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Topological recursion: an overview

Chekhov-Eynard-Orantin '06
Eynard-Orantin '07
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Topological recursion: an overview

Chekhov-Eynard-Orantin '06
Eynard-Orantin '07

Goal: to compute a system of quantities (correlators)

{f/<(1g:.)..,kn}7 £20. (k. k)bd=3 ki

Examples:
@ Hurwitz numbers (simple, double, monotone, weighted etc.);
@ enumeration of maps (hypermaps, fully simple, weighted etc.);
@ correlators of matrix models;
o correlators of CohFT's (GW invariants);
e WP volumes, MV volumes, etc.
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Topological recursion: an overview

Chekhov-Eynard-Orantin '06
Eynard-Orantin '07

Goal: to compute a system of quantities (correlators)

{fk(1g-,.)..,k,.,}7 g 2 07 (klu"'7k") Fd= Zk’

Potential (free energy) F; partition function (tau function) Z = ef:
h2g—2+n @)
Flpupoih) = Y ——— D> A5 pu- by
g>0, n>1 Kiyoeykn>1

n-point function:

HE . wn) = 30 (8wl wl n=12,0
Kp,oo ko

Topological recursion computes H,(,g) in a closed form inductively in g and n
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Topological recursion: an overview

Basic properties:

e there is a change w = w(z), w; = w(z;) such that H'E) becomes rational in z-coordinates
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Topological recursion: an overview

Basic properties:
e there is a change w = w(z), w; = w(z;) such that H'E) becomes rational in z-coordinates
— H,(qg) extends as a global symmetric meromorphic function on ¥", where ¥ = CP*:

Spectral curve: ¥ — CP* o global coordinate z

local coordinate w
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Topological recursion: an overview

Basic properties:
e there is a change w = w(z), w; = w(z;) such that H'E) becomes rational in z-coordinates
— H,(qg) extends as a global symmetric meromorphic function on ¥", where ¥ = CP*:

Spectral curve: ¥ — CP* o global coordinate z

local coordinate w

@ possible poles of H,(,g) are at z; = g; for a finite distinguished set P = {q1,...,qn}
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Topological recursion: an overview

Basic properties:
e there is a change w = w(z), w; = w(z;) such that H'E) becomes rational in z-coordinates
— H,(qg) extends as a global symmetric meromorphic function on ¥", where ¥ = CP*:

Spectral curve: ¥ — CP* o global coordinate z

local coordinate w

@ possible poles of H,(,g) are at z; = g; for a finite distinguished set P = {q1,...,qn}

symmetric polynomial
in z1,...,2,

H&) —
H7:1 Hszl(Z; — qj)2(3g—3+n)+1

n

, 28—24+n>0.
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Topological recursion: an overview

Basic properties:
e there is a change w = w(z), w; = w(z;) such that H'E) becomes rational in z-coordinates
— H,(qg) extends as a global symmetric meromorphic function on ¥", where ¥ = CP*:

Spectral curve: ¥ — CP o global coordinate z

local coordinate w

@ possible poles of H,(,g) are at z; = g; for a finite distinguished set P = {q1,...,qn}

(symmetric polynomial )

inz,...,z,
= N -
I szl(z,- — q;)¥3g—3+n)+1

o the recursion studies the behaviour of H{€) near the poles

He)

n

, 28—24+n>0.
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Topological recursion: an overview

Basic properties:
e there is a change w = w(z), w; = w(z;) such that H'E) becomes rational in z-coordinates
— H,(qg) extends as a global symmetric meromorphic function on ¥", where ¥ = CP*:

Spectral curve: ¥ — CP* o global coordinate z

local coordinate w

@ possible poles of H,(,g) are at z; = g; for a finite distinguished set P = {q1,...,qn}

symmetric polynomial
in z1,...,2,

He)

6= H?Zl Hszl(Zi - qj)2(3g—3+n)+17 26 —2+n>0.

o the recursion studies the behaviour of H{€) near the poles
@ the actual recursion relation involves the n-differentials

w8 =d...d,H
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Topological recursion: an overview

Basic properties:
e there is a change w = w(z), w; = w(z;) such that H'E) becomes rational in z-coordinates
— H,(qg) extends as a global symmetric meromorphic function on ¥", where ¥ = CP*:

Spectral curve: ¥ — CP o global coordinate z

local coordinate w

@ possible poles of H,(,g) are at z; = g; for a finite distinguished set P = {q1,...,qn}

symmetric polynomial
in z1,...,2,

He)

6= H?Zl Hszl(Zi - qj)2(3g—3+n)+17 26 —2+n>0.

o the recursion studies the behaviour of H{€) near the poles
@ the actual recursion relation involves the n-differentials

w® =d ... dn/_/r(jg)+5g,05n72 dwydws

(w1 —w2)?
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Hurwitz numbers: d=>",kim=2g—2+n+d,

Aut(ky, ...,k 1) 7;€5(d) a transposition
fk(g) k. — M#{(Th . ,Tm) ‘ 2) 1p0---0Ty has cyclic type (ki,...,kn) }
b m!d! 3) connectness condition

w,(,g): Z fk(lg) k. ka 1dW,—|—5g06,,2 Jdwidwy
Lk

(wi—w2)?2
i=1
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Hurwitz numbers: d=>",kim=2g—2+n+d,
Aut(ky, ... kn 1) 7,€S5(d) a transposition
fk(lg-,-)--,k,, = %#{(7‘1, .. ,Tm) ‘ 2) Ti0---0Ty has cyclic type (ki,...,kn) }

