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Introduction Topological recursion Refinement Free energy Refined BPS structures

History/motivation

Topological recursion (TR) [Eynard-Orantin, Chekhov-Eynard-Orantin]:
• Matrix models (loop equations)
• Enumerative geometry (Kontsevich-Witten, Gromov-Witten,

Hurwitz, Mirzakhani-Weil-Petersson...)
• Differential equations, WKB analysis

Refined / β-deformed TR [Perm{Chekhov,Eynard,Marchal},

Brini-Marino-Stevan, Manabe-Sulkowski, K-Osuga]:
• β-ensemble analogue to topological recursion
• Several approaches (matrix models, noncommutative spectral

curve,...)
• Pure geometric theory formulated and proved in special case

by [K-Osuga]
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History/motivation

• Motivation: generalize [Iwaki-K] free energy formula involving
Donaldson-Thomas invariants to refined setting.

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 5 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Setting and aim

• Consider spectral curves related to "hypergeometric" curve

y2 =
m∞

2x2 − (m∞
2 +m0

2 −m1
2)x +m0

2

x2(x − 1)2

+ 8 other examples arising from limits/confluence.
• In particular,

• Compute refined topological recursion free energy
(proof when no 2nd order poles - conjecture for others)

• Interpret in terms of refined BPS structure

Omar Kidwai Department of Mathematics, CUHK
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Spectral curves of hypergeometric type

All are genus 0, degree two curves,

y2 = Q(x)

Name Q(x) Assumption

Gauss (HG)
m∞

2x2 − (m∞
2 +m0

2 −m1
2)x +m0

2

x2(x − 1)2
m0,m1,m∞ ̸= 0,

m0 ±m1 ±m∞ ̸= 0.

Degenerate Gauss (dHG)
m∞

2x +m1
2 −m∞

2

x(x − 1)2
m1,m∞ ̸= 0,
m1 ±m∞ ̸= 0.

Kummer (Kum) x2 + 4m∞x + 4m0
2

4x2

m0 ̸= 0,
m0 ±m∞ ̸= 0.

Legendre (Leg)
m2

∞
x2 − 1

m∞ ̸= 0.

Bessel (Bes)
x + 4m2

4x2 m ̸= 0.

Whittaker (Whi)
x − 4m

4x
m ̸= 0.

Weber (Web)
1
4
x2 −m m ̸= 0.

Degenerate Bessel (dBes)
1
x

–

Airy (Ai) x –

Omar Kidwai Department of Mathematics, CUHK
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Spectral curves of hypergeometric type

We focus on:

Weber: y2 = x2

4 −m

Whittaker: y2 = x−4m
4x

where we assume m ̸= 0.

Also (degenerate) Bessel y2 = 1/x and Airy y2 = x , but they are
easy.

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 8 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Spectral curves of hypergeometric type

We focus on:

Weber: y2 = x2

4 −m

Whittaker: y2 = x−4m
4x

where we assume m ̸= 0.

Also (degenerate) Bessel y2 = 1/x and Airy y2 = x , but they are
easy.

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 8 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Spectral curves of hypergeometric type

We focus on:

Weber: y2 = x2

4 −m

Whittaker: y2 = x−4m
4x

where we assume m ̸= 0.

Also (degenerate) Bessel y2 = 1/x and Airy y2 = x , but they are
easy.

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 8 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

1 Introduction

2 Topological recursion

3 Refinement

4 Free energy

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 9 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Spectral curves

A (TR) spectral curve is a tuple (C, x , y ,B):

• C compact Riemann surface
• x , y : C → P1 nonconstant meromorphic functions, dx and dy

do not vanish simultaneously
• Bidifferential: meromorphic section

B(z1, z2) ∈ p∗1(T
∗C)⊗ p∗2(T

∗C)

with some properties (pi : C × C → C projection).
For us, C = P1 so there is a canonical B ,

B(z1, z2) :=
dz1dz2

(z1 − z2)2

Ramification points of x viewed as a branched cover, denoted r ∈ R

Omar Kidwai Department of Mathematics, CUHK
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Spectral curves

Note for our examples we can give some explicit parametrization to
obtain a TR spectral curve,

e.g. for Whittaker y2 = x−4m
4x take C = P1,

x(ζ) = 2m
(

1
ζ − 1

− 1
ζ + 1

)
, y(ζ) = −1

2
ζ

giving R = {0,∞}. There is a global involution σ(ζ) = −σ(ζ)
fixing x and sending y 7→ −y .

