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Basic notation

Ω is a bounded open set of Rn. For r > 1 we set

W 1,r (Ω) = {v ∈ Lr (Ω) | ∂xi v ∈ Lr (Ω) | ∀i = 1, . . . , n}. (1)

We equip this space with the norm

||v ||1,r ,Ω =
(∫

Ω
|v |r +

n∑
i=1

|∂xi v |rdx
) 1

r
(2)

and we set

W 1,r
0 (Ω) = D(Ω) = the closure of D(Ω) in W 1,r (Ω). (3)

(D(Ω) denotes the space of C∞-functions with compact support in
Ω).
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Basic notation

It is well known that W 1,r
0 (Ω) is a reflexive Banach space which

can be equipped with the equivalent norm∣∣|∇v |∣∣
r ,Ω

=
(∫

Ω
|∇v(x)|rdx

) 1
r
. (4)

(∇ denotes the usual gradient and | | the euclidean norm, i.e.

|∇v(x)| = (
∑n

1(∂xi v)2)
1
2 , | |r ,Ω denotes the Lr -norm on Ω). The

dual of W 1,r
0 (Ω) is denoted by W−1,r ′(Ω), r ′ = r

r−1 and consists in
the distributions of the form

f = f0 −
n∑

i=1

∂xi fi , fi ∈ Lr
′
(Ω). (5)

We use the notation

〈f , v〉 =

∫
Ω
f0v +

n∑
i=1

fi∂xi vdx . (6)
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A model problem

We denote by Ω` the open subset of R2 defined as

Ω` = (−`, `)× (−1, 1). (7)

We will set ω = (−1, 1) and ∂Ω` will denote the boundary of Ω`.

x1

x2

1

0

−1

ℓ

−ℓ

If p, q > 1 we would like to consider u` solution to{
−∂x1

(
|∂x1u`|p−2∂x1u`

)
− ∂x2

(
|∂x2u`|q−2∂x2u`

)
= f in Ω`,

u` = 0 on ∂Ω`.
(8)
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A model problem

More precisely we are interested to the asymptotic behaviour of u`
when `→ +∞. f is a function or distribution depending only on
x2.
A natural candidate for the limit of the problem is u∞ solution to{

−∂x2

(
|∂x2u∞|q−2∂x2u∞

)
= f in ω,

u∞ = 0 on ∂ω,
(9)

where ∂ω = {−1, 1} is the boundary of ω. Let us recast these
problems under their natural weak form.

We can first introduce the weak formulation of (9). If
f ∈W−1,q′(ω) is given by

f = f (x2) = f0(x2)− ∂x2f1(x2), (10)

where f0, f1 ∈ Lq
′
(ω).
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A model problem

Then, the weak formulation to (9) corresponding to f reads
u∞ ∈W 1,q

0 (ω),∫
ω |∂x2u∞|q−2 ∂x2u∞∂x2v dx2 = 〈f , v〉

=
∫
ω f0v + f1∂x2vdx2 ∀v ∈W 1,q

0 (ω).

(11)

To arrive to a weak formulation for (8) one introduces

W 1,p,q(Ω`) =

{v ∈ Lp(Ω`) ∩ Lq(Ω`) | ∂x1v ∈ Lp(Ω`), ∂x2v ∈ Lq(Ω`)}. (12)

It is a reflexive Banach space when equipped with the norm

||v ||1,p,q,Ω` = |v |p,Ω` + |v |q,Ω` + |∂x1v |p,Ω` + |∂x2v |q,Ω` . (13)
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A model problem

Then we define

W 1,p,q
0 (Ω`) = D(Ω`) = the closure of D(Ω`) in W 1,p,q(Ω`). (14)

If f is defined by (10) if follows easily that there exists a unique u`
weak solution to (8) i.e. satisfying

u` ∈W 1,p,q
0 (Ω`),∫

Ω`
|∂x1u`|p−2∂x1u`∂x1v + |∂x2u`|q−2∂x2u`∂x2v dx1dx2

= 〈f , v〉 =
∫

Ω`
f0v + f1∂x2v dx1dx2 ∀v ∈W 1,p,q

0 (Ω`).

