δµ(s) ≤ 0, ∀s ∈ R+, for some δ > 0.

Then L2
µ(R+;H1

0 (Ω)) is the Hilbert space of functions
w : R+ → H1

0 (Ω) endowed with the inner product,

((w1,w2))µ =

∫ ∞
0

µ(s)(∇w1(s),∇w2(s))ds.

Then, the solutions of (5) permits to construct a dynamical system
S(t) : L2(Ω)× L2

µ(R+;H1
0 (Ω))→ L2(Ω)× L2

µ(R+;H1
0 (Ω))

S(t)(u0, η0) = (u(t), ηt).

and prove the existence of global attractors in this phase space.
T. Caraballo, J. Xu & J. Valero, Univ. Sevilla Non-local PDEs with memory 9



Introduction and overview
Notice:
• The transformed equation (5) is a generalization of problem (2).
• Not every solution to equation (5) possesses a corresponding one
to (2).
• Both problems are equivalent if and only if the initial value η0

belongs to a proper subspace of L2
µ(R+;H1

0 (Ω)): the domain of the
distributional derivative with respecto to s, denoted by D(T).

D(T) =
{
η(·) ∈ L2

µ(R+;H1
0 (Ω)) | ηs(·) ∈ L2

µ(R+;H1
0 (Ω)), η(0) = 0

}
,

and T is defined by Tη = −ηs , η ∈ D(T).
• Hence, it seems natural to construct a DS generated by (5) in
L2(Ω)× D(T) and to prove the existence of attractors to the
original problem, via the above relationship.
• Up to our knowledge, not possible to prove the existence of
attractors in this space unless solutions are proved to have more
regularity.
• Thus, we cannot (do not know how to) transfer the existence of
attractors for system (5) to the original problem (2).
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Introduction and overview

• Alternative 2: The idea comes from a simpler case, T. Caraballo
et al. Nonlinear Analysis (2010) when the kernel is k(t) = e−d0t ,
d0 > 0 (non-singular kernel).

It is proved that generates a dynamical system in the phase
space L2

H1
0

given by ϕ : (−∞, 0]→ H1
0 (Ω), such that∫ 0

−∞ eγs‖ϕ(s)‖2
H1

0
ds < +∞, for certain γ > 0.

In this phase space, there exists a global attractor to this
problem (in fact, the problem is non-autonomous and the
attractor is of pullback type).

For this kind of delay problems, the initial value at zero may
not be related to the values for negative times.

So (G. Sell’s suggestion) the standard and more appropriate
phase space is the cartesian product L2(Ω)× L2

H1
0

(T.C & J.

Real (2004)).
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Introduction and overview
For any initial values u0 ∈ L2(Ω) and ϕ ∈ L2

H1
0
, there exists a

unique solution to the following problem (set τ = 0),
c0
∂u
∂t − k0∆u −

∫ t

−∞
k(t − s)∆u(s)ds + f (u) = g ,

u(x , t) = 0,

u(x , 0) = u0(x),

u(x , t) = ϕ(x , t),

in Ω× (0,∞),

on ∂Ω× R,
in Ω,

in Ω× (−∞, 0).

(7)

We can define a dynamical system
S(t) : L2(Ω)× L2

H1
0
→ L2(Ω)× L2

H1
0

by the relation

S(t)(u0, ϕ) := (u(t; 0, u0, ϕ), ut(·; 0, u0, ϕ)),

where u(·; 0, u0, ϕ) denotes the solution of problem (7) (T.C & J.
Real, JDE (2004)), and ut denotes the history up to time t:

ut(s; 0, u0, ϕ)) = u(t + s; 0, u0, ϕ)), s ≤ 0.
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Introduction and overview

• We emphasize: the two components of DS are the current state
of the solution and the past history up to present– more sensible in
a problem with delays or memory.
• The method in T. Caraballo et al. Nonlinear Analysis (2010) can
be successfully applied to prove the existence of attractors to
problem (7) when k is of exponential type (non-singular kernel–
JDE 2021 for non-local terms).
It is a big restriction on the kernel k (and consequently, on µ): real
situations often have singularities, e.g. µ(t) = e−d0tt−α, α ∈ (0, 1).
Our aim is to handle it in the phase space L2(Ω)× L2