Omar Kidwai Department of Mathematics, CUHK
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Topological recursion

Start with ω0,1(p0) := y(p0)dx(p0), ω0,2(p0, p1) = B(p0, p1).

Then

ωg,n+1(p0, p1, · · · , pn) :=
∑
r∈R

Res
p=r

Kr (p0, p)

[
ωg−1,n+2(p, σ(p), p1, · · · , pn)

+
′∑

g1+g2=g
I1⊔I2={1,2,··· ,n}

ωg1,|I1|+1(p, pI1)ωg2,|I2|+1(σ(p), pI2)

]

for 2g + n ≥ 2,where

Kr (p0, p1) =
1

(y − σ(y))dx

∫ ζ=p

ζ=σ(p)
B(p0, ζ)

σ is “local conjugation" near ramification point r .

Omar Kidwai Department of Mathematics, CUHK
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Topological recursion

Start with ω0,1(z0) := y(p0)dx(p0), ω0,2(p0, p1) = B(p0, p1). Then

ωg,n+1(p0, p1, · · · , pn) :=
∑
r∈R

Res
p=r

Kr (z0, z)

[
ωg−1,n+2(p, σ(p), p1, · · · , pn)

+
′∑

g1+g2=g
I1⊔I2={1,2,··· ,n}

ωg1,|I1|+1(p, pI1)ωg2,|I2|+1(σ(p), pI2)

]
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Topological recursion

Definition. Let Φ be any primitive of ydx . The g th free energy
(g > 1) is

Fg =
1

2 − 2g

∑
r∈R

Res
p=r

[Φ(p)ωg ,1(p)]

[Iwaki-Koike-Takei] showed (for example):

FWeb
g (m) =

B2g

2g(2g − 2)
1

m2g−2

FWhi
g (m) =

B2g

2g(2g − 2)
2

m2g−2

when g > 1 (and formulas for the other 7 examples)
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Refinement

Now, we want to generalize this (generalize β-deformed matrix
model). See Chekhov-Eynard, Marchal, Chekhov-Eynard-Marchal
for various approaches.

Fix β ∈ C∗, and set Q = β
1
2 − β−

1
2 .

Let P ′ ⊂ P denote poles and zeroes of ydx excluding R.

Omar Kidwai Department of Mathematics, CUHK
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Refinement

Definition. A degree two genus zero refined spectral curve is a
tuple (Σ, x , y ,B,D(µ)):

• (Σ, x , y ,B) a spectral curve as above, with

y2 = Q(x)

rational and genus zero,
• Decomposition P ′ = P ′

+ ⊔ P ′
−,

• Complex parameters µ = (µp)p∈P ′
+ .

Note the decomposition is possible thanks to involution σ. We
combine the new data into the divisor:

D(µ) :=
∑

p∈P ′
+

µp[p].

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 17 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Refinement

Definition. A degree two genus zero refined spectral curve is a
tuple (Σ, x , y ,B,D(µ)):

• (Σ, x , y ,B) a spectral curve as above, with

y2 = Q(x)

rational and genus zero,

• Decomposition P ′ = P ′
+ ⊔ P ′

−,
• Complex parameters µ = (µp)p∈P ′

+ .
Note the decomposition is possible thanks to involution σ. We
combine the new data into the divisor:

D(µ) :=
∑

p∈P ′
+

µp[p].

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 17 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Refinement

Definition. A degree two genus zero refined spectral curve is a
tuple (Σ, x , y ,B,D(µ)):

• (Σ, x , y ,B) a spectral curve as above, with

y2 = Q(x)

rational and genus zero,
• Decomposition P ′ = P ′

+ ⊔ P ′
−,

• Complex parameters µ = (µp)p∈P ′
+ .

Note the decomposition is possible thanks to involution σ. We
combine the new data into the divisor:

D(µ) :=
∑

p∈P ′
+

µp[p].

