Refinement 000000000 Free energy

Refined BPS structures

Refined topological recursion free energy for hypergeometric type curves "Noncommutative Geometry Meets Topological Recursion"

Omar Kidwai

Department of of Mathematics The Chinese University of Hong Kong

Joint w/ K. Osuga

Omar Kidwai

Department of Mathematics, CUHK

Refinement

Free energy

Refined BPS structures

1 Introduction

2 Topological recursion

3 Refinement

Omar Kidwai

Department of Mathematics, CUHK

イロト イポト イヨト イヨト

Refined topological recursion free energy for hypergeometric type curves

э

1 Introduction

2 Topological recursion

3 Refinement

- ・ロト・日本・ キャー モー うえの

Omar Kidwai

Department of Mathematics, CUHK

Introduction 0●0000	Topological recursion	Refinement 000000000	Free energy 000000000000	Refined BPS structures
History/mo	tivation			

Topological recursion (TR) [Eynard-Orantin, Chekhov-Eynard-Orantin]:

- Matrix models (loop equations)
- Enumerative geometry (Kontsevich-Witten, Gromov-Witten, Hurwitz, Mirzakhani-Weil-Petersson...)
- Differential equations, WKB analysis

History/motivation

Topological recursion (TR) [Eynard-Orantin, Chekhov-Eynard-Orantin]:

- Matrix models (loop equations)
- Enumerative geometry (Kontsevich-Witten, Gromov-Witten, Hurwitz, Mirzakhani-Weil-Petersson...)
- Differential equations, WKB analysis

Refined / β -deformed TR [Perm{Chekhov,Eynard,Marchal},

Brini-Marino-Stevan, Manabe-Sulkowski, K-Osuga]:

- β -ensemble analogue to topological recursion
- Several approaches (matrix models, noncommutative spectral curve,...)
- Pure geometric theory formulated and proved in special case by [K-Osuga]

Introduction	Topological	recursion
00000	000000	

Refinement

Free energy

Refined BPS structures

History/motivation

• Motivation: generalize [Iwaki-K] free energy formula involving Donaldson-Thomas invariants to refined setting.

Omar Kidwai

Department of Mathematics, CUHK

• Consider spectral curves related to "hypergeometric" curve

$$y^{2} = \frac{m_{\infty}^{2}x^{2} - (m_{\infty}^{2} + m_{0}^{2} - m_{1}^{2})x + m_{0}^{2}}{x^{2}(x-1)^{2}}$$

- + 8 other examples arising from limits/confluence.
- In particular,
 - Compute refined topological recursion free energy (proof when no 2nd order poles - conjecture for others)
 - Interpret in terms of refined BPS structure

Introduction Topological recursion Refinement

Free energy

Refined BPS structures

Spectral curves of hypergeometric type

All are genus 0, degree two curves,

$$y^2 = Q(x)$$

Name	Q(x)	Assumption
Gauss (HG)	$\frac{m_{\infty}^2 x^2 - (m_{\infty}^2 + m_0^2 - m_1^2)x + m_0^2}{x^2(x-1)^2}$	$m_0, m_1, m_\infty \neq 0,$ $m_0 \pm m_1 \pm m_\infty \neq 0.$
Degenerate Gauss (dHG)	$\frac{m_{\infty}^2 x + m_1^2 - m_{\infty}^2}{x(x-1)^2}$	$m_1, m_\infty e 0, \ m_1 \pm m_\infty e 0.$
Kummer (Kum)	$\frac{x^2 + 4m_{\infty}x + 4m_0^2}{4x^2}$	$m_0 \neq 0, m_0 \pm m_\infty \neq 0.$
Legendre (Leg)	$rac{m_{\infty}^2}{x^2-1}$	$m_{\infty} eq 0.$
Bessel (Bes)	$\frac{x+4m^2}{4x^2}$	$m \neq 0.$
Whittaker (Whi)	$\frac{x-4m}{4x}$	$m \neq 0.$
Weber (Web)	$\frac{1}{4}x^2 - m$	$m \neq 0.$
Degenerate Bessel (dBes)	$\frac{1}{x}$	-
Airy (Ai)	x	-
		- イロト イヨト イヨト イヨト

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

3

We focus on:

Weber:
$$y^2 = \frac{x^2}{4} - m$$

Whittaker: $y^2 = \frac{x-4m}{4x}$

Omar Kidwai

Department of Mathematics, CUHK

A D > A D >

 Introduction
 Topological recursion
 Refinement
 Free energy
 Refined BPS structures

 Spectral curves of hypergeometric type
 Spectral curves
 Spectra curves
 S

We focus on:

Weber:
$$y^2 = \frac{x^2}{4} - m$$

Whittaker: $y^2 = \frac{x-4m}{4x}$

where we assume $m \neq 0$.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

< < >> < <</>

We focus on:

Weber:
$$y^2 = \frac{x^2}{4} - m$$

Whittaker: $y^2 = \frac{x-4m}{4x}$

where we assume $m \neq 0$.

Also (degenerate) Bessel $y^2 = 1/x$ and Airy $y^2 = x$, but they are easy.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

Free energy

Refined BPS structures

1 Introduction

2 Topological recursion

3 Refinement

4 Free energy

Omar Kidwai

Department of Mathematics, CUHK

イロト イポト イヨト イヨト

Refined topological recursion free energy for hypergeometric type curves

э

A (TR) spectral curve is a tuple (C, x, y, B):

Department of Mathematics, CUHK

3

< □ > < ^[] > .