H1
0
. (Already

studied in the space L2(Ω)× L2
µ(R+;H1

0 (Ω)) in the paper DCDS-S
(2022) for non-local case).
• We will obtain this result as a consequence of the analysis
performed in this paper even for the more general case of non-local
problems as described below.
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Introduction and overview

Chipot et al. studied a population of bacteria with non-local term
a(
∫

Ω u) in a container. Later, extended to a non-local operator
a(l(u)), where l ∈ L(L2(Ω);R), for instance, if g ∈ L2(Ω),

l(u) = lg (u) =

∫
Ω
g(x)u(x)dx .

Thus, we combined in (J.Xu et al. JDE 2021) the non-local
feature with the memory or delay effects to study the dynamics of
the following non-autonomous non-local PDE with delay and
memory by using the Galerkin method and energy estimations,

∂u
∂t − a(l(u))∆u = f (u) + h(t, ut)

u = 0

uτ (x , θ) = ϕ(x , θ)

in Ω× [τ,∞),

on ∂Ω× [τ,∞),

in Ω× (−ρ, 0],

(8)
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Introduction and overview

• Ω ⊂ RN is a bounded open set, τ ∈ R,
• a ∈ C (R;R+) is locally Lipschitz s.t. 0 < m ≤ a(s) for all s ∈ R,
• f ∈ C (R) and h contains hereditary characteristics and delays.
• 0 < ρ≤∞, which includes bounded and unbounded delays.
• The functions ut : (−∞, 0]→ X defined by

ut(θ) = u(t+θ), θ ∈ (−∞, 0]

• Typical situations of delay and memory included:

h(t, ut) = G (u(t − τ(t))),

∫ 0

−ρ
k(−s)∆u(t + s) ds,

∫ 0

−ρ
k(t + s)u(t + s)ds

h(t, φ) = G (φ(−τ(t))),

∫ 0

−ρ
k(−s)∆φ(s) ds,

∫ 0

−ρ
k(t + s)φ(s)ds

• BUT only valid for non-singular kernels (e.g., k(t) = k1e
−d0t ,

k1 ∈ R, d0 > 0)
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Introduction and overview
A new model with long time memory and non-local diffusion,

∂u
∂t − a(l(u))∆u −

∫ t

−∞
k(t − s)∆u(s)ds + f (u) = g ,

u(x , t) = 0,

u(t + τ) = ϕ(t),

in Ω× (τ,∞),

on ∂Ω× R,
in Ω× (−∞, 0],

(9)

Ω ⊂ RN bounded domain with regular boundary, function
a ∈ C (R;R+) satisfies

0 < m ≤ a(r), ∀r ∈ R. (10)

k : R+ → R with or without singularities, g ∈ L2(Ω).
The memory term in (9) can be interpreted as an infinite delay,

h(ut) :=

∫ 0

−∞
k(−s)∆ut(x , s)ds =

∫ 0

−∞
k(−s)∆u(x , t + s)ds

=

∫ t

−∞
k(t − s)∆u(x , s)ds. (11)
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Introduction and overview

This model is an autonomous non-local PDE with memory
(can be done for non-autonomous as well).

In DCDS-S (2022) we proved the existence and uniqueness of
solutions to (9) by Dafermos transformation.

Next, constructed an autonomous DS in the phase space
L2(Ω)× L2

µ(R+;H1
0 (Ω)) and proved the existence of a global

attractor in this space.

As in the local heat equation, the same lack of enough
regularity does not allow us to obtain an appropriate attractor
for the original problem (9) in the phase space L2(Ω)× L2

H1
0
.

Our aim is to overcome this difficulty proceeding in this way.
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Introduction and overview
• Idea of the procedure:

Consider problem (9) with initial values u(τ) = u0 and
u(t + τ) = ϕ(t) for t < 0, where (u0, ϕ) ∈ L2(Ω)× L2

H1
0
.

For those kernels µ(·) guaranteeing that, when ϕ ∈ L2
H1

0
the corresp.

ηϕ, given by ηϕ(s) =
∫ 0

−s ϕ(r) dr , (s > 0) belongs to L2
µ(R+;H1

0 ),
use Dafermos to obtain an IVP as in DCDS-S (2022).