(15)

We are interested in showing that u` → u∞ when `→∞.
The operators defined by (8), (9) are strictly monotone,
hemicontinuous, coercive from W 1,p,q

0 (Ω`), W 1,q
0 (ω) into their

duals. Existence and uniqueness of a solution for (15), (11) follows
from classical arguments
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Preliminaries

Let us first prove the following lemma.

Lemma

Suppose that f is given by (10). If u` is the solution to (15) there
exists a constant C independent of ` such that∫

Ω`

|∂x1u`|p + |∂x2u`|q dx ≤ C`. (16)

Proof : Taking v = u` in (15) we get∫
Ω`

|∂x1u`|p+|∂x2u`|q dx = 〈f , u`〉 =

∫
Ω`

f0u` + f1∂x2u` dx

≤ |f0|q′,Ω` |u`|q,Ω` + |f1|q′,Ω` |∂x2u`|q,Ω`
≤
(
C |f0|q′,Ω` + |f1|q′,Ω`

)
|∂x2u`|q,Ω`

(17)

this by the Hölder and the Poincaré inequality.
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Preliminaries

Then let us notice that for i = 0, 1 one has

|fi |q′,Ω` =
(∫ `

−`

∫
ω
|fi (x2)|q′dx2dx1

) 1
q′

= (2`)
1
q′ |fi |q′,ω.

Thus from (17) we derive for some constant C = C (q, f )

|∂x2u`|qq,Ω` ≤ C`
1
q′ |∂x2u`|q,Ω`

Since q′ = q
q−1 this is equivalent for some new constant to

|∂x2u`|q,Ω` ≤ C`
1
q .

Going back to (17), the result follows.
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Preliminaries

Somehow one can ignore f thanks to the following remark.

Lemma

If u` is the solution to (15) and u∞ solution to (11) one has∫
Ω`

|∂x1u`|p−2∂x1u`∂x1v

+

∫
Ω`

{
|∂x2u`|q−2∂x2u`−|∂x2u∞|q−2∂x2u∞

}
∂x2v dx = 0

∀v ∈W 1,p,q
0 (Ω`).

(18)

Proof : First by (15) if v ∈W 1,p,q
0 (Ω`) one has∫

Ω`

|∂x1u`|p−2∂x1u` ∂x1v+|∂x2u`|q−2∂x2u` ∂x2v

=

∫
Ω`

f0v + f1∂x2v dx

(19)
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Preliminaries

If v ∈W 1,p,q
0 (Ω`) one has for almost every x1

v(x1, ·) ∈W 1,q
0 (ω).

Thus by (11)∫
ω
|∂x2u∞|q−2∂x2u∞ ∂x2v(x1, x2) dx2 =

∫
ω
f0v + f1∂x2vdx2.

Integrating in x1 it comes∫
Ω`

|∂x2u∞|q−2∂x2u∞ ∂x2v dx =

∫
Ω`

f0v + f1∂x2vdx . (20)

Subtracting from (19), (18) follows.

Michel Chipot Asymptotic behaviour of some anisotropic problems



Preliminaries

Let us recall the following result which garanties also the strict
monotonicity of the operators at hand.

Lemma

For any q > 1 there exist positive constants cq,Cq such that

||ξ|q−2ξ − |η|q−2η| ≤ Cq|ξ − η|(|ξ|+ |η|)q−2 ∀ξ, η ∈ Rn, (21)

(|ξ|q−2ξ − |η|q−2η) · (ξ − η) ≥ cq|ξ − η|2(|ξ|+ |η|)q−2 ∀ξ, η ∈ Rn.
(22)

Then we have some monotonicity results.
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Preliminaries

Lemma

Let u` = u`(f ) be the solution to (15) and u∞ = u∞(f ) be the
solution to (11). Suppose that f ≥ f̃ , f ≥ 0 then one has

u`(f̃ ) ≤ u`(f ) , 0 ≤ u`(f ) ≤ u∞(f ). (23)

(If f is not a function, f ≥ 0 means 〈f , v〉 ≥ 0 ∀v ∈W 1,q
0 (ω),

v ≥ 0).

The proof uses standard argument using as test functions
(u`(f̃ )− u`(f ))+...

The results coming next could be different following the case where
f = f0(x2)− ∂x2f1(x2) is a function (i.e. = f0) or a distribution.