Refined topological recursion free energy for hypergeometric type curves

Omar Kidwai

Introduction	Topological recursion	Refinement	Free energy	Refined BPS structures
000000	○●○○○○	000000000	00000000000	
Spectral cur	ves			

- A (TR) spectral curve is a tuple (C, x, y, B):
 - \mathcal{C} compact Riemann surface

Omar Kid<u>wai</u>

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

- A (TR) spectral curve is a tuple (\mathcal{C}, x, y, B) :
 - C compact Riemann surface
 - $x, y: \mathcal{C} \to \mathbb{P}^1$ nonconstant meromorphic functions, dx and dydo not vanish simultaneously

< < >> < <</>

- A (TR) spectral curve is a tuple (C, x, y, B):
 - C compact Riemann surface
 - $x, y : C \to \mathbb{P}^1$ nonconstant meromorphic functions, dx and dy do not vanish simultaneously
 - Bidifferential: meromorphic section

 $B(z_1,z_2)\in p_1^*(T^*\mathcal{C})\otimes p_2^*(T^*\mathcal{C})$

with some properties $(p_i : C \times C \rightarrow C \text{ projection})$. For us, $C = \mathbb{P}^1$ so there is a canonical B,

$$B(z_1, z_2) := \frac{dz_1 dz_2}{(z_1 - z_2)^2}$$

Omar Kidwai

Department of Mathematics, CUHK

Introduction	Topological recursion	Refinement	Free energy	Refined BPS structures
000000	0●0000	000000000	000000000000	
Spectral cur	rves			

- A (TR) spectral curve is a tuple (C, x, y, B):
 - \mathcal{C} compact Riemann surface
 - $x, y: \mathcal{C} \to \mathbb{P}^1$ nonconstant meromorphic functions, dx and dy do not vanish simultaneously
 - Bidifferential: meromorphic section

 $B(z_1,z_2)\in p_1^*(T^*\mathcal{C})\otimes p_2^*(T^*\mathcal{C})$

with some properties $(p_i : C \times C \rightarrow C \text{ projection})$. For us, $C = \mathbb{P}^1$ so there is a canonical B,

$$B(z_1, z_2) := \frac{dz_1 dz_2}{(z_1 - z_2)^2}$$

Ramification points of x viewed as a branched cover, denoted $r \in \mathcal{R}$

Omar Kidwai

Department of Mathematics, CUHK

Note for our examples we can give some explicit parametrization to obtain a TR spectral curve,

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

< < >> < <</>

Note for our examples we can give some explicit parametrization to obtain a TR spectral curve,

e.g. for Whittaker $y^2 = rac{x-4m}{4x}$ take $\mathcal{C} = \mathbb{P}^1$,

$$x(\zeta) = 2m\left(rac{1}{\zeta-1}-rac{1}{\zeta+1}
ight), \quad y(\zeta) = -rac{1}{2}\zeta$$

giving $\mathcal{R} = \{0, \infty\}$. There is a global involution $\sigma(\zeta) = -\sigma(\zeta)$ fixing x and sending $y \mapsto -y$.

Department of Mathematics, CUHK

(日) (同) (日) (日)

Omar Kidwai

Start with $\omega_{0,1}(p_0) := y(p_0)dx(p_0), \ \omega_{0,2}(p_0,p_1) = B(p_0,p_1).$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

< < >> < <</>

12 / 35

Department of Mathematics, CUHK

Start with
$$\omega_{0,1}(p_0) := y(p_0) dx(p_0), \ \omega_{0,2}(p_0, p_1) = B(p_0, p_1).$$
 Then
 $\omega_{g,n+1}(p_0, p_1, \cdots, p_n) := \sum_{r \in \mathcal{R}} \operatorname{Res}_{p=r} K_r(p_0, p) \bigg[\omega_{g-1,n+2}(p, \sigma(p), p_1, \cdots, p_n) + \sum_{\substack{g_1 + g_2 = g \\ l_1 \sqcup l_2 = \{1, 2, \cdots, n\}}} \omega_{g_1, |l_1|+1}(p, p_{l_1}) \omega_{g_2, |l_2|+1}(\sigma(p), p_{l_2}) \bigg]$

for $2g + n \ge 2$,

Omar Kidwai

Department of Mathematics, CUHK

문어 문

Start with
$$\omega_{0,1}(p_0) := y(p_0) dx(p_0), \ \omega_{0,2}(p_0, p_1) = B(p_0, p_1).$$
 Then

$$\omega_{g,n+1}(p_0, p_1, \cdots, p_n) := \sum_{r \in \mathcal{R}} \operatorname{Res}_{p=r} \mathcal{K}_r(p_0, p) \left[\omega_{g-1,n+2}(p, \sigma(p), p_1, \cdots, p_n) + \sum_{\substack{g_1+g_2=g\\l_1 \sqcup l_2 = \{1, 2, \cdots, n\}}}^{\prime} \omega_{g_1, |l_1|+1}(p, p_{l_1}) \omega_{g_2, |l_2|+1}(\sigma(p), p_{l_2}) \right]$$

for $2g + n \ge 2$, where

$$K_r(p_0,p_1) = \frac{1}{(y-\sigma(y))dx} \int_{\zeta=\sigma(p)}^{\zeta=p} B(p_0,\zeta)$$

 σ is "local conjugation" near ramification point r.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

Start with
$$\omega_{0,1}(z_0) := y(p_0)dx(p_0)$$
, $\omega_{0,2}(p_0,p_1) = B(p_0,p_1)$. Then

$$\begin{split} \omega_{g,n+1}(p_0,p_1,\cdots,p_n) &:= \sum_{r \in \mathcal{R}} \operatorname{Res}_{p=r} K_r(z_0,z) \left[\omega_{g-1,n+2}(p,\sigma(p),p_1,\cdots,p_n) \right. \\ &+ \sum_{\substack{l \leq 1 \\ l_1 \sqcup l_2 = \{1,2,\cdots,n\}}' \omega_{g_1,|l_1|+1}(p,p_{l_1}) \omega_{g_2,|l_2|+1}(\sigma(p),p_{l_2}) \right] \end{split}$$

Definition. Let Φ be any primitive of *ydx*. The *gth free energy* (g > 1) is $F_{g} = \frac{1}{2 - 2g} \sum_{r \in \mathcal{P}} \operatorname{Res}_{p=r} [\Phi(p)\omega_{g,1}(p)]$

> - ∢ ≣ → Department of Mathematics, CUHK

Image: Image:

Refined topological recursion free energy for hypergeometric type curves

Omar Kidwai

э

Definition. Let Φ be any primitive of ydx. The gth free energy (g > 1) is $F_{g} = \frac{1}{2 - 2g} \sum_{r \in \mathcal{P}} \operatorname{Res}_{p=r} \left[\Phi(p) \omega_{g,1}(p) \right]$

[Iwaki-Koike-Takei] showed (for example):

$$F_{g}^{\text{Web}}(\boldsymbol{m}) = \frac{B_{2g}}{2g(2g-2)} \frac{1}{m^{2g-2}}$$
$$F_{g}^{\text{Whi}}(\boldsymbol{m}) = \frac{B_{2g}}{2g(2g-2)} \frac{2}{m^{2g-2}}$$

when g > 1 (and formulas for the other 7 examples)

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

∃ > < ∃ > Department of Mathematics, CUHK

• • • • • • • • • • •

1 Introduction

2 Topological recursion

3 Refinement

- * ロ > * 個 > * 目 > * 目 > - 目 - の < @

Omar Kidwai

Department of Mathematics, CUHK

Refinement

Now, we want to generalize this (generalize β -deformed matrix model). See Chekhov-Eynard, Marchal, Chekhov-Eynard-Marchal for various approaches.