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 17 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Refinement

Definition. A degree two genus zero refined spectral curve is a
tuple (Σ, x , y ,B,D(µ)):

• (Σ, x , y ,B) a spectral curve as above, with

y2 = Q(x)

rational and genus zero,
• Decomposition P ′ = P ′

+ ⊔ P ′
−,

• Complex parameters µ = (µp)p∈P ′
+ .

Note the decomposition is possible thanks to involution σ. We
combine the new data into the divisor:

D(µ) :=
∑

p∈P ′
+

µp[p].

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 17 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Refinement

Definition. A degree two genus zero refined spectral curve is a
tuple (Σ, x , y ,B,D(µ)):

• (Σ, x , y ,B) a spectral curve as above, with

y2 = Q(x)

rational and genus zero,
• Decomposition P ′ = P ′

+ ⊔ P ′
−,

• Complex parameters µ = (µp)p∈P ′
+ .

Note the decomposition is possible thanks to involution σ. We
combine the new data into the divisor:

D(µ) :=
∑

p∈P ′
+

µp[p].

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 17 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Refinement

Definition. A degree two genus zero refined spectral curve is a
tuple (Σ, x , y ,B,D(µ)):

• (Σ, x , y ,B) a spectral curve as above, with

y2 = Q(x)

rational and genus zero,
• Decomposition P ′ = P ′

+ ⊔ P ′
−,

• Complex parameters µ = (µp)p∈P ′
+ .

Note the decomposition is possible thanks to involution σ. We
combine the new data into the divisor:

D(µ) :=
∑

p∈P ′
+

µp[p].

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 17 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Spectral curves

Niceness assumption:

• The function field C(Σ) is generated by x and y ,
• All ramification points r ∈ R are simple (x is of degree 2 at r)
• For any two distinct ramification points r1, r2, x(r1) ̸= x(r2),
• ydx does not vanish anywhere on Σ \ R and has at most a

double zero at each ramification point.

Omar Kidwai Department of Mathematics, CUHK
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New initial data

Recall we had ω0,1(p0) := y(p0)dx(p0), ω0,2(p0, p1) = B(p0, p1).

This time, we also define:

ω 1
2 ,1

(p0) =
Q

2

−dy(p0)

y(p0)
+
∑
p∈P ′

+

µp ηp(p0)


where ηp the unique mero differential on P1 with residue +1 at p
and −1 at σ(p).

Omar Kidwai Department of Mathematics, CUHK
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Refined TR

Let g ∈ 1
2Z≥0, n ∈ Z>0. Then ωg ,n ∈ π∗1(T

∗Σ)⊗ . . .⊗ π∗n(T
∗Σ),

are defined by

ωg,n+1(p0, pJ) := −2

∑
r∈R

Res
p=r

+
∑

r∈σ(pJ0 )

Res
p=r

+
∑
r∈P′

+

Res
p=r

K(p0, p)· RecQg,n+1(p, pJ)

where pJ = (p1, . . . , pn), pJ0 = (p0, . . . , pn).
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Refined TR

where for 2g + n ≥ 3

RecQg,n+1(p, pJ) =
n∑

i=1

∆ω0,2(p, pi ) · ωg,n(p, pĴi ) + ωg−1,n+2(p, p, pJ)

+
∗∗∑

g1+g2=g
J1⊔J2=J

ωg1,n1+1(p, pJ1) · ωg2,n2+1(p, pJ2) + Q dx(p) · dp

(
ωg− 1

2 ,n+1(p, pJ)

dx(p)

)

where ∗∗ denotes removal of ω0,1, ω0,2 terms and

∆ω0,2(z , zi ) := ω0,2(z , zi )− ω0,2(σ(z), zi ).

(slight complication for low 2g + n, but same idea)
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∆ω0,2(p, pi ) · ωg,n(p, pĴi ) + ωg−1,n+2(p, p, pJ)

+
∗∗∑

g1+g2=g
J1⊔J2=J

ωg1,n1+1(p, pJ1) · ωg2,n2+1(p, pJ2) + Q dx(p) · dp

(
ωg− 1

2 ,n+1(p, pJ)

dx(p)

)

where ∗∗ denotes removal of ω0,1, ω0,2 terms and

∆ω0,2(z , zi ) := ω0,2(z , zi )− ω0,2(σ(z), zi ).