3) connectness condition

S e ka “Ldw; + G5 0002 (L
< Kkn

i=1
— -z 0) dzy dz, dz: _ _
w(z)=ze , _ w3 = o 21)2(11 222)23(1 7 P={z=1},
—r_2r i (1) _ (4 zl)zld
2 Wi 24 (1—z)* 921>
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Hurwitz numbers: d=>",kim=2g—2+n+d,
Aut(ky, ... kn 1) 7,€S5(d) a transposition
fk(lg-,-)--,k,, = %#{(7‘1, .. ,Tm) ‘ 2) Ti0---0Ty has cyclic type (ki,...,kn) }

3) connectness condition

S e ka “Ldw; + G5 0002 (L
< Kkn

i=1
— -z 0) dzy dz, dz: _ _
w(z)=ze , _ w3 = o 21)2(11 222)23(1 7 P={z=1},
—r_2r i (1) _ (4 zl)zld
2 Wi 24 (1—z)* 921>

y(x) =2z, x(z) = log(w(2)) = log z - z,

W =y da = (1 - 2) da, Wi = 7(2‘112122)2.
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Topological recursion: initial data

CEO TR
~

Initial data: (%, dx, dy, B, P) (W} g50.n51
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Topological recursion: initial data

CEO TR
~

Initial data: (%, dx, dy, B, P) (W} g50.n51

e ¥ = CP? (generalization: a smooth algebraic complex curve);

d21 d22

° 8(21’22) = @2y

diagonal)

(generalization: a bidifferential on X2 with similar singularity on the

@ dx, dy meromorphic differentials on X
© P={q1,...,qn} a set of simple zeroes of dx such that dy|, # 0

Initial differentials:

wgo)(zl) = y(z) dx(z1), wgo)(zl, 2) = B(z,2)

The higher w-differentials are computed by a recursive procedure inductively in g and n
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Topological recursion: two step induction

2g—2+n>0: K={2,...,n}, zx = (=2, ..., 2,),
First Step: z ~ q; € P, x(z) = x(0(z2))

W& V(z,0(2),20)+ ) W) (225)0(Z), 1 (0(2),25)

oy
...( ) . 8i,|Jil+ )
0¥ (z,2) = 0@ —y(o(2) dx(2)

Second Step:

w8)(z, zk) = &'8)(z, zk) + (holomorphic in z), z—¢q;, j=1,...,N.
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Topological recursion: two step induction

2g—2+n>0: K={2,...,n}, zx = (=2, ..., 2,),
First Step: z ~ q; € P, x(z) = x(0(z2))

W& V(z,0(2),20)+ ) W) (225)0(Z), 1 (0(2),25)

oy
...( ) . 8i,|Jil+ )
0¥ (z,2) = 0@ —y(o(2) dx(2)

Second Step:

w8)(z, zk) = &'8)(z, zk) + (holomorphic in z), z—¢q;, j=1,...,N.
Equivalently,
N z
w8z, zx) = Z res &f,g)(z,zK)/B(-,zl).
==
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Degenerate spectral curve data

r

s

Q: how to define TR if the nondegeneracy condition for dx, dy fails? E.g. {X -
y=z
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Degenerate spectral curve data

Q: how to define TR if the nondegeneracy condition for dx, dy fails? E.g. {X -
y =

Partial answer: Bouchard-Eynard (BE) recursion: applicable if r = +1 mod (r + s)
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Degenerate spectral curve data

x=2z"

Q: how to define TR if the nondegeneracy condition for dx, dy fails? E.g. { N
y = Zz°.

Partial answer: Bouchard-Eynard (BE) recursion: applicable if r = +1 mod (r + s)

More general answer: Generalized TR of [ABDKS "24]: applicable for all (r,s)
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Degenerate spectral curve data

Q: how to define TR if the nondegeneracy condition for dx, dy fails? E.g. {X -
y=z

Partial answer: Bouchard-Eynard (BE) recursion: applicable if r = +1 mod (r + s)
More general answer: Generalized TR of [ABDKS "24]: applicable for all (r,s)

Requirement: compatibility with limits under degenerations of the spectral curve data
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Two examples
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Two examples
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Two examples

2 Xe=2>+e€z

==
Ye ’ x.=2>+clogz
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Two examples

5 X, = Z2tez
2 oo .
xe = 2>+ € logz = dx. = 22+t<dz (2 critical points)
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Two examples

Xe = 72 + ez
Ve = 27, X =2z>+elogz (2 critical points)
Xe=2+% (3 critical points)

2
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Two examples

Xe = 72 + ez
xe = 2>+ e logz (2 critical points)
ye = 22, Xe=2+< (3 critical points)

Xe =22+ o5 (k critical points)
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Two examples
x=2? y=2°

Xe = 72 + ez
xe = 2>+ e logz (2 critical points)
ye = 22, Xe=2+< (3 critical points)

Xe =22+ o5 (k critical points)

<
x:z5, y:z_3
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Two examples
x=2? y=2°

Xe = 72 + ez
xe = 2>+ e logz (2 critical points)

ye = 22, Xe=2+< (3 critical points)
xe =24+ 55  (k critical points)
v
X = z5, y = z3
@) y=12

a
x(z) =2° + ez, (b) ye

How CEO TR differentials of these families behave as ¢ — 07
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Two examples

Answer:
e (1), k <3; (2b): NO LIMIT!
e (1), k > 4; (2a):
o the limit does exist and is govern by GenTR
o the TR differentials of these families are given by an explicit closed formula (below)
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Two examples