Omar Kidwai

Department of Mathematics, CUHK

Now, we want to generalize this (generalize β -deformed matrix model). See Chekhov-Eynard, Marchal, Chekhov-Eynard-Marchal for various approaches.

Fix $\beta \in \mathbb{C}^*$, and set $\Omega = \beta^{\frac{1}{2}} - \beta^{-\frac{1}{2}}$.

Department of Mathematics, CUHK

Omar Kidwai

Refinement

Introduction

Now, we want to generalize this (generalize β -deformed matrix model). See Chekhov-Eynard, Marchal, Chekhov-Eynard-Marchal for various approaches.

Fix
$$\beta \in \mathbb{C}^*$$
, and set $\mathbb{Q} = \beta^{\frac{1}{2}} - \beta^{-\frac{1}{2}}$.

Let $\mathcal{P}' \subset \mathcal{P}$ denote poles and zeroes of *ydx* excluding \mathcal{R} .

Introduction 000000	Topological recursion	Refinement 00●000000	Free energy 000000000000	Refined BPS structures
Refinement				

Omar Kidwai

Department of Mathematics, CUHK

A D > <
 A P >

• (Σ, x, y, B) a spectral curve as above, with

$$y^2 = Q(x)$$

rational and genus zero,

Department of Mathematics, CUHK

< < >> < <</>

Refined topological recursion free energy for hypergeometric type curves

Omar Kidwai

Introduction 000000	Topological recursion	Refinement 00●000000	Free energy 000000000000	Refined BPS structures
Definement				

• (Σ, x, y, B) a spectral curve as above, with

$$y^2 = Q(x)$$

rational and genus zero,

• Decomposition $\mathcal{P}' = \mathcal{P}'_+ \sqcup \mathcal{P}'_-$,

э

Introduction 000000	Topological recursion	Refinement 00●000000	Free energy 000000000000	Refined BPS structures
Pofinomont				

• (Σ, x, y, B) a spectral curve as above, with

$$y^2 = Q(x)$$

rational and genus zero,

- Decomposition $\mathcal{P}' = \mathcal{P}'_+ \sqcup \mathcal{P}'_-$,
- Complex parameters $oldsymbol{\mu}=(\mu_{oldsymbol{p}})_{oldsymbol{p}\in\mathcal{P}'_+}.$

э

Introduction 000000	Topological recursion	Refinement 00●000000	Free energy 000000000000	Refined BPS structures
Pofinomont				

• (Σ, x, y, B) a spectral curve as above, with

$$y^2 = Q(x)$$

rational and genus zero,

- Decomposition $\mathcal{P}' = \mathcal{P}'_+ \sqcup \mathcal{P}'_-$,
- Complex parameters $oldsymbol{\mu}=(\mu_{oldsymbol{p}})_{oldsymbol{p}\in\mathcal{P}'_+}.$

Note the decomposition is possible thanks to involution σ . We combine the new data into the divisor:

Introduction 000000	Topological recursion	Refinement 00●000000	Free energy 000000000000	Refined BPS structures
Definement				

• (Σ, x, y, B) a spectral curve as above, with

$$y^2 = Q(x)$$

rational and genus zero,

- Decomposition $\mathcal{P}' = \mathcal{P}'_+ \sqcup \mathcal{P}'_-$,
- Complex parameters $oldsymbol{\mu}=(\mu_{oldsymbol{p}})_{oldsymbol{p}\in\mathcal{P}'_+}.$

Note the decomposition is possible thanks to involution σ . We combine the new data into the divisor:

$$D(\boldsymbol{\mu}) := \sum_{\boldsymbol{p} \in \mathcal{P}'_+} \mu_{\boldsymbol{p}}[\boldsymbol{p}].$$

Introc	luction			
000000				

Topological recursion

Refinement

Free energy

Refined BPS structures

Spectral curves

Niceness assumption:

- ・ロト ・ 御 ト ・ 臣 ト ・ 臣 ・ の へ

Omar Kidwai

Department of Mathematics, CUHK
Niceness assumption:

• The function field $\mathbb{C}(\Sigma)$ is generated by x and y,

Department of Mathematics, CUHK

Niceness assumption:

- The function field $\mathbb{C}(\Sigma)$ is generated by x and y,
- All ramification points $r \in \mathcal{R}$ are simple (x is of degree 2 at r)

< < >> < <</>

Niceness assumption:

- The function field $\mathbb{C}(\Sigma)$ is generated by x and y,
- All ramification points $r \in \mathcal{R}$ are simple (x is of degree 2 at r)
- For any two distinct ramification points $r_1, r_2, x(r_1) \neq x(r_2)$,

Spectral curves

Niceness assumption:

- The function field $\mathbb{C}(\Sigma)$ is generated by x and y,
- All ramification points $r \in \mathcal{R}$ are simple (x is of degree 2 at r)
- For any two distinct ramification points $r_1, r_2, x(r_1) \neq x(r_2)$,
- ydx does not vanish anywhere on Σ \ R and has at most a double zero at each ramification point.

