Remodeling Conjecture with Descendants

Song Yu

Caltech and Tsinghua YMSC

Joint work in progress with Bohan Fang, Chiu-Chu Melissa Liu, Zhengyu Zong

Noncommutative Geometry Meets Topological Recursion BIRS-IASM September 26, 2024

イロト イボト イヨト イヨト

э

This Talk is about...

all-genus mirror symmetry

of

toric Calabi-Yau 3-folds

via

topological recursion

Song Yu (Caltech/Tsinghua YMSC)

Remodeling Conjecture with Descendants

BIRS-IASM 2024 2 / 26

2

< □ > < □ > < □ > < □ > < □ >

Mirror Symmetry of Calabi-Yau 3-Folds

A-model (X, ω)

X: Calabi-Yau 3-fold ω : symplectic form Kähler parameters τ

 $\underset{map}{\underset{map}{\text{mirror}}}$

A-VHS, Dubrovin connection

Gromov-Witten potential

B-model (X_q^{\vee}, Ω_q)

 X_q^{\vee} : mirror Calabi-Yau 3-fold Ω_q : holomorphic 3-form complex parameters q

B-VHS, Gauss-Manin connection

period integrals, BCOV, etc.

< □ > < 同 > < 回 > < 回 >

Mirror Symmetry of Calabi-Yau 3-Folds

A-model (X, ω)

X: Calabi-Yau 3-fold ω : symplectic form Kähler parameters τ

 $\underset{map}{\text{mirror}}$

A-VHS, Dubrovin connection

Gromov-Witten potential

B-model (X_q^{\vee}, Ω_q)

 X_q^{\vee} : mirror Calabi-Yau 3-fold Ω_q : holomorphic 3-form complex parameters q

B-VHS, Gauss-Manin connection

period integrals, BCOV, etc.

- Higher-genus mirror symmetry is usually quite challenging
- For X toric, ideas:
 - mirror B-model can be given by families of curves
 - $\circ\,$ topological recursion provides quantization to higher genus

イロト イボト イヨト イヨト

Remodeling the B-Model

• For X toric, can use Hori-Vafa mirror

$$X_q^{\vee} = \{uv = H(X, Y, q)\} \subset \mathbb{C}^2_{(u,v)} \times (\mathbb{C}^*)^2_{(X,Y)}$$

• H(X, Y, q): Laurent polynomial in X, Y depending on q

э

< □ > < □ > < □ > < □ > < □ >

Remodeling the B-Model

• For X toric, can use Hori-Vafa mirror

$$X_q^{\vee} = \{uv = H(X, Y, q)\} \subset \mathbb{C}^2_{(u,v)} \times (\mathbb{C}^*)^2_{(X,Y)}$$

• H(X, Y, q): Laurent polynomial in X, Y depending on q

• Idea 1: reduce genus-0 B-model on 3d Hori-Vafa mirror to 1d mirror curves

$$C_q = \{0 = H(X, Y, q)\} \subset (\mathbb{C}^*)^2_{(X,Y)}$$

• Idea 2: use [Chekhov-Eynard-Orantin] topological recursion invariants

 $\omega_{g,n}$

on C_q as higher-genus B-model

• Remodeling Conjecture [Bouchard-Klemm-Mariño-Pasquetti]

4/26

イロト イボト イヨト イヨト

Remodeling Conjecture

A-model (X, ω)

X: toric Calabi-Yau 3-fold	mirror	C_q : mirror curve
ω: symplectic form	←──→	$\omega_{0,1}$: 1-form
Kähler parameters τ	map	complex parameters q
all-genus Gromov-Witten invariants		topological recursion invariants $\omega_{g,n}$

open-closed GW invariants $\leftarrow I \rightarrow$ local expansions of $\omega_{g,n}$

descendant GW invariants $\leftarrow II \rightarrow$ Laplace transforms of $\omega_{g,n}$

- I: original BKMP proposal [Eynard-Orantin, Fang-Liu-Zong]
- II: this work [Fang-Liu-Y-Zong]