Also p and q do not have a symmetric role. The value 2 is another
threshold for these problems.
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Preliminaries

We can now show :

Lemma

If u` is the solution to (15) and u∞ solution to (11) one has for
every smooth functin ϕ = ϕ(x1) vanishing at {−`.`}∫

Ω`

{
|∂x1u`|p

+
(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ϕ dx

≤
∫

Ω`

|∂x1u`|p−1|∂x1ϕ||u` − u∞| dx .
(24)
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Preliminaries

Proof : Taking v = (u` − u∞)ϕ in (18) one gets∫
Ω`

{
|∂x1u`|p

+
(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ϕ dx

= −
∫

Ω`

|∂x1u`|p−2∂x1u` ∂x1ϕ (u` − u∞) dx .

(25)
(Recall that u∞ is independent of x1). Then (24) follows easily.
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Convergence results

Denote by ρ = ρ(x1) a smooth function such that

0 ≤ ρ ≤ 1, ρ = 1 on (−1

2
,

1

2
), ρ = 0 near {−1, 1}, |∂x1ρ| ≤ C .

(26)
and set for α > 0

ϕ = ρα = ρα(
x1

`
),

Lemma

Let f = f0 ∈ Lq
′
(ω) and u`, u∞ be the solutions to (15), (11).

Then it holds for some constant C independent of `∫
Ω`

{
|∂x1u`|p

+
(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx

≤ C

`p−1
(27).
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Convergence results

Proof : From (24) one derives

I =

∫
Ω`

{
|∂x1u`|p

+
(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα dx

≤ αC

`

∫
Ω`

|∂x1u`|p−1|u` − u∞|ρα−1 dx .

(28)

Noting that ρα−1 = ρ
α
p′ ρ

α
p
−1 and using Hölder’s inequality it

comes∫
Ω`

{
|∂x1u`|p+

(
|∂x2u`|q−2∂x2u` − |∂x2u∞|q−2∂x2u∞

)
∂x2(u` − u∞)

}
ρα

≤ αC

`

(∫
Ω`

|∂x1u`|pρα dx
) 1

p′
(∫

Ω`

|u` − u∞|pρα−p dx
) 1

p
.

(29)
Thus it follows that
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Convergence results

I ≤
(αC
`

)p ∫
Ω`

|u` − u∞|pρα−p dx ≤
(αC
`

)p ∫
Ω`

|u` − u∞|p dx ,

(30)
provided we chose α > p. From the lemma 2.4 one has

u`(f ) ≤ u`(f
+) ≤ u∞(f +) , u∞(−f −) ≤ u`(−f −) ≤ u`(f ),

(notice that u`(−f ) = −u`(f )). Then one derives

|u` − u∞| ≤ |u`|+ |u∞| ≤ max{u∞(f +), u∞(f −)}+ |u∞(f )|.
Since this last function is independent of x1 one derives from (30)∫

Ω`

{
|∂x1u`|p+

(
|∂x2u`|q−2∂x2u`−|∂x2u∞|q−2∂x2u∞

)
∂x2(u`−u∞)

}
ρα dx

≤ C

`p−1

for some new constant C . This is (27).
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Convergence results

Due to the definition of ρ we have obtained∫
Ω `

2

{
|∂x1u`|p+

(
|∂x2u`|q−2∂x2u`−|∂x2u∞|q−2∂x2u∞

)
∂x2(u`−u∞)

}
dx

≤ C

`p−1

It follows, if `0 is fixed less than `
2 , that

∂x1u` → 0 in Lp(Ω`0) , ∂x2u` → ∂x2u∞ in Lq(Ω`0).

One can estimate the convergence rate in some situations. Indeed
one has :
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Convergence results

Theorem

Suppose that p < q. One has∫
Ω `

2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ C

`
pq
q−p
−1

(31)

Theorem

Suppose that p ≥ q, q < 2, f ∈ L1(ω). It holds for some positive
constants C∫

Ω `
2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ C

`
pq

2−q
−1
. (32)
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Convergence results

Theorem

Suppose that p ≥ q ≥ 2, f ∈ L1(ω). It holds for some positive
constants C , α∫

Ω `
2

|∂x1u`|p + |∂x2(u` − u∞)|q dx ≤ Ce−α`. (33)
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