(slight complication for low 2g + n, but same idea)

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 21 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Properties

Fact: ωg ,n|Q=0 reproduce the unrefined ωg ,n (with the
understanding ωg ,n = 0 for g ∈ 1

2 + Z≥0).

Furthermore, analogous properties to the unrefined case hold,
though with with more interesting pole structure.
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Properties

Theorem [K-Osuga Adv. Math. 2023]. For nice degree two genus
zero refined spectral curve, ωg ,n+1 satisfy:

1 The multidifferential ωg ,n+1 is symmetric;
2 All poles of ωg ,n+1 (in any variable) lie in R∗ ∪ σ(pJ0);
3 At any o ∈ Σ, ωg ,n+1 is residue-free in the first (thus, any)

variable:
Res
p=o

ωg ,n+1(p, pJ) = 0;

4 For (g , n) with n > 0, we have

(2g + n − 2)ωg,n(J) = −

∑
r∈R∗

Res
p=r

+
∑

r∈σ(pJ )

Res
p=r

Φ(p) · ωg,n+1(p, pJ).
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1 Introduction

2 Topological recursion

3 Refinement

4 Free energy
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Definition

Definition is exactly the same as before:

Fg =
1

2 − 2g

∑
r∈R

Res
z=r

[Φ(z)ωg ,1(z)]

for Φ a primitive of ydx , where now g ∈ 1
2Z>1
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Result

To state result, let a1, . . . , an ∈ C∗. The multiple Bernoulli
polynomial BN,k(x | a1, . . . , aN) is defined by

tNext

(ea1t − 1) . . . (eaN t − 1)
=
∑
k≥0

BN,k(x | a1, . . . , aN) ·
tk

k!
.

We care about N = 2, a1 = −β
1
2 , a2 = β−

1
2 .

Write B2,2g (x) := B2,2g (x | − β
1
2 , β−

1
2 )
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Result

Theorem. [K-Osuga]
(i) For Weber refined spectral curve, we have

Fg =
(−1)2g−2

2g(2g − 1)(2g − 2)
B2,2g

(
µQ

2
− Q

2

)(
1
m

)2g−2

(ii) For Whittaker,

Fg =
(−1)2g−2

2g(2g − 1)(2g − 2)

(
B2,2g

(
µQ

2

)
+ B2,2g

(
µQ

2
− Q

))(
1
m

)2g−2

(iii) For degenerate Bessel, and Airy Fg = 0.

Conjecture. A similar explicit expression holds for all refined
spectral curves of hypergeometric type.
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Proof

How to prove?

Similar to Iwake-Koike-Takei, we consider Voros coefficient1:

V =
∞∑
k=1

ℏk
∫ ∞+

∞−

 ∑
2g−2+n=k
g≥0,n≥1

1
βn/2n!

d

dz

∫
D(z;ν)

. . .

∫
D(z;ν)

ωg,n(ζ1, . . . , ζn)


where

D(z ;ν) := [z ]−
∑
p∈P ′

νp[p],
∑
p∈P ′

νp = 1,

and ∞± denotes the preimages under x of ∞

1of the corresponding quantum curve [K-Osuga]
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Proof

We rely on the relation (as f.p.s. in ℏ) between V and F :

V = F

(
m̂ +

ℏ
2β

1
2

)
− F

(
m̂ − ℏ

2β
1
2

)
+ l.o.

where
m̂ = m − νℏ

2β
1
2
.

and F :=
∑

g ℏ2g−2Fg .

Problem: It is false for the more complicated HG type curves
(whenever Q(x)dx2 has a 2nd order pole), and for β case less
trivial to prove even when it is true.
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Proof

Problem: It is false for the more complicated HG type curves
(whenever Q(x)dx2 has a 2nd order pole), and for β case less
trivial to prove even when it is true.