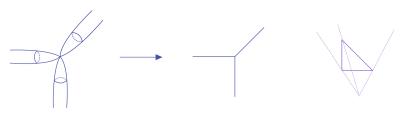
イロト イヨト イヨト

B-model $(C_q, \omega_{0,1})$

Toric Calabi-Yau 3-Folds

• X: complex toric Calabi-Yau 3-fold (manifold or orbifold)

 \circ E.g. \mathbb{C}^3



 $\ensuremath{\mathbb{C}}$ coordinate axes

toric graph (image under moment map of real CY 2-subtorus $T'_{\mathbb{R}}$)

toric fan

Song Yu (Caltech/Tsinghua YMSC)

• • • • • • • • • • • •

Toric Calabi-Yau 3-Folds

• Additional examples

resolved conifold $\mathcal{O}(-1) \oplus \mathcal{O}(-1)/\mathbb{P}^1$

 $\mathcal{O}_{\mathbb{P}^2}(-3)$

o more general examples come from canonical bundles of toric surfaces

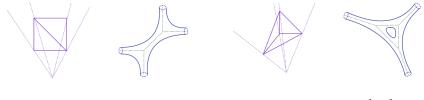
- $\circ~$ toric fan = cone over polytope with regular triangulation
- toric graph = dual graph of triangulated polytope
- We assume that X is semi-projective, i.e. a GIT quotient
 - \circ equivalently: X is a symplectic quotient, support of fan is convex

Mirror Curves

• Affine algebraic curve

$$C_q = \{0 = H(X, Y, q)\} \subset (\mathbb{C}^*)^2_{(X,Y)}$$

• Examples



H = X + Y + 1 + qXY $H = X + Y + 1 + qX^{-1}Y^{-1}$

• tropicalization of $C_q \leftrightarrow$ toric graph of X

•
$$\mathfrak{g}$$
 = genus of $C_q = \#$ compact divisors in X $N = 2\mathfrak{g} - 2 + \mathfrak{n}$

• n = # punctures of $C_q = \#$ non-compact axes in X

• N = # patches of $C_q = \#$ torus fixed points in $X = \dim H^*(X; \mathbb{C})$

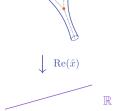
< □ > < □ > < □ > < □ > < □ >

Topological Recursion - (0,1)

• Take $(u_1,u_2)\in \mathbb{R}^2\smallsetminus \{0\}$ and let

 $\hat{\mathbf{x}} = -\mathbf{u}_1 \log \mathbf{X} - \mathbf{u}_2 \log \mathbf{Y}$

- meromorphic (multivalued) function on C_q
- N simple ramification points, one on each patch
- $\circ\,$ later, u_1,u_2 will serve as equivariant parameters of Calabi-Yau torus \mathcal{T}'
- Re(x̂) will serve as superpotential of *T'*-equivariant Landau-Ginzburg model



Let

$$\hat{y} = -\frac{\log Y}{u_1}, \qquad \omega_{0,1} = \hat{y} d\hat{x}$$

• • • • • • • • • • • •

Topological Recursion - (0,2)

- $\omega_{0,2}$ = fundamental bidifferential of second kind of compactified mirror curve \overline{C}_q
 - $\circ\,$ symmetric, meromorphic form on \overline{C}_q^2 with double pole along diagonal, locally

$$\omega_{0,2}(p_1,p_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{hol'c} \quad \text{as } p_1 \rightarrow p_2$$

• Torelli marking: pick symplectic basis

$$A_1,\ldots,A_{\mathfrak{g}}, \quad B_1,\ldots,B_{\mathfrak{g}}$$

of $H_1(\overline{C}_q;\mathbb{Z})$ such that the "A-periods" give mirror maps

$$\int_{A_i} \omega_{0,1} = \tau_i = \log q_i + O(q)$$

and use the A-cycles to normalize $\omega_{0,2}$

$$\int_{p_1\in A_i}\omega_{0,2}(p_1,p_2)=0$$

10/26

Topological Recursion - (g, n)