Introduction 000000	Topological recursion	Refinement 0000●0000	Free energy 000000000000	Refined BPS structures
New initial of	data			

Recall we had $\omega_{0,1}(p_0) := y(p_0)dx(p_0)$, $\omega_{0,2}(p_0, p_1) = B(p_0, p_1)$.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

19 / 35

Introduction 000000	Topological recursion	Refinement 0000€0000	Free energy 000000000000	Refined BPS structures
New initial	data			

Recall we had $\omega_{0,1}(p_0) := y(p_0)dx(p_0)$, $\omega_{0,2}(p_0, p_1) = B(p_0, p_1)$. This time, we also define:

$$\omega_{\frac{1}{2},1}(p_0) = \frac{Q}{2} \left(-\frac{dy(p_0)}{y(p_0)} + \sum_{p \in \mathcal{P}'_+} \mu_p \eta_p(p_0) \right)$$

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

Introduction 000000	Topological recursion	Refinement 0000●0000	Free energy 000000000000	Refined BPS structures
New initial	data			

Recall we had $\omega_{0,1}(p_0) := y(p_0)dx(p_0)$, $\omega_{0,2}(p_0, p_1) = B(p_0, p_1)$. This time, we also define:

$$\omega_{\frac{1}{2},1}(p_0) = \frac{Q}{2} \left(-\frac{dy(p_0)}{y(p_0)} + \sum_{p \in \mathcal{P}'_+} \mu_p \eta_p(p_0) \right)$$

where η_p the unique mero differential on \mathbb{P}^1 with residue +1 at p and -1 at $\sigma(p)$.

Introduction 000000	Topological recursion	Refinement 00000●000	Free energy 000000000000	Refined BPS structures
Refined TR				

Let $g \in \frac{1}{2}\mathbb{Z}_{\geq 0}$, $n \in \mathbb{Z}_{>0}$. Then $\omega_{g,n} \in \pi_1^*(T^*\Sigma) \otimes \ldots \otimes \pi_n^*(T^*\Sigma)$, are defined by

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

Introduction 000000	Topological recursion	Refinement 00000●000	Free energy 000000000000	Refined BPS structures
Refined TR				

Let
$$g \in \frac{1}{2}\mathbb{Z}_{\geq 0}$$
, $n \in \mathbb{Z}_{>0}$. Then $\omega_{g,n} \in \pi_1^*(T^*\Sigma) \otimes \ldots \otimes \pi_n^*(T^*\Sigma)$, are defined by

$$\omega_{g,n+1}(p_0, p_J) := -2 \left(\sum_{r \in \mathcal{R}} \operatorname{Res}_{p=r} + \sum_{r \in \sigma(p_{J_0})} \operatorname{Res}_{p=r} + \sum_{r \in \mathcal{P}'_+} \operatorname{Res}_{p=r} \right) \operatorname{K}(p_0, p) \cdot \operatorname{Rec}_{g,n+1}^{\Omega}(p, p_J)$$

where $p_J = (p_1, \dots, p_n), \ p_{J_0} = (p_0, \dots, p_n).$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

≣⇒ Department of Mathematics, CUHK

() > () > ()

æ

Introduction 000000	Topological recursion	Refinement 000000●00	Free energy 000000000000	Refined BPS structures
Refined TR				

where for
$$2g + n \ge 3$$

$$\operatorname{Rec}_{g,n+1}^{\mathbb{Q}}(p,p_{J}) = \sum_{i=1}^{n} \Delta \omega_{0,2}(p,p_{i}) \cdot \omega_{g,n}(p,p_{\widehat{j}_{i}}) + \omega_{g-1,n+2}(p,p,p_{J}) \\ + \sum_{\substack{s^{**} \\ j_{1} \sqcup j_{2} = J}}^{**} \omega_{g_{1},n_{1}+1}(p,p_{J_{1}}) \cdot \omega_{g_{2},n_{2}+1}(p,p_{J_{2}}) + \mathcal{Q} \, dx(p) \cdot d_{p} \left(\frac{\omega_{g-\frac{1}{2},n+1}(p,p_{J})}{dx(p)}\right)$$

where ** denotes removal of $\omega_{0,1}, \omega_{0,2}$ terms and

$$\Delta\omega_{0,2}(z,z_i) := \omega_{0,2}(z,z_i) - \omega_{0,2}(\sigma(z),z_i).$$

Omar Kidwai

Department of Mathematics, CUHK

Ξ.

≣⇒

3

Refined topological recursion free energy for hypergeometric type curves

Introduction 000000	Topological recursion	Refinement 000000●00	Free energy 000000000000	Refined BPS structures
Refined TR				

where for
$$2g + n \ge 3$$

$$\operatorname{Rec}_{g,n+1}^{\mathbb{Q}}(p,p_{J}) = \sum_{i=1}^{n} \Delta \omega_{0,2}(p,p_{i}) \cdot \omega_{g,n}(p,p_{\widehat{j}_{i}}) + \omega_{g-1,n+2}(p,p,p_{J}) \\ + \sum_{\substack{s^{**} \\ j_{1} \sqcup j_{2} = J}}^{**} \omega_{g_{1},n_{1}+1}(p,p_{J_{1}}) \cdot \omega_{g_{2},n_{2}+1}(p,p_{J_{2}}) + \mathcal{Q} \, dx(p) \cdot d_{p} \left(\frac{\omega_{g-\frac{1}{2},n+1}(p,p_{J})}{dx(p)}\right)$$

where ** denotes removal of $\omega_{0,1}, \omega_{0,2}$ terms and

$$\Delta\omega_{0,2}(z,z_i) := \omega_{0,2}(z,z_i) - \omega_{0,2}(\sigma(z),z_i).$$

(slight complication for low 2g + n, but same idea)

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Introduction 000000	Topological recursion	Refinement 0000000●0	Free energy 000000000000	Refined BPS structures
Properties				

Fact: $\omega_{g,n}|_{\Omega=0}$ reproduce the unrefined $\omega_{g,n}$ (with the understanding $\omega_{g,n} = 0$ for $g \in \frac{1}{2} + \mathbb{Z}_{\geq 0}$).

э

ntroduction	Topological recursion	Refinement 0000000●0	Free energy 000000000000	Refined BPS structu
Properties				

Fact: $\omega_{g,n}|_{\Omega=0}$ reproduce the unrefined $\omega_{g,n}$ (with the understanding $\omega_{g,n} = 0$ for $g \in \frac{1}{2} + \mathbb{Z}_{\geq 0}$).

Furthermore, analogous properties to the unrefined case hold, though with with more interesting pole structure.