Answer:
e (1), k <3; (2b): NO LIMIT!
e (1), k > 4; (2a):
o the limit does exist and is govern by GenTR
o the TR differentials of these families are given by an explicit closed formula (below)
® (2c):
o the limit does exist but it is different from that one of the case (2a)

e is govern by BE recursion
o a closed formula for the TR differentials of this family is also available

Maxim Kazarian Topological Recursion Revised



Closed expression for Get TR differentials

(1) : X:ZQ‘FZTiy )/2227 k>4

(20): x=24ez, y=2"3
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Closed expression for Get TR differentials

(1) : x—z—i—k627 y=2% k>4

(20): x=24ez, y=2"3

Input data: two functions x(z), y(z) such that dx and dy are meromorphic

5 vh ~ ~ u/2_ —u/2
Z(Z’ V)iezayz Zii:Z(ZiaZtVi)7 S(U):%a
Vv — 2g—2+nyyV,
Wi(z1,va, - Zn, V) = E R28 =2y (8)
g0
n
) — [T (evtstnn-m [ ga) (_qp-y | ——
dz; dz; dx; + P~
i=1 o€cycl(n) i= 1 zc;i

e S (S0 () v W)
el SR )M (=0 v v W
[T dxi Kiy.oo ko0
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Generalized TR: overview

CEO TR: an explicit formula for &;,gg)(z,zz, s 2Zn)

z

Then, wf,g)(zl,ZQ,...,z,,) = Z res (Zz,(f)(z,zz,...,z,,)/B(-,zl).

z=q;
q;€P g
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Generalized TR: overview

CEO TR: an explicit formula for &;,gg)(z,zz, s 2Zn)

z

Then, wf,g)(zl,ZQ,...,z,,) = Z res (Zz,(f)(z,zz,...,z,,)/B(-,zl).

z=q;
q;€P g

GenTR: a new expression for (:),(7g)(z,22, s 2Zn)

The two expressions for o?ﬁ,g) differ by a holomorphic summand in a nondegenerate case
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Generalized TR: overview

CEO TR: an explicit formula for &;,gg)(z,zz, s 2Zn)

z

Then, wf,g)(zl,ZQ,...,z,,) = Z res (Zz,(f)(z,zz,...,z,,)/B(-,zl).

z=q;
q;€P g

GenTR: a new expression for (:),(7g)(z,22, s 2Zn)

The two expressions for o?ﬁ,g) differ by a holomorphic summand in a nondegenerate case

Example: (g, n) = (0,3)
B(z,2)B(0(2),z3) + B(z,23)B(0(2), z2)
(y(2) = y(o(2))) dx(2)

CEO TR: &)go)(z, 7,23) =
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Generalized TR: overview

CEO TR: an explicit formula for &;,gg)(z,zz, s 2Zn)

z

Then, wf,g)(zl,ZQ,...,z,,) = Z res (Zz,(f)(z,zz,...,z,,)/B(-,zl).

z=q;
q;€P g

GenTR: a new expression for (:),(7g)(z,22, s 2Zn)

The two expressions for o?ﬁ,g) differ by a holomorphic summand in a nondegenerate case

Example: (g, n) = (0,3)

B(z,2)B(0(2),z3) + B(z,23)B(0(2), z2)
(y(2) = y(o(2))) dx(2)

B(z,2)B(z, z3)

)

CEO TR: &)go)(z, 7,23) =

GenTR: (Ijgo)(z, 7p,23) = d;
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Generalized TR: overview

x =az "+ ho.t,

o € XY, z local coordinate
< y=bz"+hot,

ab#0,r,seZ
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Generalized TR: overview

dx =az""'dz+ hot,

0 € ¥, z local coordinate dy — bz ldz + hot,

ab#0,r,seZ
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Generalized TR: overview

. dx =az""'dz+ hot,
o € XY, z local coordinate dy — bz ldz + hot, ab#0,r,seZ

Definition

The point o € ¥ is called
special, if r +z >0 and (r,s) # (1,1),
non-special if r +s <0or (r,s) = (1,1).
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Generalized TR: overview

. dx =az""'dz+ hot,
o € XY, z local coordinate dy — bz ldz + hot, ab#0,r,seZ

Definition

The point o € ¥ is called
special, if r +z >0 and (r,s) # (1,1),
non-special if r +s <0or (r,s) = (1,1).

special | [ key-special |_| key" -special
points | | points P points PV
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Generalized TR: overview

dx =az""'dz+ hot,

dy =bz""'dz+h.ot ab#0.rs€Z

o € X, z local coordinate

Definition

The point o € ¥ is called
special, if r +z >0 and (r,s) # (1,1),
non-special if r +s <0or (r,s) = (1,1).

special | [ key-special |_| key" -special
points | | points P points PV

Initial data of GenTR: (X, dx, dy, B, P);
@ Y, B the same as for CEO TR
@ dx, dy arbitrary meromorphic differentials (with no restriction on zeroes and poles)

@ P is an arbitrary subset in the set of special points

Maxim Kazarian Topological Recursion Revised



Generalized TR: basic properties

owg)—ydx w(o) B

e 2g—2+n>0: w,(, &) is global meromorphic, symmetris, and has poles at z; = g;, q; € P.

o Two-step recursion for w'€:

(g)(z 2, ...,2,) is given by an explicit formula (below)

]
e It is global meromorphic in z

e its §>o|es in z are at special pomts and also at z,...,2z,
° selects those poles of &€ which are key-special
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Generalized TR: basic properties

owg)—ydx w(o) B

e 2g—2+n>0: w,(, &) is global meromorphic, symmetris, and has poles at z; = g;, q; € P.

o Two-step recursion for w'€:

(g)(z 2, ...,2,) is given by an explicit formula (below)

]
e It is global meromorphic in z

e its §>o|es in z are at special pomts and also at z,...,2z,
° selects those poles of &€ which are key-special

Theorem (Compatibility with known versions of TR)

e (r,s)=(2,1) & CEO

@ (r,s) =(2,—1) & Chekhov-Norbury irregular recursion
@ r >0, s==x1 < BE recursion

e (r,s)=(1,0) & LogTR of [ABDKS23]
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Generalized TR: basic properties

owg)—ydx w(o) B

e 2g—2+n>0: w,(, &) is global meromorphic, symmetris, and has poles at z; = g;, q; € P.

o Two-step recursion for w'€:

(g)(z 2, ...,2,) is given by an explicit formula (below)

]
e It is global meromorphic in z

e its §>o|es in z are at special pomts and also at z,...,2z,
° selects those poles of &€ which are key-special

Theorem (Compatibility with known versions of TR)

e (r,s)=(2,1) & CEO

@ (r,s) =(2,—1) & Chekhov-Norbury irregular recursion
@ r >0, s==x1 < BE recursion

e (r,s)=(1,0) & LogTR of [ABDKS23]

Remark. GenTR is not compatible with BE TR if s # +1
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Generalized TR: compatibility with limits

Theorem (Compatibility with limits)

GenTR is compatible with limits of the spectral curve data as long as key-special points and
key" -special points do not collapse together
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Generalized TR: compatibility with limits

Theorem (Compatibility with limits)

GenTR is compatible with limits of the spectral curve data as long as key-special points and
key" -special points do not collapse together

See e.g. Example (1), k > 4, Exampe (2a)

1
2
- — P =10
xz,yzs, {0}

This TR is compatible with the limit as s — 0

s #0: CEO TR ~» KW potential (with properly rescaled times)

s = 0: CN irregular TR ~~ BGW potential
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Generalized TR: compatibility with limits

Theorem (Compatibility with limits)

GenTR is compatible with limits of the spectral curve data as long as key-special points and
key" -special points do not collapse together

Proof
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Generalized TR: xy swap duality

xy duality transformation: an explicit closed formula  {w®} «+— {w)&)}

Theorem (Compatibility with xy swap)

(%, dx, dy, B, P) (x,dy,dx,B,PY)
GenTR\L lGenTR
Xy swap
{w,(1g)} {wr\{v(g)}
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Generalized TR: xy swap duality

xy duality transformation: an explicit closed formula  {w®} «+— {w)&)}

Theorem (Compatibility with xy swap)

(L, dx, dy, B, P) (¥, dy,dx,B,PY)
GenTR\L lGenTR
{w,(1g)} X SBp {wr\{7(g)}
Remark.
GenTR relation wy 8 s
for w'&) regular at P

Maxim Kazarian Topological Recursion Revised



Generalized TR: xy swap duality

Y = CP, PV =) (all special points are key-special). Then,
wy ) =0 for 2g — 2+ n > 0 and an explicit formula (x) for w € holds.
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Generalized TR: xy swap duality

Y = CP, PV =) (all special points are key-special). Then,
wy® =0 for 2g — 2+ n > 0 and an explicit formula (x) for w'& holds.

2(2, V) = eVTHBYZ’ 2/:t = 2(2,'7 :lZV,'), S(u) = M7

Vv _ 2g—2+n V,
Wy (z1,ve, .o 2, V) = 3 BPE2TTW Y (E)
g>0

(%) 7H< vi(8(vild,,)—1)xi ijz; ddf; %) )= 12 H

o€cycl(n) i=1 Zj

= ) (200 (20 [ v W)
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Generalized TR: KP integrability

Theorem (KP integrability)
If ©* = CP!, then GenTR differentials are KP integrable

(see the talk of Sasha Alexandrov for details)

dx = z'ldz

. is a solution of KP hierarchy for any (r,s), r +s >0
dy = z°""dz

GenTR potential for {
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Example: (r,s) = (1,2)

X =z, : .
{ _ Special points = {0}

P | PV | GenTR | GenTRY
0 | {0} | trivial | KW
{0} | O new! trivial

Expansion point: z = oo, expansion local coordinate: 1/z

F = —ggpah+ (g5pt — gP3)I° + (G5P2pi + 53Pabi — tiaP3 — 1o Po)°
2 3 2 2 2
+ (535P3P; + % P3PT + 222 pspi + 5o P3PS + P2paps

+ 28 p1p1 + 5P — 155 Ps — 1as5P2pe)t + O(R?)

This potential is a solution of KP hierarchy

v
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Example: (r,s) = (1,2)

X =z, : .
{ _ Special points = {0}

P | PV | GenTR | GenTRY
0 | {0 | trivial | KW
{0} | O new! trivial

Expansion point: z = oo, expansion local coordinate: 1/z

F = —2ph+ (95P1 — 55P5)0° + (35P2P1 + 25PaPT — T2 P> — T Po)°
+ (525 P3P} + S p2pt + 225 psp3 + 52 p3p2 + L papap?