• On spectral curve

$$(C_q, \hat{x}, \hat{y}, \omega_{0,2})$$

run [Chekhov-Eynard-Orantin] topological recursion to obtain

• symmetric, meromorphic form on C_q^n

$$\omega_{g,n}, \qquad 2g-2+n>0$$

• free energy

$$\omega_g, \qquad g \ge 0$$

Topological Recursion - (g, n)

• On spectral curve

$$(C_q, \hat{x}, \hat{y}, \omega_{0,2})$$

run [Chekhov-Eynard-Orantin] topological recursion to obtain

• symmetric, meromorphic form on C_q^n

$$\omega_{g,n}, \qquad 2g-2+n>0$$

• free energy

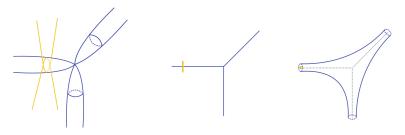
$$\omega_g, \qquad g \ge 0$$

• B-model graph sum [Dunin-Barkowski-Orantin-Shadrin-Spitz]

$$\omega_{g,n} = \sum_{\vec{\Gamma} \in G_{g,n}} \frac{w_B(\vec{\Gamma})}{|\mathsf{Aut}(\vec{\Gamma})|}$$

- $G_{g,n}$: collection of decorated stable graphs of genus g and with n leaves
- w_B: B-model weight of graphs
- quantization of genus-0 B-model

- Remodeling Conjecture relates $\omega_{g,n}$, ω_g to Gromov-Witten theory of X
- Boundary condition for open theory: Aganagic-Vafa Lagrangian L

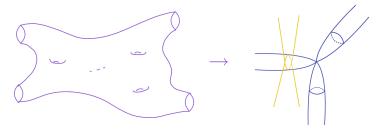


- $\circ\,$ preserved under action of real CY 2-subtorus ${\cal T}'_{\mathbb R}$
- \circ non-compact, topologically $S^1 imes \mathbb{R}^2$
- \circ intersects a unique axis in X
- we assume this axis is non-compact, corresponding to a puncture on C_q

< ロ > < 同 > < 三 > < 三 >

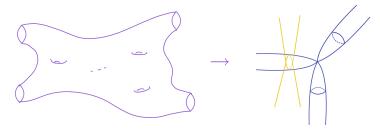
12/26

• Open Gromov-Witten invariants are virtual counts of stable maps from bordered Riemann surfaces to (*X*, *L*)



• • • • • • • • • • • •

• Open Gromov-Witten invariants are virtual counts of stable maps from bordered Riemann surfaces to (*X*, *L*)



• Consider generating function

 $F_{g,n}^{X,L}$

 F_{σ}^{X}

of invariants from genus-g domains with n boundary components

• Consider also generating function

of closed invariants counting stable maps from genus-g borderless domains

イロト イボト イヨト イヨト

13/26

• Consider generating function

 $F_{g,n}^{X,L}$

of invariants from genus-g domains with n boundary components

• A-model graph sum [Givental, Teleman, Zong]

$$F_{g,n}^{X,L} = \sum_{\vec{\Gamma} \in G_{g,n}} \frac{w_A(\vec{\Gamma})}{|\operatorname{Aut}(\vec{\Gamma})|}$$

- $\circ~G_{g,n}$: collection of decorated stable graphs of genus g and n leaves
- \circ *w_A*: A-model weight of graphs
- quantization of genus-0 A-model

Remodeling Conjecture

Theorem [Bouchard-Klemm-Mariño-Pasquetti, Eynard-Orantin, Fang-Liu-Zong]

Under the mirror map:

- $F_{g,n}^{X,L}$ can be obtained from local expansion of $\omega_{g,n}$ near the puncture on C_q corresponding to L
- F_g^X can be obtained from free energy ω_g

• • • • • • • • • • • •

Remodeling Conjecture

- Proof idea: relate $F_{g,n}^{X,L}$ and $\omega_{g,n}$ by comparing A-/B-model graph sums
- Leaf term is given by (0,1)-case, i.e. disk mirror theorem

$$dF_{0,1}^{X,L} = \omega_{0,1}$$

- [Graber-Zaslow, Fang-Liu, Fang-Liu-Tseng]
- based on genus-0 toric mirror theorem [Givental, Coates-Corti-Iritani-Tseng, Cheong-Ciocan-Fontanine-Kim]