Consequently, we have the existence, uniqueness and regularity of
solutions in a straightforward way.

Thanks to this result, we construct the dynamical system in the
phase space L2(Ω)×L2

H1
0

thanks to some additional technical results.

The existence of global attractor is proved thanks to the existence of
a bounded absorbing set and the asymptotic compactness property
(appropriate adaptation of technique in Nonlinear Anal. (2010)).

These results improve Nonlinear Anal. (2010) when a is const.

Also improve the previous literature on the local case (V. Pata et
al.), where it is only provided the existence of attractors for the
transformed equation (5) but not for the original one (2).
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Well-posedness to a non-local PDE with memory

Consider the non-local PDE associated with singular memory

∂u
∂t − a(l(u))∆u −

∫ t

−∞
k(t − s)∆u(x , s)ds + f (u) = g ,

u(x , t) = 0,

u(x , τ) = u0(x),

u(x , t + τ) = φ(x , t),

in Ω× (τ,∞),

on ∂Ω× R,
in Ω

in Ω× (−∞, 0],

(12)

where Ω ⊂ RN is a fixed bounded domain with regular boundary.
The function a ∈ C (R;R+) satisfies

0 < m ≤ a(r), ∀r ∈ R, (13)

k : R+ = (0,+∞)→ R is the memory kernel, whose properties
will be specified later. The initial values are u0 ∈ L2(Ω) and
φ ∈ L2

H1
0 (Ω)

.
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Well-posedness to a non-local PDE with memory

Recalling the new variables

ut(x , s) = u(x , t − s), s ≥ 0,

ηt(x , s) =

∫ s

0
ut(x , r)dr =

∫ t

t−s
u(x , r)dr , s ≥ 0. (14)

Assuming k(∞) = 0, a formal integration by parts yield∫ t

−∞
k(t − s)∆u(s)ds = −

∫ ∞
0

k ′(s)∆ηt(s)ds.

Setting
µ(s) = −k ′(s), (15)
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Well-posedness to a non-local PDE with memory

we obtain the problem,



∂u
∂t
− a(l(u))∆u −

∫ ∞
0

µ(s)∆ηt(s)ds + f (u) = g ,

∂
∂t
ηt(s) = u − ∂

∂s
ηt(s),

u(x , t) = ηt(x , s) = 0,

u(x , τ) = u0(x),

ητ (x , s) = η0(x , s),

in Ω× (τ,∞),

in Ω× (τ,∞)× R+,

on ∂Ω× R× R+,

in Ω,

in Ω× R+,

(16)

where, by the definition of ηt(x , s) (see (14)), it obviously follows

ητ (x , s) =

∫ τ

τ−s
u(x , r)dr =

∫ 0

−s
φ(x , r)dr := η0(x , s), (17)

(initial integrated past history of u with vanishing boundary).

• We will consider solutions in the weak (variational) sense.
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Well-posedness to a non-local PDE with memory
• Assumptions:

The nonlinear term f : R→ R is a polynomial of odd degree
with positive leading coefficient,

f (u) =

2p∑
k=1

f2p−ku
k−1, p ∈ N. (18)

(Can be extended, to a more general function).
The variable µ satisfies the following hypotheses:
(h1) µ ∈ C 1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ R+;
(h2) µ′(s) + δµ(s) ≤ 0, ∀s ∈ R+, for some δ > 0.

Notice:
1 Conditions (h1)-(h2) are fulfilled by singular kernels as

µ(t) = e−δtt−α, t > 0, δ > 0, α ∈ (0, 1).