Why? V is like a limit of (log of) wavefunction ψ but the
expression for ψ is not continuous at the limiting points!

lim
p→σ(q0)

∫ p

q0

· · ·
∫ p

qn

ωg ,n+1 ̸=
∫ σ(q0)

q0

· · ·
∫ (qn)

qn

ωg ,n+1

can occur if qi ∈ P.
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Toy example

Consider integrating

ω(ζ0, ζ1) =
ζ2
0 + ζ2

1 + ζ2
0ζ

2
1 + 3ζ0ζ1

ζ2
0ζ

2
1 (ζ0 + ζ1)3

dζ0dζ1

from q0 = q1 = −1, σ(ζ) = −ζ. Then∫ 1

−1

∫ 1

−1
ω = 0,

and even
∫ 1
a

∫ 1
−1 ω = 0 for any a. Yet∫ z

−1

∫ z

−1
ω = −(1 + z)2(2z − 1)

4z3 −→
z→1

−1,

In fact,∫ z

a

∫ z

−1
ω =

(1 − z)(1 + z)

2zζ0(z + ζ0)

∣∣∣∣ζ0=z

ζ0=a

=
(1 − z)(1 + z)

4z3 −(1 − z)(1 + z)

2za(z + a)
.
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Proof

This kind of phenomenon happens in all the cases where Q(x)dx2

has a second order pole.

Solution: Treat only Weber/Whittaker cases, show that partial
integrals defining Voros coefficient are uniformly bounded to justify
limit.

Then use “contiguity relations" relating Voros coeffs for classical
ODEs, get difference eqn for F .
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Proof

Let

∆ϵ1,ϵ2 · f (m; ℏ)

= −f
(
m −

ϵ1

2
−

ϵ2

2
; ℏ

)
+ f

(
m −

ϵ1

2
+

ϵ2

2
; ℏ

)
+ f

(
m +

ϵ1

2
−

ϵ2

2
; ℏ

)
− f

(
m +

ϵ1

2
+

ϵ2

2
; ℏ

)
.

Then for Weber,

∆ϵ1,ϵ2 · F = log
(
m +

µ

2
Qℏ
)

and for Whittaker,

∆ϵ1,ϵ2 · F = log

(
m +

µ

2
Qℏ+

Qℏ
2

)
+ log

(
m +

µ

2
Qℏ− Qℏ

2

)
.
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Proof

Finally, use definition of double Bernoulli polynomials to solve this
difference equation.
Theorem. [K-Osuga]
(i) For Weber refined spectral curve, we have

Fg =
(−1)2g−2

2g(2g − 1)(2g − 2)
B2,2g

(
µQ

2
− Q

2

)(
1
m

)2g−2

(ii) For Whittaker,

Fg =
(−1)2g−2

2g(2g − 1)(2g − 2)

[
B2,2g

(
µQ

2

)
+ B2,2g

(
µQ

2
− Q

)](
1
m

)2g−2

(iii) For degenerate Bessel, and Airy Fg = 0.
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Further

• Complete the other cases
• Higher genus (progress for hyperelliptic in [Osuga 23])
• Higher degree / no involution
• Relation to Donaldson-Thomas theory? (see [K-Williams 24])
• Quantized BPS Riemann-Hilbert problem (ongoing)
• x-y swap property?
• Refined analogues of enumerative applications
• . . .
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Definition. A refined BPS structure is a tuple (Γ,Z ,Ω):

• finite rank free abelian group Γ, equipped w/ antisymmetric
pairing ⟨·, ·⟩ : Γ× Γ → Z "charge lattice"

• homomorphism of abelian groups Z : Γ → C "central charge"
• a map of sets Ω : Γ → Q[L± 1

2 ],

Ω(γ) =
∑
n∈Z

Ωn(γ) · L
n
2

where L
1
2 is a formal symbol,

such that
• Ω(γ) = Ω(−γ)
• For some (any) norm || · || on Γ⊗ R, there is > 0 s.t.

Ω ̸= 0 =⇒ |Z (γ)| > C · ||γ||
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Definition. A refined BPS structure is a tuple (Γ,Z ,Ω):
• finite rank free abelian group Γ, equipped w/ antisymmetric

pairing ⟨·, ·⟩ : Γ× Γ → Z "charge lattice"
• homomorphism of abelian groups Z : Γ → C "central charge"
• a map of sets Ω : Γ → Q[L± 1

2 ], "refined BPS invariants"

Ω(γ) =
∑
n∈Z

Ωn(γ) · L
n
2

where L
1
2 is a formal symbol,

Terminology: We call γ with Ω(γ) ̸= 0 an active class or BPS state

Note: We often use q
1
2 := −L

1
2
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GMN construction

Gaiotto-Moore-Neitzke constructed BPS structures – we consider
rank 2 case.