• • • • • • • • • • • •

Remodeling Conjecture with Descendants

A-model (X, ω)

B-model $(C_q, \omega_{0,1})$

all-genus Gromov-Witten invariants

topological recursion invariants $\omega_{g,n}$

open-closed GW invariants $\leftarrow \mathsf{BKMP} \rightarrow$ local expansions of $\omega_{g,n}$ descendant GW invariants $\leftarrow \mathsf{next} \rightarrow$ Laplace transforms of $\omega_{g,n}$

Song Yu (Caltech/Tsinghua YMSC)

Remodeling Conjecture with Descendants

BIRS-IASM 2024

17/26

イロト イポト イヨト イヨト

Descendant Gromov-Witten Invariants

• For T'-equivariant insertions $\gamma_1, \ldots, \gamma_n \in H^*_{T'}(X; \mathbb{C})$ consider

$$\left\| \left(\frac{\gamma_1}{z_1 + \psi_1}, \dots, \frac{\gamma_n}{z_n + \psi_n} \right) \right\|_{g,n}^{\chi, \tau}$$

generating function of genus-g, n-pointed descendant Gromov-Witten invariants

- ψ_i : ψ -classes
- \circ *z_i*: formal variables

(日) (四) (日) (日) (日)

Descendant Gromov-Witten Invariants

• For T'-equivariant insertions $\gamma_1, \ldots, \gamma_n \in H^*_{T'}(X; \mathbb{C})$ consider

$$\left\|\left(\frac{\gamma_1}{z_1+\psi_1},\ldots,\frac{\gamma_n}{z_n+\psi_n}\right)\right\|_{g,n}^{\times,\tau}$$

generating function of genus-g, n-pointed descendant Gromov-Witten invariants

- ψ_i : ψ -classes
- \circ *z_i*: formal variables
- Can also be expressed by A-model graph sum formula
- Leaf term is again given by (0,1)-case

$$\left\|\left(\frac{\gamma}{z+\psi}\right)\right\|_{0,1}^{X,T'}$$

• Goal: obtain $\langle\!\langle \cdots \rangle\!\rangle_{g,n}^{X,T'}$ from Laplace transform of $\omega_{g,n}$ along suitable cycles

18/26

イロト イポト イヨト イヨト

Relative Cycles

• Consider exponential map $\mathbb{C}^2_{(-\log X, -\log Y)} \to (\mathbb{C}^*)^2_{(X,Y)}$ and induced \mathbb{Z}^2 -covering

$$\widetilde{C}_q = C_q \times_{(\mathbb{C}^*)^2} \mathbb{C}^2$$

• \mathbb{Z}^2 = character lattice Hom(T', \mathbb{C}^*)

• $\hat{x} = -u_1 \log X - u_2 \log Y$ is well-defined on $\widetilde{C}_q \Rightarrow T'$ -equivariant superpotential

イロト イポト イヨト イヨト

Relative Cycles

• Consider exponential map $\mathbb{C}^2_{(-\log X, -\log Y)} \to (\mathbb{C}^*)^2_{(X,Y)}$ and induced \mathbb{Z}^2 -covering

$$\widetilde{C}_q = C_q \times_{(\mathbb{C}^*)^2} \mathbb{C}^2$$

∘ \mathbb{Z}^2 = character lattice Hom(T', \mathbb{C}^*)

- $\hat{x} = -u_1 \log X u_2 \log Y$ is well-defined on $\widetilde{C}_q \Rightarrow T'$ -equivariant superpotential
- Consider group of integral relative 1-cycles

 $H_1(\widetilde{C}_q, \operatorname{Re}(\hat{x}) \gg 0; \mathbb{Z})$

• Laplace transform/oscillatory integral

$$\int_{\Gamma} e^{-\frac{\hat{x}}{z}} \omega_{0,1}$$

provides B-model integral structure

イロト イボト イヨト イヨト

Equivariant K-groups and Central Charges

• For A-model, we will consider certain T'-equivariant K-group

 $K^+_{T'}(X)$

with framing (c.f. [Iritani])

