Rank inequality done by free probability

Sheng Yin Baylor University

BIRS-IASM, Hangzhou September 24, 2024

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Linear algebra: Let A, B be two matrices in $M_n(\mathbb{C})$. Then

 $rank(A + B) \le rank(A) + rank(B).$

э

Linear algebra: Let A, B be two matrices in $M_n(\mathbb{C})$. Then

$$\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B).$$

We can improve it: for any $\lambda \in \mathbb{C}$

$$\operatorname{rank}(A + B) = \operatorname{rank}(A + \lambda + B - \lambda)$$

$$\leq \operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda)$$

$$\leq \inf_{\lambda \in \mathbb{C}} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda))$$

$$= \min_{\lambda \in \sigma(-A) \cup \sigma(B)} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda))$$

$$= \min\{n, \min_{\lambda \in \sigma(-A) \cap \sigma(B)} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda))\}$$

Alternatively, for two fixed matrices A and B, we have

 $\sup_{U \in U_n(\mathbb{C})} \operatorname{rank}(A + UBU^*) \le \min\{n, \min_{\lambda \in \sigma(-A) \cap \sigma(B)} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda))\},$

where $U_n(\mathbb{C})$ denotes the group of $n \times n$ unitary matrices.

Alternatively, for two fixed matrices A and B, we have

 $\sup_{U \in U_n(\mathbb{C})} \operatorname{rank}(A + UBU^*) \leq \min\{n, \min_{\lambda \in \sigma(-A) \cap \sigma(B)} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda))\},$

where $U_n(\mathbb{C})$ denotes the group of $n \times n$ unitary matrices.

Questions

Do we actually have

$$\sup_{U \in U_n(\mathbb{C})} \operatorname{rank}(A + UBU^*) = \min\{n, \min_{\lambda \in \sigma(-A) \cap \sigma(B)} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda))\}?$$

Alternatively, for two fixed matrices A and B, we have

 $\sup_{U \in U_n(\mathbb{C})} \operatorname{rank}(A + UBU^*) \leq \min\{n, \min_{\lambda \in \sigma(-A) \cap \sigma(B)} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda))\},$

where $U_n(\mathbb{C})$ denotes the group of $n \times n$ unitary matrices.

Questions

```
    Do we actually have
```

$$\sup_{U \in U_n(\mathbb{C})} \operatorname{rank}(A + UBU^*) = \min_{\lambda \in \sigma(-A) \cap \sigma(B)} (\operatorname{rank}(A + \lambda) + \operatorname{rank}(B - \lambda)) \}?$$

More generally, for a noncommutative polynomial p, can we find a dimensionless optimal rank upper bound for p(A, UBU*)?

3/22

Answers by free probability and random matrices

Theorem (Arizmendi-Cébron-Speicher-Y, 24)

Let A, B be two matrices in $M_n(\mathbb{C})$ and (\hat{A}, \hat{B}) a free copy of (A, B). Then

$$\operatorname{rank}(p(A, UBU^*)) \leq \operatorname{rank}(p(\hat{A}, \hat{B})).$$

Moreover, this upper bound can be approximated with help of random matrices.

Universality of free random variables: Atoms for non-commutative rational functions, Adv. Math., 2024

Answers by free probability and random matrices

Theorem (Arizmendi-Cébron-Speicher-Y, 24)

Let A, B be two matrices in $M_n(\mathbb{C})$ and (\hat{A}, \hat{B}) a free copy of (A, B). Then

$$\operatorname{rank}(p(A, UBU^*)) \leq \operatorname{rank}(p(\hat{A}, \hat{B})).$$

Moreover, this upper bound can be approximated with help of random matrices.

Universality of free random variables: Atoms for non-commutative rational functions, Adv. Math., 2024

Remarks

- Same results holds for the general case of finitely many variables.
- **2** A, B can be normal operators in finite von Neumann algebras.
- Polynomials can be replaced by noncommutative rational functions.