Choose a sufficiently nice meromorphic quadratic differential
φ = Q(x)dx⊗2 (say, hypergeometric type).

Let Σ̃ denote Σ with simple poles filled in.
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GMN construction

Define:

• Γ := {γ ∈ H1(Σ̃,Z) |σ∗γ = −γ}, σ the sheet-exchange

• Z (γ) :=
∮
γ λ =

∮
γ

√
Q(x)dx

(in all our examples, Σ is genus 0, Γ is easy to determine and Z (γ)
is easily computed as linear combinations of parameters mi .

Now, to define Ω : Γ → Z.
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GMN construction

Fix ϑ ∈ R/2πZ. The foliation of phase ϑ, Fϑ(φ) is given by

Im e−iϑ

∫ x√
Q(x)dx = const

A trajectory of phase ϑ is any maximal leaf of Fϑ(φ).
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Figure 1: Q(x) = r/x2

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 35 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

GMN construction

Fix ϑ ∈ R/2πZ. The foliation of phase ϑ, Fϑ(φ) is given by

Im e−iϑ

∫ x√
Q(x)dx = const

A trajectory of phase ϑ is any maximal leaf of Fϑ(φ).

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1: Q(x) = r/x2

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 35 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

GMN construction
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BPS invariants

Fact: Trajectory pentachotomy:
i saddle
ii separating
iii generic
iv closed
v recurrent
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Introduction Topological recursion Refinement Free energy Refined BPS structures

BPS invariants

Fact: Trajectory pentachotomy:
i saddle
ii separating
iii generic
iv closed
v recurrent for us, by Jenkins
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BPS invariants

Fact: Every saddle trajectory or closed trajectory has a canonical
lift γ ∈ Γ (up to sign)

For example, if both endpoints simple zeroes:
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Refined BPS structure

Definition. We define Ω(γ) of φ below for γ ∈ Γ appearing as
canonical lifts of saddles or ring domains in Fϑ(φ)

Ω(γ) =



+1 type I
q

1
2 + q−

1
2 type II

q + 2 + q−1 type III
−q

1
2 deg. ring domain

−(q
1
2 + q−

1
2 ) nondeg. ring domain

When we send q
1
2 → 1, we recover the unrefined invariants.

Note: interpretation is not clear, and some shifts are allowed.
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BPS invariants

Simple example (Weber): QWeb(x) =
1
4x

2 −m2
∞

Ω(γBPS) = 1
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BPS structure

Main example: QHG(x) =
m2

∞x2 − (m2
∞ −m2

1 +m2
0)x +m2

0
x2(x − 1)2

Ω(γBPS) = ±1 7 (×2) BPS states
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Free energy

[Iwaki-Koike-Takei] showed (for example):

FHG
g (m) =

B2g

2g(2g − 2)

(
1

(m0 +m1 +m∞)2g−2 +
1

(m0 +m1 −m∞)2g−2

+
1

(m0 −m1 +m∞)2g−2 +
1

(m0 −m1 −m∞)2g−2

− 1
(2m0)2g−2 − 1

(2m1)2g−2 − 1
(2m∞)2g−2

)
.

Omar Kidwai Department of Mathematics, CUHK

Refined topological recursion free energy for hypergeometric type curves 35 / 35



Introduction Topological recursion Refinement Free energy Refined BPS structures

Free energy

Theorem. [Iwaki-K, Adv. Math. 2022] For the spectral curves of
hypergeometric type, m generic, we have

Fg (m) =
B2g

4g(2g − 2)

∑
γ∈Γ

Ω(γ)

(
2πi
Z (γ)

)2g−2

, g ≥ 2
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Result (reformulated)

Theorem. [K-Osuga] For Whittaker, Weber, degenerate Bessel,
and Airy refined spectral curves, we have

Fg (m, µ) = cg
∑
γ∈Γ

∑
n∈Z

B2,2g

Z reg
1
2

(γ)

2πi
+ (n − 1)

Q

2

Ωn(γ)

(
2πi
Z(γ)

)2g−2

where cg = (−1)2g−2

4g(2g−1)(2g−2) and Z reg
1
2

(γ) :=
∫
γ ω 1

2
, 1odd.

Conjecture. This holds for all refined spectral curves of
hypergeometric type.
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