 $\kappa(\mathcal{E}) \approx \widetilde{ch}_z(\mathcal{E})\hat{\Gamma}_X^z \qquad \in H^*_{T'}(X;\mathbb{C})\llbracket u_1, u_2, z^{-1} \rrbracket$

ch_z: (z-modified) Chern character
 l²_x: (z-modified) Gamma class of X

イロト イポト イヨト イヨト

Equivariant K-groups and Central Charges

• For A-model, we will consider certain T'-equivariant K-group

 $K^+_{T'}(X)$

with framing (c.f. [Iritani])

$$\kappa(\mathcal{E}) \approx \widetilde{\mathrm{ch}}_{z}(\mathcal{E})\widehat{\Gamma}_{X}^{z} \qquad \in H_{T'}^{*}(X;\mathbb{C})\llbracket \mathsf{u}_{1},\mathsf{u}_{2},z^{-1}\rrbracket$$

- ch_z: (z-modified) Chern character
 c²_x: (z-modified) Gamma class of X
- Descendant potential/central charge

$$\left\|\left(\frac{\kappa(\mathcal{E})}{z+\psi}\right)\right\|_{0,1}^{X,T'}$$

provides A-model integral structure

(日) (四) (日) (日) (日)

Remodeling Conjecture with Descendants

Theorem [Fang-Liu-Y-Zong]

There is an isomorphism

$$\operatorname{mir}^+: K^+_{T'}(X) \to H_1(\widetilde{C}_q, \operatorname{Re}(\hat{x}) \gg 0; \mathbb{Z})$$

such that for $\mathcal{E}_1, \ldots, \mathcal{E}_n \in K^+_{T'}(X)$, under the mirror map

$$\left\|\left(\frac{\kappa(\mathcal{E}_1)}{z_1+\psi_1},\ldots,\frac{\kappa(\mathcal{E}_n)}{z_n+\psi_n}\right)\right\|_{g,n}^{X,T'} = \int_{\rho_1\in\mathsf{mir}^+(\mathcal{E}_1)}\cdots\int_{\rho_n\in\mathsf{mir}^+(\mathcal{E}_n)} e^{-\frac{\hat{x}(\rho_1)}{z_1}-\ldots-\frac{\hat{x}(\rho_n)}{z_n}}\omega_{g,n}(\rho_1,\ldots,\rho_n)$$

< □ > < □ > < □ > < □ > < □ >

Remodeling Conjecture with Descendants

Theorem [Fang-Liu-Y-Zong]

There is an isomorphism

$$\operatorname{mir}^+: K^+_{T'}(X) \to H_1(\widetilde{C}_q, \operatorname{Re}(\hat{x}) \gg 0; \mathbb{Z})$$

such that for $\mathcal{E}_1, \ldots, \mathcal{E}_n \in K^+_{T'}(X)$, under the mirror map

$$\left\|\left(\frac{\kappa(\mathcal{E}_1)}{z_1+\psi_1},\ldots,\frac{\kappa(\mathcal{E}_n)}{z_n+\psi_n}\right)\right\|_{g,n}^{X,T'} = \int_{\rho_1\in\mathsf{mir}^+(\mathcal{E}_1)}\cdots\int_{\rho_n\in\mathsf{mir}^+(\mathcal{E}_n)} e^{-\frac{\hat{x}(\rho_1)}{z_1}-\ldots-\frac{\hat{x}(\rho_n)}{z_n}}\omega_{g,n}(p_1,\ldots,p_n)$$

- mir^+ identifies the A-/B-model integral structures
- Proof is again based on comparing A-/B-model graph sums
- Reduces to comparing leaf terms

$$\left\|\left(\frac{\kappa(\mathcal{E})}{z+\psi}\right)\right\|_{0,1}^{X,T'} = \int_{\min^+(\mathcal{E})} e^{-\frac{\hat{x}}{z}} \omega_{0,1}$$