+ 95 PTP1+ 5335P% — T93P5 — TagP2pe)t + O(R°)

CEO TR deformation: {X =zt
y =
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To be explained

Still missing:
GenTR recursion formula for & (L2)
compatibility with CEO and other versions of TR (L3)
xy swap formula (L2)

]

"]

(]

e symplectic duality as a generalization of xy duality (L3)

o closed formulas for BE TR differentials as a special case of symplectic duality (L3)
("]

definition of KP integrability (the talk of A. Alexandrov)
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xy swap transformation at a nice point

(&) Vi (g)
(i()w” } v ((';)J)” }
wy ’(2)=y dx wy M (z)=xdy
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xy swap transformation at a nice point

(g) V,(g)
C(.)n Wn
(;{) } — v{ 0 }

wy ’(2)=y dx wy { )(z):xdy

Definition
A point o € X is called nice if x =logz+ O(z), y = logz + O(z)

dx — % + (holomorphic), dy = % + (holomorphic)

Then, X = e* and Y = €¥ can serve as local coordinates

dX dY
dX:77 d_y:77 8X:X8X, 8y: Yay
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xy swap transformation at a nice point

{w®) X F of "L e hQeF_oFY o pv 10M)

{1 @)

1 . . 9 .. 52
Q= 5 Z ((: T )Pibjgp i pf+fW)
1J

Wy = Z h2g72+nw’(7g) wY = Z h2g72+nw$’g)

n
g2>0 g>0

dXidX. -1
Wn = On o 30858y — Spah xad = Y 5

anF\/ n )
(—1)"w) — 5n,2(dY1dY22 + 0p1h yrdys = Z e Ope ‘pzo [, d(Y/)
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xy swap transformation at a nice point

02 poser M o n@er o o 2N (g )

{w®)

o P .. 9?
Q== Z ((: T )Pibjgp i pf+fW)
iJ

The composition {wf,g)} — {w,Y’(g)} is given by a closed finite expression that extends to a
transformation of global meromorphic differentials and does not involve any information on a

chosen expansion point o.

The obtained transformation is called the xy swap duality
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xy swap transformation at a nice point

(0,Y) n ’
<= (1w @)

{wgg)} {eX) F of % ohQgF—gF" « L FV

o P .. 9?
Q== Z ((: T )Pibjgp i pf+fW)
iJ

The composition {wf,g)} — {w,Y’(g)} is given by a closed finite expression that extends to a
transformation of global meromorphic differentials and does not involve any information on a
chosen expansion point o.

The obtained transformation is called the xy swap duality

Remark. The potentials F and F¥ do depend on the expansion point an a choice of local
coordinates. The treatment of xy duality as the action of e~“? on the corresponding tau

function is valid for a nice point only

Maxim Kazarian Topological Recursion Revised



xy swap: the formula

Wn

HI 1dX,',

dx;
Wo(z1, U1, -y Zn, Un) H T E \A H Wie|(Zey, Ueys - - - s Zeyy s Uey )
1

i=1 eeE ()

Wi(z1, u1, .-y 2Zn, Up) = <H uihS (u;hoy,) )

(_1)nw,\1/7(g) Z K P P . n e~ uiYi
T v (=0y) . (=0),) " [ug* .. uyn] H wie)
[1i=; dvi o (i_l dy; )

I, is the set of hypergraphs (graphs with hyperedges) with n marked vertices
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xy swap: the formula

Wn u/2_ —u/2
Wn(zh ui,...,2Zn, Un - (I | Ul u/hax, ) n 9 S(U) =€ ;
[Tizy ax

dx;
Walz, u1, ..., 2n, Un) H E \A H Wie|(Ze,; Ueys - - - 5 Zey s Uey )

eeE

(1) @ "

T dy - Z (=0y)" .. (=0y,) [uf* u,’jn](H ™ ) W)

Ky kn>0 i=1

Corrections and details. 1. The dependence of
(H,'-’:l %)ng) = [h28—211) (H,'.’Zl e;;;yi)W,, in u-variables is polynomial.

2. If |e] =2 and e(1) = e(2), use the regularized differential wo(Z;, %) — (gfi‘gﬁQ instead in the
definition of the edge contribution W,,.
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Xy swap: basic properties

o wlv,(O) — xdy w2vﬁ(0) _ wgo)

Q 25— 2+n>0: w,® is globally defined and meromorphic

© Moreover, it is regular on diagonals

@ The inverse transformation is given by the same formulas with x and y swapped
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Xy swap: basic properties

0w (0) _ — xdy w2vﬁ(0) _ wgo)

Q 25— 2+n>0: w,® is globally defined and meromorphic

© Moreover, it is regular on diagonals

@ The inverse transformation is given by the same formulas with x and y swapped

Remark. We aware of no direct combinatorial proof of the last two properties. The arguments
we are using involve computation in the space of power expansions at a (nice) point

OJ:(),O) T w V,(0) + d B(z1,20)B(z1,23) —|—d B(z2,23)B(22,21) + d B(z3,21)B(z3,20) __ -0

dxidy1 dxady dxzdys
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Derivation of xy swap formula, Step 1: inclusion/exclusion

—hQ

{wf,g)} ’ F of _© e hQeF _oFY « o FV (0,¥) {(—1)”w>,/’(g)}

Notation: (F) = F | _, ‘taking the free term of a series’,

T(X) =D kXkop,
k=1

Then,

1

[Ty kX

H7:1 dx; o n2(X1 X2)2 - Z OPiq ---OPky apk,, p=0

= <J*(X1)...J (Xa)F)
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Derivation of xy swap formula, Step 1: inclusion/exclusion

—hQ

{wf,g)} ’ F of _© e hQeF _oFY « o FV (0,¥) {(—1)”w>,/’(g)}

Notation: (F) = F | _, ‘taking the free term of a series’,

T(X) =D kXkop,
k=1

Then,

1

[Ty kX

Mo 0k = 2 o |
— <J+(x1) T (Xa)F)

= (JH(X1)... JF(Xp)er)’
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Derivation of xy swap formula, Step 1: inclusion/exclusion

{wgg)} Sl F ef e e hQeF—eF" <~ FV <—>(O’Y)