2 Assumption (h2) implies that µ(s) decays exponentially. Also,
the memory kernel k(·) to have a singularity at t = 0 (our aim
to study problem (16)).
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Well-posedness to a non-local PDE with memory
• Notation and set-up:
Let Ω be a bounded domain in RN . Recall the Lebesgue space
Lp(Ω), where 1 ≤ p ≤ ∞, and the Sobolev space W 1,p(Ω). We
denote H := L2(Ω), V := H1

0 (Ω) and V ∗ = H−1(Ω). The norms in
H, V and V ∗ will be denoted by | · |, ‖ · ‖ and ‖ · ‖∗, respectively.
Recall L2

µ(R+;H) is the Hilbert space of functions w : R+ → H
endowed with the inner product,

(w1,w2)µ =

∫ ∞
0

µ(s)(w1(s),w2(s))ds,

and let | · |µ denote the corresponding norm. In a similar way, we
introduce the inner products ((·, ·))µ, (((·, ·)))µ and relative norms
‖ · ‖µ, ||| · |||µ on L2

µ(R+;V ), L2
µ(R+;V ∩ H2(Ω)) respectively. It

follows then that

((·, ·))µ = (∇·,∇·)µ, and (((·, ·)))µ = (∆·,∆·)µ.
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Well-posedness to a non-local PDE with memory
We also define the Hilbert spaces

H = H × L2
µ(R+;V ) and V = V × L2

µ(R+;V ∩ H2(Ω)),

which are respectively endowed with inner products

((w1, φ1), (w2, φ2))H = (w1,w2) + ((φ1, φ2))µ,

and

((w1, φ1), (w2, φ2))V = ((w1,w2)) + (((φ1, φ2)))µ,

where (wi , φi ) ∈ H or V (i = 1, 2) and usual norms.
Eventually, D(I ;X ) is the space of inf. diff. X -valued functions
with compact support in I ⊂ R, whose dual space is the
distribution space D′(I ;X ∗). We define L2

V the space of functions
u (·) : (−∞, 0)→ V satisfying∫ 0

−∞
eγs ‖u (s)‖2 ds <∞,

where 0 < γ < min{mλ1, δ} and δ comes from (h2).
Notice: L2((−∞, 0);V ) ⊂ L2

V .
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Well-posedness to a non-local PDE with memory

• A technical result: define the operator J : L2
V → L2

µ(R+;V ) by

(J φ)(s) =

∫ 0

−s
φ(r) dr , s ∈ R+. (19)

Lemma (Technical)

Assume (h1)-(h2) hold. Then, the operator J defined by (19) is a
linear and continuous mapping. In particular, there exists a positive
constant Kµ such that, for any φ ∈ L2

V , it holds

‖J φ‖2
L2
µ(R+;V ) ≤ Kµ‖φ‖2

L2
V
, (20)

where Kµ = eγ
∫ 1

0 µ(s)ds + µ(1)eδ(γ − δ)−2.

Notice: If we fix an initial value φ ∈ L2
V for problem (12), the

corresponding one for the second component of (16) becomes
η0 := J φ, which belongs to L2

µ(R+;V ).
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Well-posedness to a non-local PDE with memory

First, we recall a general result proved in DCDS-S (2022) for
problem (16) with general initial data in H × L2

µ(R+;V ). Denote

z(t) = (u(t), ηt) and z0 = (u0, η0) ∈ H × L2
µ(R+;V ).

Set

Lz =

(
a(l(u))∆u +

∫ ∞
0

µ(s)∆η(s)ds, u − ηs
)
,

and
G(z) = (−f (u) + g , 0).

Then problem (16) can be written in the following compact form,
zt = Lz + G(z),

z(x , t) = 0,

z(x , τ) = z0,

in Ω× (τ,∞),

on ∂Ω× (τ,∞),

in Ω.

(21)
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Well-posedness to a non-local PDE with memory

Theorem (DCDS-S (2022))
Suppose (13), (18) and (h1)-(h2) hold, let g ∈ H, assume a(·) loc. Lipschitz, and
there exists m̃ > 0 such that,

a(s) ≤ m̃, ∀s ∈ R. (22)

(i) For any z0 ∈ H, there exists a unique z(·) = (u(·), η·) solution to (21) s.t.

u(·) ∈ L∞(τ,T ;H) ∩ L2(τ,T ;V ) ∩ L2p(τ,T ; L2p(Ω)), ∀T > τ,

η· ∈ L∞(τ,T ; L2
µ(R+;V )), ∀T > τ.

Furthermore, z(·) ∈ C(τ,T ;H) for each T > τ , and the mapping
F : z0 ∈ H → z(t) ∈ H is continuous for every t ∈ [τ,T ].