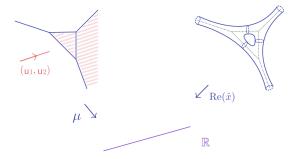
• previously obtained for compact toric case [Iritani, Fang]

21/26

イロト イポト イヨト イヨト

More on Equivariant K-groups

• $K_{T'}^+(X)$ accounts for T'-equivariant coherent sheaves with "bounded below support"

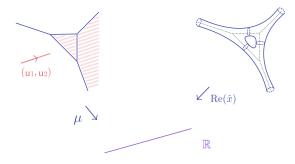


- choice of (u_1, u_2) determines 1-subtorus of $T' \Rightarrow$ moment map $\mu: X \rightarrow \mathbb{R}$
- take $K_{T'}^+(X)$ = Grothendieck group of certain subcategory of $D^b(\operatorname{Coh}_{T'}(X))$ of sheaves whose support is bounded below under μ
- generalizes [Borisov-Horja] on K-groups with compact support

• • • • • • • • • • • • •

More on Equivariant K-groups

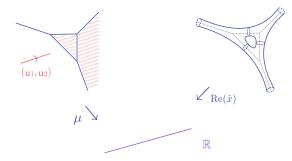
• Lemma: $K_{T'}^+(X)$ is generated by T'-equivariant line bundles on toric divisors and curves in X that are bounded below under μ



イロト イポト イヨト イヨト

More on Equivariant K-groups

• Lemma: $K_{T'}^+(X)$ is generated by T'-equivariant line bundles on toric divisors and curves in X that are bounded below under μ



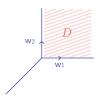
- To construct mir⁺, we construct mirror cycles of these generators
 o here we focus on line bundles on toric divisors
- Intuition from toric geometry
 - toric graph of $X \leftrightarrow$ tropicalization of C_q
 - \mathbb{C}^3 charts of $X \leftrightarrow$ pair-of-pants decomposition of C_q

• • • • • • • • • • •

Construction of Mirror Cycles

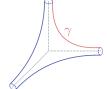
• First consider local picture at a vertex

• \mathbb{C}^3 chart \leftrightarrow pair of pants in C_q



• toric divisor $D \leftrightarrow$ cycle γ

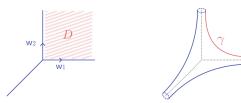
• • • • • • • • • • • •



Construction of Mirror Cycles

• First consider local picture at a vertex

• \mathbb{C}^3 chart \leftrightarrow pair of pants in C_q



• Take lift Γ of γ to cover \widetilde{C}_q

$$\int_{\Gamma} e^{-\frac{\hat{x}}{z}} \omega_{0,1} = e^{-\frac{\sqrt{-1}}{z}(aw_1+bw_2)} \frac{\Gamma(\frac{w_1}{z})\Gamma(\frac{w_2}{z})}{\Gamma(1+\frac{w_1+w_2}{z})}$$

 $\circ\,$ matches restriction of central charge of twist of \mathcal{O}_D to vertex

- \mathbb{Z}^2 choices of lift Γ , coordinate has constant imaginary part (a, b)
- \circ correspond to \mathbb{Z}^2 choices of \mathcal{T}' -equivariant line bundles twisting \mathcal{O}_D

4 D K 4 B K 4 B K 4

• toric divisor $D \leftrightarrow$ cycle γ

Construction of Mirror Cycles

• Back to global picture, to construct mir⁺($\mathcal{O}_D \otimes \mathcal{L}$), patch local cycles

- T'-equivariant line bundle \mathcal{L} is determined by T'-characters after restriction to vertices and compatibility condition at adjacent vertices
- locally, take cycles mirror to characters
- $\circ~$ compatibility condition \Rightarrow cycles can be patched together
- Construction for line bundles on toric curves is similar

4 D K 4 B K 4 B K 4

Thank you!

Song Yu	(Caltech	/Tsinghua ˈ	YMSC)	
---------	----------	-------------	-------	--

BIRS-IASM 2024 26 / 26

æ

▲□▶ ▲圖▶ ▲国▶ ▲国▶