{1 @)

Notation: (F) = F | _, ‘taking the free term of a series’,

JH(X) =D kX*op,
k=1

Then,

~ o
Hn ”dX. — (SH’Q (ng))%)z — <J+(X1) » ~J+(Xn)eF>
i=1 i

where the ‘connected’ correlators are defined through inclusion/exclusion
(JT(X)e") = (UT(X)eF)®
(JH(X)IT(Xp)em) = (UT(X)IT(X)em )" + (UT(X0)e" ) (UF (Xa)eF )’

(Jra). X))y = Y T /T (x0)eR)”

Ulo={1,...,n} a i€l
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Derivation of xy swap formula, Step 1: inclusion/exclusion

—hQ

{wf,g)} ’ F of _© e hQeF _oFY « o FV (0,¥) {(—1)”w>,/’(g)}

Notation: (F) = F | _, ‘taking the free term of a series’,

T(X) =D kXkop,
k=1

Then, y
Hlj_lndX,' - 6” 2 (Xfﬁ))% <J+(X1) (Xn)eF>
Moreover, define . k o ke
Z X Jk’ Jk = 07 k - 07
k=eo p—k, k<O
Then,
Wh o
M da (J(X0) ... I(Xa)e™)
i=1

(with the singular (0,2) correction taken into account automatically)
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Derivation of xy swap formula, Step 1: inclusion/exclusion

{w,(f!)} (0.X) F of e M e~ "QaF _oF" £V (0,Y) {(—1)”w,Y’(g)}
1 . . ) .. 8?2
Q=3 > ((' T )Pibjgp i Pi+jm>
ij
Similarly,
(-1)"w, FV\©°
- =(J(Y1)...J(Y,) e
I (). v o)
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Derivation of xy swap formula, Step 1: inclusion/exclusion

{wﬁg)} (0,X) F ef e "2 e hQeF=eF’ < s FV ((o_,Yl {(_1)nw;/.’(g)}
1 . . p .. 2
Q= 5 Z ((/ +J)Pipj%,-ﬂ- 1 Pfﬂ'%@p,-)
ij
Similarly,
(1) Fye
~ L (YY) (Y,
[T dyi < () (o)e >

= {J(Y1)... J(Y,) e "QeF)°
={J(V1).. . I(Ya) D)o I(Y)=€"CU(y)e @

The next step: to compute the operator J(Y) = e"?J(Y)e"? acting on C[[py, p2, - -]
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Derivation of xy swap formula, Step 2: computation of ehQJ(Y)e*hQ

Main tool: bosonic representation of gl(co) on C[[py, p2, . .. ]|

P 2
1772 . 12 4.
eZ,-<o 2 Ji eZ,->g —=Ji _ 1

j_—i—1
Y Az TEj=
z1 — 22

INISYA
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Derivation of xy swap formula, Step 2: computation of ehQJ(Y)e*hQ

Main tool: bosonic representation of gl(co) on C[[py, p2, . .. ]|

P 2
1772 . 12 4.
eZ,-<o 2 Ji eZ,->g —=Ji _ 1

j_—i—1
Y Az TEj=
z1 — 22

INISYA

71 = Xe'/2, zy = Xe=/2, 9, = Xdx:
e i<o US(UNXJ; 037, o uS (ui)X'J;
uS(u)
euS(ud<) 3 < X'J; euS(udx) 32 X'J;
uS(u)

B0 = T X It =
k,meZ
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Derivation of xy swap formula, Step 2: computation of ehQJ(Y)e*hQ

Main tool: bosonic representation of gl(cc) on C[[p1, p2, - .]]

uS(udx) 3o X' i quS(ude) Y0 X' Ji
E m u(k+ ) e e
5.()< U X 2 Ek mm+ ( ) US(U)
k,meZ

All operators involved belong to é\[(oo):

Jm = [XTIEX, 0) = Bk J(X) = [u]E(X, u),

1
Q= [X°WIE(X,u) = 5 S (k+ 1) B
keZ

Iy)y=eyyyehe= 3y L T

k,mczZ €
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Derivation of xy swap formula, Step 2: computation of ehQJ(Y)e*hQ

> o 7 dx
V) = &R J(y)e QR — _ e ulr—x) X. uh
J(Y) =" J(Y)e JE:O( 9y Ylv']e dyS( , uh)
Or, taking the coefficient of Ex_p, ,
,L(;H,L)Z e
e~ 2(k+z 1=mydX Y
ym — Y X\Y uh(k+—) Xm
o b(kmb)’ Jz;( MY(5) X dY

Substituting, we obtain

(H_l)ljy - qjlj(y") )= 3 (o) (o)l (] e:lyy> W,

ki,..., kn>0 i=1

where W, = (H,'-’Zl e“"X"dx,-) (T15-, E(X;, uih) F)°
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Derivation of xy swap formula, Step 3: computation of W,

o

(He“’x’dx) EXny inh) ... E(X, unh) €F)

QURS(UROX) Tjcg X' J; qunS(uRdx) Tjso X'J;

o Insert £(X, uh) = RS (ah)

@ expand the exponents,
@ apply inclusion/exclusion.
The result is an expression for W, in terms of w,, via summation over hypergraphs
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Derivation of xy swap formula, Step 3: computation of W,

o

(He“’x’dx) EXny inh) ... E(X, unh) €F)

QURS(UROX) Tjcg X' J; qunS(uRdx) Tjso X'J;

o Insert £(X, uh) = RS (ah)

@ expand the exponents,
@ apply inclusion/exclusion.
The result is an expression for W, in terms of w,, via summation over hypergraphs