Theorem [K-Osuga Adv. Math. 2023]. For nice degree two genus zero refined spectral curve, $\omega_{g,n+1}$ satisfy:

- **1** The multidifferential $\omega_{g,n+1}$ is symmetric;
- 2 All poles of $\omega_{g,n+1}$ (in any variable) lie in $\mathcal{R}^* \cup \sigma(p_{J_0})$;
- **3** At any $o \in \Sigma$, $\omega_{g,n+1}$ is residue-free in the first (thus, any) variable:

$$\operatorname{Res}_{\boldsymbol{p}=\boldsymbol{o}}\omega_{\boldsymbol{g},\boldsymbol{n+1}}(\boldsymbol{p},\boldsymbol{p}_J)=\boldsymbol{0};$$

4 For (g, n) with n > 0, we have

$$(2g+n-2)\omega_{g,n}(J) = -\left(\sum_{r\in\mathcal{R}^*}\operatorname{Res}_{p=r} + \sum_{r\in\sigma(p_J)}\operatorname{Res}_{p=r}\right)\Phi(p)\cdot\omega_{g,n+1}(p,p_J).$$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

1 Introduction

2 Topological recursion

3 Refinement

- ▲ロト ▲母 ト ▲目 ト ▲目 ト のへの

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

Definition is exactly the same as before:

$$F_g = \frac{1}{2 - 2g} \sum_{r \in \mathcal{R}} \operatorname{Res}_{z=r} \left[\Phi(z) \omega_{g,1}(z) \right]$$

for Φ a primitive of *ydx*, where now $g \in \frac{1}{2}\mathbb{Z}_{>1}$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

< < >> < <</>

To state result, let $a_1, \ldots, a_n \in \mathbb{C}^*$. The multiple Bernoulli polynomial $B_{N,k}(x \mid a_1, \ldots, a_N)$ is defined by

$$\frac{t^N e^{xt}}{(e^{a_1t}-1)\dots(e^{a_Nt}-1)} = \sum_{k\geq 0} B_{N,k}(x \mid a_1,\dots,a_N) \cdot \frac{t^k}{k!}.$$

Department of Mathematics, CUHK

< < >> < <</>

Refined topological recursion free energy for hypergeometric type curves

Omar Kidwai

Introduction 000000	Topological recursion	Refinement 000000000	Free energy 00●000000000	Refined BPS structures
Result				

To state result, let $a_1, \ldots, a_n \in \mathbb{C}^*$. The multiple Bernoulli polynomial $B_{N,k}(x \mid a_1, \ldots, a_N)$ is defined by

$$\frac{t^N e^{xt}}{(e^{a_1t}-1)\dots(e^{a_Nt}-1)} = \sum_{k\geq 0} B_{N,k}(x \mid a_1,\dots,a_N) \cdot \frac{t^k}{k!}.$$

We care about N = 2, $a_1 = -\beta^{\frac{1}{2}}$, $a_2 = \beta^{-\frac{1}{2}}$. Write $B_{2,2g}(x) := B_{2,2g}(x|-\beta^{\frac{1}{2}},\beta^{-\frac{1}{2}})$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Introduction 000000	Topological recursion	Refinement 000000000	Free energy 000●00000000	Refined BPS structures
Result				

Theorem. [K-Osuga] (*i*) For Weber refined spectral curve, we have

$$F_{g} = \frac{(-1)^{2g-2}}{2g(2g-1)(2g-2)} B_{2,2g} \left(\frac{\mu Q}{2} - \frac{Q}{2}\right) \left(\frac{1}{m}\right)^{2g-2}$$
(ii) For Whittaker,

$$F_{g} = \frac{(-1)^{2g-2}}{2g(2g-1)(2g-2)} \left(B_{2,2g}\left(\frac{\mu\Omega}{2}\right) + B_{2,2g}\left(\frac{\mu\Omega}{2} - \Omega\right) \right) \left(\frac{1}{m}\right)^{2g-2}$$

(iii) For degenerate Bessel, and Airy $F_g = 0$.

Conjecture. A similar explicit expression holds for all refined spectral curves of hypergeometric type.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Introduction 000000	Topological recursion	Refinement 000000000	Free energy 0000●0000000	Refined BPS structures
Proof				

How to prove?

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

28 / 35

How to prove?

Similar to Iwake-Koike-Takei, we consider Voros coefficient¹:

$$V = \sum_{k=1}^{\infty} \hbar^k \int_{\infty_-}^{\infty_+} \left(\sum_{\substack{2g-2+n=k\\g\geq 0,n\geq 1}} \frac{1}{\beta^{n/2}n!} \frac{d}{dz} \int_{D(z;\nu)} \dots \int_{D(z;\nu)} \omega_{g,n}(\zeta_1,\dots,\zeta_n) \right)$$

where

$$D(z; \boldsymbol{\nu}) := [z] - \sum_{\boldsymbol{p} \in \mathcal{P}'} \nu_{\boldsymbol{p}}[\boldsymbol{p}], \qquad \sum_{\boldsymbol{p} \in \mathcal{P}'} \nu_{\boldsymbol{p}} = 1,$$

and ∞_\pm denotes the preimages under x of ∞

 ¹ of the corresponding quantum curve [K-Osuga]
 Image: Algorithm of the corresponding quantum curve [K-Osuga]

 Omar Kidwai
 Department of Mathematics, CUHK

 Refined topological recursion free energy for hypergeometric type curves
 28 / 35

We rely on the relation (as f.p.s. in \hbar) between V and F:

$$V = F\left(\widehat{m} + \frac{\hbar}{2\beta^{\frac{1}{2}}}\right) - F\left(\widehat{m} - \frac{\hbar}{2\beta^{\frac{1}{2}}}\right) + \text{l.o.}$$

where

$$\widehat{m}=m-\frac{\nu\hbar}{2\beta^{\frac{1}{2}}}.$$

-

and $F := \sum_{g} \hbar^{2g-2} F_{g}$.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

∃ > < ∃ > Department of Mathematics, CUHK

Image: A matrix and a matrix

We rely on the relation (as f.p.s. in \hbar) between V and F:

$$V = F\left(\widehat{m} + \frac{\hbar}{2\beta^{\frac{1}{2}}}\right) - F\left(\widehat{m} - \frac{\hbar}{2\beta^{\frac{1}{2}}}\right) + \text{l.o.}$$

where

$$\widehat{m}=m-\frac{\nu\hbar}{2\beta^{\frac{1}{2}}}.$$

and $F := \sum_{g} \hbar^{2g-2} F_g$.