(ii) For any z0 ∈ V, there exists a unique z(·) = (u(·), η·) solution to (21) s.t.

u(·) ∈ L∞(τ,T ;V ) ∩ L2(τ,T ;V ∩ H2(Ω)), ∀T > τ,

η· ∈ L∞(τ,T ; L2
µ(R+;V ∩ H2(Ω))), ∀T > τ.

In addition, z(·) ∈ C(τ,T ;V) for every T > τ .
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Well-posedness to a non-local PDE with memory
Straightforwardly we have the corresponding result for (12).

Theorem (Existence and Uniqueness)
Assume (13), (18), and (h1)-(h2) hold. Let a(·) be locally Lipschitz satisfying (22),
g ∈ H, u0 ∈ H and φ ∈ L2

V . Then, there exists a unique function z(·) = (u(·), η·)
satisfying

u(·) ∈ L∞(τ,T ;H) ∩ L2(τ,T ;V ) ∩ L2p(τ,T ; L2p(Ω)), ∀T > τ,

η· ∈ L∞(τ,T ; L2
µ(R+;V )), ∀T > τ,

such that ∂tz = Lz + G(z) in the weak sense, and z|t=τ = (u0,Jφ).
Furthermore, z(·) ∈ C(τ,T ;H) for each T > τ , and the mapping

z0 ∈ H 7→ z(t) ∈ H is continuous,

for every t ∈ [τ,T ]. If we also assume that u0 ∈ V , φ ∈ L2
V∩H2(Ω)

, then

u ∈ L∞(τ,T ;V ) ∩ L2(τ,T ;V ∩ H2(Ω)), ∀T > τ,

η· ∈ L∞(τ,T ; L2
µ(R+;V ∩ H2(Ω))), ∀T > τ.

In addition, z(·) ∈ C(τ,T ;V) for every T > τ .
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Existence of global attractor

• Construction of dynamical system:

First, we construct the DS generated by (12) assuming that g
does not depend on t (autonomous case)

The non-autonomous case can also be studied (either pullback
attractor or uniform attractor).

The phase space is X = H × L2
V , endowed with the norm

‖(w1,w2)‖2
X = |w1|2 + ‖w2‖2

L2
V
.

Thanks to previous Theorem, we define S : R+ × X → X by

S(t) (u0, φ) = (u(t; 0, (u0,J φ)), ut(·; 0, (u0,J φ))),

where (u(·; 0, (u0,J φ)), η·) is the unique solution to problem
(16) with u (0) = u0, η0 = J φ.
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Existence of global attractor

Lemma (S(t) is well defined)

Under assumptions of Theorem (Existence and uniqueness), if
(u0, φ) ∈ X , then S(t) (u0, φ) ∈ X .
Proof. Let (u0, φ) ∈ X and (u(·), η·) the corresponding solution to (16) for (u0,Jφ).
Then, u(t) belongs to H; prove now ut(·) ∈ L2

V .

∫ 0

−∞
eγs‖ut(s)‖2 ds =

∫ 0

−∞
eγs‖u(t + s)‖2 ds

=

∫ t

−∞
eγ(σ−t)‖u(σ)‖2 dσ

= e−γt
∫ t

−∞
eγσ‖u(σ)‖2 dσ

= e−γt
∫ 0

−∞
eγσ‖φ(σ)‖2 dσ +

∫ t

0
eγ(σ−t)‖u(σ)‖2 dσ

< +∞,

since φ ∈ L2
V and u ∈ L2(0,T ;V ) for all T > 0. �

• Thanks to Theorem (Existence & uniqueness), S(t) is a DS in X .
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Existence of global attractor

• Existence of bounded absorbing sets:

Lemma (Absorbing set)

Under assumptions of Theorem (Existence & uniqueness), there
exist two positive constants K1 and K2, such that

‖S(t)(u0, φ)‖2
X ≤ K1 ‖(u0, φ)‖2

X e−γt +K2, ∀t ≥ 0, (u0, φ) ∈ X . (23)

Therefore, the ball B0 = {v ∈ X : ‖v‖2
X ≤ 2K2} is absorbing for

the semigroup S .