Wn

Wi (z1, u1, ..., zn, un) _<Hu, (uihdy,) )Hi

)
i 1dX,'

dx;
Wn(Z].)Ul?"'?zrhun) - (H ) Z |A H We| zelauﬁa"'vze‘e‘?ue‘e‘)

eEE(v)
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xy swap formula: summary of computations

wn ~ (TT(X;) €F)° === ~ (ITJ(Yi) )" = (T1I(Y) €)°

summation n
k 11 5 o 1]
1k=0
n

W, ~ ([TE(X;, uih) eF)° "

JX)= 3 LXK I(Y)=eRJ(Y)e e,
k=—o0
uS(udx) ¥ XU uS(uox) ¥ X'J;

EX u) = &——"5t———, 0.=Xdx, 9, =Yy
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xy swap: the formula (reminding)

Wn

[Ty o’
dx;
Wolz1, Uty ..oy Zny tn) = (H ) Z |A H Wie)(Zeys Ueys - -+ s Zepy » Ueye)

eEE(v)

Wi(z1, u1y ..y 2Zn,Up) = (H u;AS (uihdy,) )

dX dXs

(If le] =2 and e(1) = e(2), use the regularized differential w2 (2, 2,) — G557 instead in the
definition of the edge contribution W)

(—1)"w,\,/’(g) B P K N e—uiYi @
T =, 2 o) ot o) (I7g,) v

Maxim Kazarian Topological Recursion Revised



More properties of xy swap

@ The xy swap transformation produces no singularities apart from the special points: if wl)
is regular at some non-special point for all (g, n) with 2g — 2+ n > 0, then the same holds

for wy'®

o This property motivates the definition of GenTR: it is defined by the requirement that all
xy dual differentials are holomorphic at the key-special points. Then the compatibility
GenTR with xy swap becomes a reformulation of the definition:

(X, dx,dy, B,P) (¥,dy,dx,B,PY)
GenTR\L iGenTR
{wgg)} Xy swap {w;’(g)}

More concretely, this idea is realized below
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Partial xy swap duality and definition of GenTR

W ~ <'f]f[11J(X;) JX)e) ——————— w1~ <r_7]j1J(X,-) J(Y) ef)?

i=1

combinatoria

K,k
expression kzzzo 1]

Wy ~ <'ﬁlj(x,-) E(X, uh) eF)°

° wf,g_)m extends as a global meromorphic n-differential on x"

® wy_1,1 admits a closed expression in terms of wp,'s with to differentiation in z,...,z,_1

@ Moreover, it also admits a closed expression in wY's with to differentiation in z = z,

o Corollary. w,\f’(g) is holomorpfic at z; = g for i =1,...,n and all (g, n) iff

w,(i)m is holomorphic at z, = q for all (g, n)

This is yet another reformulation of the definition of GenTR (for g € P)
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Partial xy swap duality and definition of GenTR

Wy ~ <'?1j11J(X;) J(X) eF>° — s Wpa~ <n1:[1J(Xl.) I(Y) eF)

i=1

combinatoria KTk
expg\ ﬂ ]

Wy ~ <'ﬁlj(x,-) E(X, uh) eF)°

o

To(z[n-1): z,u) = Z o H(b,-—u uhS(uhd%l_)dl ) (wn—14k(Z[n-1] Z[k]) — On,10k 2%);

1 i=1

Ta(z,u) Z HTJ |+1 ZJ(X,Z u)

[nl=Uade o
JaF0D

S,y e
dy = Y dy

=
Il

Wa(z[p-1); 2, u) =

m\Q
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o

1 - S d5:
777(2[[11711]?2’ u) = Z Kl H( 552 Y ”h 7 )dx ) (wn_Hk(Z[[nfl]]’Z[[k]]) o 5”»15k72ﬁ)’

k=1 i=1

dx
Wi(z[n-1); 2z, u) = o eTi(zu) Z H’]TJG‘_;'_I(ZJ(‘I;Z, u)

! IInH:UaJa, Ja?é@ @
— Wﬁg’( n—1]:Z,U)
wElg—)l,l(Z[[nfl]]a = —dyz [u ]e uy%
r>0
—uy W& (1012,
= (g)(z[[n 1, 2) — dyz ) [u"]e ”yw
r>1

involves w(g’),/'s with 2g’ —2+n" <2g—2+n
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o

1 - S d5:
777(2[[11711];2’ u) = Z Kl H( 552 Y ”h 7 )dx ) (wn_Hk(Z[[nfl]]’Z[[k]]) o 5”»16k72ﬁ)’

k=1 i=1

dx
Wi(z[n-1); 2z, u) = o eTi(zu) Z H’]TJQ‘_;'_I(ZJO;Z, u)

4 [M=Uada, Ja#d o

—u W,Sg)(z n—1]:Z,U)
W 1(2n-1).2) = —dy D_(=0,) [u]e Y FLRIEE
r>0

= 7w$1g)(z[[n—1]]a Z) + w( (z[[n 11,2 )

Definition (Differentials & % of Generalized Topological Recursion)

50 = —dy 37 (-0, ) [u]e vy Wietz)
r>1

This definition implies that w, )1 1 is holomorphic in z at key-special points.
This implies, in turn, the compatlblllty of GenTR with xy swap
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To be explained

Still missing:
@ compatibility with CEO and other versions of TR
o symplectic duality as a generalization of xy duality

o closed formulas for BE TR differentials as a special case of symplectic duality
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Loop equations

(%, dx, dy, B, P) initial spectral curve data of CEO TR
q € P one of zeroes of dx, K =(2,...,n)