<u>Problem</u>: It is false for the more complicated HG type curves (whenever $Q(x)dx^2$ has a 2nd order pole), and for β case less trivial to prove even when it is true.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

<u>Problem</u>: It is false for the more complicated HG type curves (whenever $Q(x)dx^2$ has a 2nd order pole), and for β case less trivial to prove even when it is true.

<u>Problem</u>: It is false for the more complicated HG type curves (whenever $Q(x)dx^2$ has a 2nd order pole), and for β case less trivial to prove even when it is true.

<u>Why?</u> V is like a limit of (log of) wavefunction ψ but the expression for ψ is not continuous at the limiting points!

$$\lim_{p\to\sigma(q_0)}\int_{q_0}^p\cdots\int_{q_n}^p\omega_{g,n+1}\neq\int_{q_0}^{\sigma(q_0)}\cdots\int_{q_n}^{(q_n)}\omega_{g,n+1}$$

can occur if $q_i \in \mathcal{P}$.

Department of Mathematics, CUHK

Omar Kidwai

Toy example

Consider integrating

$$\omega(\zeta_0,\zeta_1) = \frac{\zeta_0^2 + \zeta_1^2 + \zeta_0^2 \zeta_1^2 + 3\zeta_0 \zeta_1}{\zeta_0^2 \zeta_1^2 (\zeta_0 + \zeta_1)^3} d\zeta_0 d\zeta_1$$

from $q_0 = q_1 = -1$, $\sigma(\zeta) = -\zeta$. Then
$$\int_{-1}^1 \int_{-1}^1 \omega = 0,$$

and even $\int_a^1 \int_{-1}^1 \omega = 0$ for any *a*. Yet

$$\int_{-1}^{z} \int_{-1}^{z} \omega = -\frac{(1+z)^2(2z-1)}{4z^3} \xrightarrow[z \to 1]{} -1,$$

In fact,

$$\int_{a}^{z} \int_{-1}^{z} \omega = \frac{(1-z)(1+z)}{2z\zeta_{0}(z+\zeta_{0})} \Big|_{\zeta_{0}=a}^{\zeta_{0}=z} = \frac{(1-z)(1+z)}{4z^{3}} - \frac{(1-z)(1+z)}{2za(z+a)}.$$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

This kind of phenomenon happens in all the cases where $Q(x)dx^2$ has a second order pole.

Omar Kidwai

Department of Mathematics, CUHK

< < >> < <</>

Refined topological recursion free energy for hypergeometric type curves

This kind of phenomenon happens in all the cases where $Q(x)dx^2$ has a second order pole.

<u>Solution</u>: Treat only Weber/Whittaker cases, show that partial integrals defining Voros coefficient are uniformly bounded to justify limit.

This kind of phenomenon happens in all the cases where $Q(x)dx^2$ has a second order pole.

<u>Solution</u>: Treat only Weber/Whittaker cases, show that partial integrals defining Voros coefficient are uniformly bounded to justify limit.

Then use "contiguity relations" relating Voros coeffs for classical ODEs, get difference eqn for F.

Introduction 000000	Topological recursion	Refinement 000000000	Free energy 000000000●00	Refined BPS structures
Proof				

Let

$$\begin{aligned} \Delta_{\epsilon_1,\epsilon_2} \cdot f(m;\hbar) \\ &= -f\left(m - \frac{\epsilon_1}{2} - \frac{\epsilon_2}{2};\hbar\right) + f\left(m - \frac{\epsilon_1}{2} + \frac{\epsilon_2}{2};\hbar\right) + f\left(m + \frac{\epsilon_1}{2} - \frac{\epsilon_2}{2};\hbar\right) - f\left(m + \frac{\epsilon_1}{2} + \frac{\epsilon_2}{2};\hbar\right) \end{aligned}$$

Then for Weber,

$$\Delta_{\epsilon_1,\epsilon_2} \cdot F = \log\left(m + rac{\mu}{2} \Omega \hbar
ight)$$

and for Whittaker,

$$\Delta_{\epsilon_1,\epsilon_2} \cdot F = \log\left(m + \frac{\mu}{2}\Omega\hbar + \frac{\Omega\hbar}{2}\right) + \log\left(m + \frac{\mu}{2}\Omega\hbar - \frac{\Omega\hbar}{2}\right).$$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

ъ Department of Mathematics, CUHK

3

Finally, use definition of double Bernoulli polynomials to solve this difference equation.

Theorem. [K-Osuga] (*i*) For Weber refined spectral curve, we have

$$F_{g} = \frac{(-1)^{2g-2}}{2g(2g-1)(2g-2)} B_{2,2g} \left(\frac{\mu Q}{2} - \frac{Q}{2}\right) \left(\frac{1}{m}\right)^{2g-2g}$$

(ii) For Whittaker,

$$F_{g} = \frac{(-1)^{2g-2}}{2g(2g-1)(2g-2)} \left[B_{2,2g}\left(\frac{\mu Q}{2}\right) + B_{2,2g}\left(\frac{\mu Q}{2} - Q\right) \right] \left(\frac{1}{m}\right)^{2g-2}$$

(iii) For degenerate Bessel, and Airy $F_g = 0$.

Introduction 000000	Topological recursion	Refinement 000000000	Free energy 000000000000	Refined BPS structures
Further				

- Complete the other cases
- Higher genus (progress for hyperelliptic in [Osuga 23])
- Higher degree / no involution
- Relation to Donaldson-Thomas theory? (see [K-Williams 24])
- Quantized BPS Riemann-Hilbert problem (ongoing)
- x-y swap property?
- Refined analogues of enumerative applications

Introduction

Refined BPS structures

Definition. A *refined BPS structure* is a tuple (Γ, Z, Ω) :

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

Definition. A *refined BPS structure* is a tuple (Γ, Z, Ω) :

• finite rank free abelian group Γ , equipped w/ antisymmetric pairing $\langle \cdot, \cdot \rangle : \Gamma \times \Gamma \to \mathbb{Z}$ "charge lattice"

Omar Kidwai

Department of Mathematics, CUHK

< ロ > < 同 > < 回 > < 回 >

э

Definition. A *refined BPS structure* is a tuple (Γ, Z, Ω) :

- finite rank free abelian group Γ , equipped w/ antisymmetric pairing $\langle\cdot,\cdot\rangle:\Gamma\times\Gamma\to\mathbb{Z}$ "charge lattice"
- homomorphism of abelian groups $Z: \Gamma \to \mathbb{C}$ "central charge"