(Lemma (Technical) is crucial in the proof)
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Existence of global attractor
Proof. Let (u0, φ) ∈ X , z(·) = (u(·), η·) the solution to (16) corresponding to
(u0,Jφ). Multiply the first eq. in (16) by u (t) in H and second eq. by ηt in
L2
µ(R+;V ). Energy estimations give (noticing f (s)s ≥ 1

2
f0s2p − a0),

d

dt
‖z‖2
H + mλ1 |u|2 + m ‖u‖2 + f0 |u|2p2p + 2(((ηt)′, ηt))µ

≤ 2a0 |Ω|+
2
√
λ1
|g | ‖u‖ ≤ 2a0 |Ω|+

2

mλ1
|g |2 +

m

2
‖u‖2 .

Since 2(((ηt)′, ηt))µ = −
∫∞

0 µ′(s)|∇ηt(s)|2ds ≥ δ
∫∞

0 µ(s)|∇ηt(s)|2ds, it follows
that

d

dt
‖z‖2
H + γ ‖z‖2

H +
m

2
‖u‖2 + f0 |u|2p2p ≤ K0, (24)

where K0 = 2a0|Ω|+ 2
mλ1
|g |2 and we recall that γ < min{mλ1, δ}. Multiplying by

eγt and integrating over (0, t), neglecting the last term of the left hand side of (24),

‖z (t)‖2
H +

m

2

∫ t

0
e−γ(t−s) ‖u (s)‖2 ds ≤ ‖z(t)‖2

H +
m

2

∫ 0

−t
eγs‖ut(s)‖2ds

≤ ‖z0‖2
H e−γt +

K0

γ
. (25)
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Existence of global attractor

Then

m

2
‖ut‖2

L2
V

=
m

2

∫ 0

−∞
e−γ(t−s)‖φ(s)‖2ds +

m

2

∫ t

0
e−γ(t−s)‖u(s)‖2ds

≤
m

2
e−γt‖φ‖2

L2
V

+ ‖(u0,Jφ)‖2
He−γt +

K0

γ
.

In view of Lemma (Technical), we have that

‖z0‖2
H ≤ |u0|2 + ‖Jφ‖2

L2
µ(R+;V )

≤ |u0|2 + Kµ‖φ‖2
L2
V
. (26)

Hence, (25)-(26) imply the existence of positive constants K1 and K2, such that

‖S(t)(u0, φ)‖2
X := |u(t)|2 + ‖ut‖2

L2
V
≤ K1

(
|u0|2 + ‖φ‖2

L2
V

)
e−γt + K2.

The proof of this lemma is complete. �
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Existence of global attractor

• Asymptotic compactness: First state the next auxiliary result.

Lemma (Auxiliary)
Assume the hypotheses in Theorem 3. Let {

(
un0 , φ

n
)
} be a sequence, such that(

un0 , φ
n
)
→ (u0, φ) weakly in X as n→∞. Then, S(t)

(
un0 , φ

n
)

= (un(t), unt ) fulfills:

un (·)→ u (·) in C([r ,T ],H) for all 0 < r < T ; (27)

un(·)→ u(·) weakly in L2 (0,T ;V ) for all T > 0; (28)

un → u in L2 (0,T ;H) for all T > 0; (29)

lim sup
n→∞

‖unt − ut‖2
L2
V
≤ K5 e−γt lim sup

n→∞

(
|un0 − u0|2 + ‖φn − φ‖2

L2
V

)
for all t ≥ 0,

(30)
where K5 = 1

m
((γ + δ)2 + 1). Moreover, if

(
un0 , φ

n
)
→ (u0, φ) strongly in X as

n→∞, then
un(·)→ u(·) in L2 (0,T ;V ) for all T > 0; (31)

unt (·)→ ut(·) in L2
V for all t ≥ 0. (32)
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Existence of global attractor

Corollary (Continuity with respect initial values)

Assume conditions of Theorem (Existence & uniqueness). Then,
for any t ≥ 0, the mapping (u0, φ) 7→ S(t) (u0, φ) is continuous.

Lemma (Asymptotic compactness of S(t))

Under assumptions of Theorem (Existence & uniqueness), the
semigroup S is asymptotically compact.

Theorem
Under the assumptions of Theorem (Existence & uniqueness), the
semigroup S possesses a global connected attractor A ⊂ X .
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