The Linear and Quadratic Loop equations are an equivalent reformulation of CEO defining
relation for the principal part of the pole of wgg) at z =q:

The differentials

(g)(z ZK)+w(g)( ( )ZK)

1 (g-1) (&2)
dx(z) (wnﬂ (z,0( § : W\J |+1 (z ZJl)W\J2|+1(U(Z)aZJ2)
g1t+&=
J1\_1J2:K

are holomorphic at z = q.
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Loop equations

(%, dx, dy, B, P) initial spectral curve data of CEO TR
q € P one of zeroes of dx, K =(2,...,n)

The Linear and Quadratic Loop equations are an equivalent reformulation of CEO defining
relation for the principal part of the pole of wgg) at z =q:

Equivalently, the differentials

Q&0 :wfﬁ)(z, zK)

n
Qe —_1 o.)(g7 ) (z,2,2 E w! (z,z )w(gZ) (z,24)
n dx(z) \Wn+1 K) \J |+1 J )W) 4y +1\Z5 2
g1t+8=
J1|_|J2:K

have a pole at z = q with odd principal part with respect to o
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Higher loop equations for CEO TR differentials

Define K = (2,...,n),
0o 1 k o
(z,u; zx) Z P H( hS(uh-% )dX ) (wn—14k(Z[k], 2K) — On,16k 2 (;’fi‘g;z )
k=1 i=1

dx
Wh(z, u; zx) = € Ta(z.0) Z HTJ +1(z,u; 2,)

K=UnJo, Jo#0 «

(&)sk— p11,,k _ k, (g) ( terms containing w( " )
Qn k[U ]Wﬂ )/(Z) Wn (Z,ZK)+ with 2" — 2 4 n’ <2g72+n

Then, Qle)o — [uO]Qgg), Qleht — 2[u1]Q$,g) are the same as above

Theorem (Higher Loop Equations for CEO TR differentials)

The pole of Qf,g)’k at z = q € P has odd principal part for any k > 0.
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Higher loop equations

(%, dx, dy, B, P) GenTR spectral curve data
q € P a key-special point with exponents (r,s) such that r > 2 and s = 1, that is:

@ x has a critical point at g of multiplicity r — 1
@ dy is holomorphic and nonzero at g

Maxim Kazarian Topological Recursion Revised



Higher loop equations

(%, dx, dy, B, P) GenTR spectral curve data
q € P a key-special point with exponents (r,s) such that r > 2 and s = 1, that is:

@ x has a critical point at g of multiplicity r — 1
@ dy is holomorphic and nonzero at g

Definition

=, spanned by differentials (di)ka where k > 0 and « is holomorphic at g

Theorem (Loop Equation for GenTR differentials)

Qs,g)’k € =, for any k > 0.
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Higher loop equations

(%, dx, dy, B, P) GenTR spectral curve data
q € P a key-special point with exponents (r,s) such that r > 2 and s = 1, that is:

@ x has a critical point at g of multiplicity r — 1

@ dy is holomorphic and nonzero at g

Definition

=, spanned by differentials (di)ka where k > 0 and « is holomorphic at g

Theorem (Loop Equation for GenTR differentials)

Qg,g)’k € =, for any k > 0.

Remark. 1. For r = 2 these loop equations are equivalent to those discussed above

2. The first r loop equations (with k =0,1,...,r — 1) determine the principal part of the pole
of wf,g) at z = g uniquely and can serve as an alternative of GenTR in this case. Then, the
higher loop equations (for k > r) are satisfied automatically.
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Higher Loop Equations

Wn_11 ~ HJ hQJ 7thF>O
Wh=Wi_11,0~ <HJ(Xi) E(X,u) ")’

Wi 110~ HJ ) e"CE(Y, u)e™"? eF>o

Wn 1,1,0

¥ ok N
Wn—1,1
M o
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Higher Loop Equations

Wn_11 ~ HJ hQJ 7thF>O
Wh=Wi_11,0~ <HJ(Xi) E(X,u) ")’

Wi 110~ HJ ) e"CE(Y, u)e™"? F>

\%
Wn—l,l.,O
Eai[vk] comb

Wn,0 > Ok le™™ Zﬁf[uk]e’”y Wn—1.1

M\%
14Y%

n
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Higher Loop Equations

Wn_11 ~ HJ hQJ 7thF>O
Wh=Wi_11,0~ <HJ(Xi) E(X,u) ")’

Wi 110~ HJ ) e"CE(Y, u)e™"? F>

W\/
ni = —de—ax)k[vk]e‘”%

k>0
:_Z [Vk] e "W 110
k>0
k _
Wiy =Wi_110=— Z(*di) e [vFle ™ Wy 110
k>0
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Higher Loop Equations

Wn_11 ~ HJ hQJ 7thF>O
Wh=Wi_11,0~ <HJ(Xi) E(X,u) ")’

Wi 110~ HJ ) e"CE(Y, u)e™"? F>

Wv—l 1,0
Wp—1,1 = —dx Z(_ax)k[vk]e—vx n—1,1,
k>0 dx
_ _Z k] —vav 110
k>0
Wh =Wp_110 = *Z(*d ) eV [vklem Wy 1,1,0
k>0
holomorphic
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Proof of loop equations

The proof is based on a computation at a nice point. Along with the operator identity

J(Y)=e"QJ(Y)e " = i(—ayy'[w]euwx)jjg(x, uh)
j=0

we have also

IY)=€"U(Y)e " =>"(-0,) [er]e_“(y_x)j—;g(X, uh)

j=0
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Thank you!
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