Omar Kidwai

Department of Mathematics, CUHK

< ロ > < 同 > < 回 > < 回 >

э

Omar Kidwai

Definition. A *refined BPS structure* is a tuple (Γ, Z, Ω) :

- finite rank free abelian group Γ , equipped w/ antisymmetric pairing $\langle\cdot,\cdot\rangle:\Gamma\times\Gamma\to\mathbb{Z}$ "charge lattice"
- homomorphism of abelian groups $Z: \Gamma \to \mathbb{C}$ "central charge"
- a map of sets $\Omega: \Gamma \to \mathbb{Q}[\mathbb{L}^{\pm \frac{1}{2}}]$,

$$\Omega(\gamma) = \sum_{n \in \mathbb{Z}} \Omega_n(\gamma) \cdot \mathbb{L}^{\frac{n}{2}}$$

where $\mathbb{L}^{\frac{1}{2}}$ is a formal symbol,
- finite rank free abelian group Γ, equipped w/ antisymmetric pairing $\langle \cdot, \cdot \rangle : \Gamma \times \Gamma \to \mathbb{Z}$ "charge lattice"
- homomorphism of abelian groups $Z : \Gamma \to \mathbb{C}$ "central charge"
- a map of sets $\Omega : \Gamma \to \mathbb{Q}[\mathbb{L}^{\pm \frac{1}{2}}],$

$$\Omega(\gamma) = \sum_{n \in \mathbb{Z}} \Omega_n(\gamma) \cdot \mathbb{L}^{\frac{n}{2}}$$

where
$$\mathbb{L}^{\frac{1}{2}}$$
 is a formal symbol,

such that

•
$$\Omega(\gamma) = \Omega(-\gamma)$$

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

∃ → < → Department of Mathematics, CUHK

- finite rank free abelian group Γ , equipped w/ antisymmetric pairing $\langle\cdot,\cdot\rangle:\Gamma\times\Gamma\to\mathbb{Z}$ "charge lattice"
- homomorphism of abelian groups $Z: \Gamma \to \mathbb{C}$ "central charge"
- a map of sets $\Omega: \Gamma \to \mathbb{Q}[\mathbb{L}^{\pm \frac{1}{2}}]$,

$$\Omega(\gamma) = \sum_{n \in \mathbb{Z}} \Omega_n(\gamma) \cdot \mathbb{L}^{\frac{n}{2}}$$

where
$$\mathbb{L}^{rac{1}{2}}$$
 is a formal symbol,

such that

•
$$\Omega(\gamma) = \Omega(-\gamma)$$

• For some (any) norm $|| \cdot ||$ on $\Gamma \otimes \mathbb{R}$, there is > 0 s.t.

$$\Omega \neq 0 \implies |Z(\gamma)| > C \cdot ||\gamma||$$

Omar Kidwai

Department of Mathematics, CUHK

(日) (同) (日) (日)

Refined topological recursion free energy for hypergeometric type curves

- finite rank free abelian group Γ , equipped w/ antisymmetric pairing $\langle\cdot,\cdot\rangle:\Gamma\times\Gamma\to\mathbb{Z}$ "charge lattice"
- homomorphism of abelian groups $Z: \Gamma \to \mathbb{C}$ "central charge"
- a map of sets $\Omega: \Gamma \to \mathbb{Q}[\mathbb{L}^{\pm \frac{1}{2}}]$, "refined BPS invariants"

$$\Omega(\gamma) = \sum_{n \in \mathbb{Z}} \Omega_n(\gamma) \cdot \mathbb{L}^{\frac{n}{2}}$$

where $\mathbb{L}^{\frac{1}{2}}$ is a formal symbol,

Terminology: We call γ with $\Omega(\gamma) \neq 0$ an *active class* or *BPS state*

Introduction

• finite rank free abelian group Γ , equipped w/ antisymmetric pairing $\langle\cdot,\cdot\rangle:\Gamma\times\Gamma\to\mathbb{Z}$ "charge lattice"

Refinement

- homomorphism of abelian groups $Z: \Gamma \to \mathbb{C}$ "central charge"
- a map of sets $\Omega:\Gamma\to \mathbb{Q}[\mathbb{L}^{\pm\frac{1}{2}}],$ "refined BPS invariants"

$$\Omega(\gamma) = \sum_{n \in \mathbb{Z}} \Omega_n(\gamma) \cdot \mathbb{L}^{\frac{n}{2}}$$

where $\mathbb{L}^{\frac{1}{2}}$ is a formal symbol,

<u>Terminology</u>: We call γ with $\Omega(\gamma) \neq 0$ an *active class* or *BPS state* <u>Note</u>: We often use $q^{\frac{1}{2}} := -\mathbb{L}^{\frac{1}{2}}$

Omar Kidwai

Introduction

GMN construction

Introduction

Gaiotto-Moore-Neitzke constructed BPS structures – we consider rank 2 case.

Choose a sufficiently nice meromorphic quadratic differential $\varphi = Q(x)dx^{\otimes 2}$ (say, hypergeometric type).

Let $\widetilde{\Sigma}$ denote Σ with simple poles filled in.

Omar Kidwai

Department of Mathematics, CUHK

GMN construction

Define:

• $\Gamma := \{\gamma \in H_1(\widetilde{\Sigma}, \mathbb{Z}) \, | \, \sigma_* \gamma = -\gamma \}$, σ the sheet-exchange

•
$$Z(\gamma) := \oint_{\gamma} \lambda = \oint_{\gamma} \sqrt{Q(x)} dx$$

(in all our examples, Σ is genus 0, Γ is easy to determine and $Z(\gamma)$ is easily computed as linear combinations of parameters m_i .

Now, to define $\Omega: \Gamma \to \mathbb{Z}$.

Fix $\vartheta \in \mathbb{R}/2\pi\mathbb{Z}$. The foliation of phase ϑ , $\mathcal{F}_{\vartheta}(\varphi)$ is given by

$$\operatorname{Im} e^{-i\vartheta} \int^x \sqrt{Q(x)} dx = \operatorname{const}$$

A trajectory of phase ϑ is any maximal leaf of $\mathcal{F}_{\vartheta}(\varphi)$.

< < >> < <</>

Refined topological recursion free energy for hypergeometric type curves

Fix $\vartheta \in \mathbb{R}/2\pi\mathbb{Z}$. The foliation of phase ϑ , $\mathcal{F}_{\vartheta}(\varphi)$ is given by

$$\operatorname{Im} e^{-i\vartheta} \int^x \sqrt{Q(x)} dx = \operatorname{const}$$

A trajectory of phase ϑ is any maximal leaf of $\mathcal{F}_{\vartheta}(\varphi)$.

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

э

Introduction

Topological recursion

Refinement

Free energy

Refined BPS structures

GMN construction

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

BPS invariants

- Fact: Trajectory pentachotomy:
 - saddle
 - separating
 - generic
 - 💿 closed
 - v recurrent

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BPS invariants

- Fact: Trajectory pentachotomy:
 - saddle
 - separating
 - generic
 - closed
 - v recurrent for us, by Jenkins

Omar Kidwai

э Department of Mathematics, CUHK

<u>Fact</u>: Every saddle trajectory or closed trajectory has a *canonical* lift $\gamma \in \Gamma$ (up to sign)

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

< < >> < <</>

<u>Fact</u>: Every saddle trajectory or closed trajectory has a *canonical lift* $\gamma \in \Gamma$ (up to sign)

For example, if both endpoints simple zeroes:

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

Topological recursion

Introduction

Definition. We define $\Omega(\gamma)$ of φ below for $\gamma \in \Gamma$ appearing as canonical lifts of saddles or ring domains in $\mathcal{F}_{\vartheta}(\varphi)$

Refinement

$$\Omega(\gamma) = egin{cases} +1 \ q^{rac{1}{2}} + q^{-rac{1}{2}} \ q + 2 + q^{-1} \ -q^{rac{1}{2}} \ -(q^{rac{1}{2}} + q^{-rac{1}{2}}) \end{cases}$$

type I type II type III deg. ring domain nondeg. ring domain

Free energy

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

35 / 35

Department of Mathematics, CUHK

Refined BPS structures

Introduction

Definition. We define $\Omega(\gamma)$ of φ below for $\gamma \in \Gamma$ appearing as canonical lifts of saddles or ring domains in $\mathcal{F}_{\vartheta}(\varphi)$

Refinement

Free energy

$$\Omega(\gamma) = \begin{cases} +1 & \text{type I} \\ q^{\frac{1}{2}} + q^{-\frac{1}{2}} & \text{type II} \\ q + 2 + q^{-1} & \text{type III} \\ -q^{\frac{1}{2}} & \text{deg. ring domain} \\ -(q^{\frac{1}{2}} + q^{-\frac{1}{2}}) & \text{nondeg. ring domain} \end{cases}$$

When we send $q^{rac{1}{2}}
ightarrow 1$, we recover the unrefined invariants.

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK

Refined BPS structures

Topological recursion

Introduction

Definition. We define $\Omega(\gamma)$ of φ below for $\gamma \in \Gamma$ appearing as canonical lifts of saddles or ring domains in $\mathcal{F}_{\vartheta}(\varphi)$

Refinement

Free energy

$$\Omega(\gamma) = \begin{cases} +1 & \text{type I} \\ q^{\frac{1}{2}} + q^{-\frac{1}{2}} & \text{type II} \\ q + 2 + q^{-1} & \text{type III} \\ -q^{\frac{1}{2}} & \text{deg. ring domain} \\ -(q^{\frac{1}{2}} + q^{-\frac{1}{2}}) & \text{nondeg. ring domain} \end{cases}$$

When we send $q^{\frac{1}{2}} \rightarrow 1$, we recover the unrefined invariants. Note: interpretation is not clear, and some shifts are allowed.

 $\Omega(\gamma_{
m BPS}) = 1$

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

Topological recursion

Refinement

Free energy

Refined BPS structures

BPS structure

Omar Kidwai

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

35 / 35

Introduction 000000	Topological recursion	Refinement 000000000	Free energy 000000000000	Refined BPS structures
Free energy				

[Iwaki-Koike-Takei] showed (for example):

$$F_{g}^{\mathrm{HG}}(\boldsymbol{m}) = \frac{B_{2g}}{2g(2g-2)} \left(\frac{1}{(m_{0}+m_{1}+m_{\infty})^{2g-2}} + \frac{1}{(m_{0}+m_{1}-m_{\infty})^{2g-2}} + \frac{1}{(m_{0}-m_{1}-m_{\infty})^{2g-2}} - \frac{1}{(m_{0}-m_{1}-m_{\infty})^{2g-2}} - \frac{1}{(2m_{0})^{2g-2}} - \frac{1}{(2m_{\infty})^{2g-2}} - \frac{1}{(2m_{\infty})^{2g-2}} \right).$$

Department of Mathematics, CUHK

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Introduction 000000	Topological recursion	Refinement 000000000	Free energy 000000000000	Refined BPS structures
Free energy				

Theorem. [Iwaki-K, Adv. Math. 2022] For the spectral curves of hypergeometric type, **m** generic, we have

$$F_{g}(\boldsymbol{m}) = \frac{B_{2g}}{4g(2g-2)} \sum_{\gamma \in \Gamma} \Omega(\gamma) \left(\frac{2\pi i}{Z(\gamma)}\right)^{2g-2}, \quad g \geq 2$$

Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves

Theorem. [K-Osuga] For Whittaker, Weber, degenerate Bessel, and Airy refined spectral curves, we have

$$F_{g}(m,\mu) = c_{g} \sum_{\gamma \in \Gamma} \sum_{n \in \mathbb{Z}} B_{2,2g} \left(\frac{Z_{\frac{1}{2}}^{\operatorname{reg}}(\gamma)}{2\pi i} + (n-1)\frac{Q}{2} \right) \Omega_{n}(\gamma) \left(\frac{2\pi i}{Z(\gamma)} \right)^{2g-2}$$

where
$$c_g = \frac{(-1)^{2g-2}}{4g(2g-1)(2g-2)}$$
 and $Z_{\frac{1}{2}}^{\text{reg}}(\gamma) := \int_{\gamma} \omega_{\frac{1}{2}}, 1^{\text{odd}}.$

Conjecture. This holds for all refined spectral curves of hypergeometric type.

Omar Kidwai

Refined topological recursion free energy for hypergeometric type curves

Department of Mathematics, CUHK