• dim ker $(\lambda - p(A, UBU^*)) \ge$ dim ker $(\lambda - p(\hat{A}, \hat{B})), \forall \lambda \in \mathbb{C}.$

Definition

A non-commutative probability space (\mathcal{A}, τ) consists of

- ullet a complex unital algebra ${\mathcal A}$
- a linear functional $\tau : \mathcal{A} \to \mathbb{C}$ satisfying $\tau (1_{\mathcal{A}}) = 1$.

An element $a \in A$ is called **non-commutative random variables**. Moreover, if A is a *-algebra, then τ is additionally required to be positive, i.e., $\tau(a^*a) \ge 0$. And we call (A, τ) a *-**probability space**.

• $(L^{\infty}(\Omega), \mathbb{E})$, where (Ω, \mathbb{P}) is a probability space.

•
$$(M_N(\mathbb{C}), \operatorname{tr}_N), \operatorname{tr}_N := \frac{1}{N} \operatorname{Tr}_N.$$

(*M*, τ) where *M* is a finite von Neumann algebra with its trace τ, called *W**-probability space.

Definition

Let (\mathcal{M}, τ) be a tracial W^* -probability space. For a normal random variable $a \in \mathcal{A}$ (i.e., $aa^* = a^*a$), its **analytic distribution** μ_a is the unique probability measure given by

$$\mu_{a} = \tau \circ E_{a}$$

where E_a is the projection-valued measure given by the spectral theorem for normal operators. It is also determined by moments, i.e., it is the unique measure satisfying $\tau(p(a, a^*)) = \int_{\mathbb{C}} p(z, \overline{z}) \mu_a(z), \quad \forall p \in \mathbb{C}[x, x^*],$ For a nc random variable a, we define

$$\operatorname{rank}(a) := \tau(p_{\overline{\operatorname{im}}(a)}) \text{ and } \dim \operatorname{ker}(a) := \tau(p_{\operatorname{ker} a}),$$

where $p_{\overline{im(a)}}$ is the projection onto the closure of the image of *a* and $p_{\ker a}$ is the projection onto the kernel of *a*. Then we have

$$\operatorname{rank}(a) + \dim \operatorname{ker}(a) = 1.$$

Recall that λ is called an **atom** of μ_a if $\mu_a(\{\lambda\}) > 0$ for a normal random variable *a*. Then

$$\mu_{a}(\{\lambda\}) = 1 - \operatorname{rank}(a - \lambda).$$

Example: eigenvalue distribution

Let $X \in M_N(\mathbb{C})$ be a Hermitian matrix in $(M_N(\mathbb{C}), tr_N)$. Then the analytic distribution of X is given by

$$\mu_X := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i},$$

where λ_i , $i = 1, \ldots, N$ are eigenvalues of X.

For $\lambda \in \mathbb{C}$,

$$\mu_X(\{\lambda\}) = \frac{1}{N} \dim \ker(X - \lambda) = 1 - \frac{1}{N} \operatorname{rank}(X - \lambda)$$

is the normalized dimension of the eigenspace corresponding to λ .

Definition

A unitary random variable u ($u^*u = uu^* = 1$) in some *-probability space (\mathcal{A}, τ) is **Haar unitary** if $\tau(u^n) = \tau((u^*)^n) = 0$, $\forall n \ge 1$.

Its analytic distribution μ_u is the Haar measure on its spectrum $\sigma(u) = \mathbb{T}$. We call u a **Haar unitary** random variable.

Example: group element

Let G be a discrete group. We consider the nc probability space $(\mathbb{C}G, \tau)$. If $g \in G$ is torsion-free, i.e., $g^n \neq e$, $\forall n \geq 1$, then δ_g is a Haar unitary random variable.

$$\begin{split} \mathbb{C}G &:= \{ \sum \alpha_g \delta_g | \alpha_g = 0 \text{ except finitely many } g \} \\ \tau(\delta_g) &:= \begin{cases} 1 & g = e \\ 0 & g \neq e \end{cases} \end{split}$$

Definition

Let (\mathcal{A}, τ) be a nc probability space and $(\mathcal{A}_i)_{i \in I}$ a family of subalgebras of \mathcal{A} containing 1. We call $(\mathcal{A}_i)_{i \in I}$ freely independent if for any $n \ge 1$,

$$\tau\left(x_{i_1}\cdots x_{i_n}\right)=0$$

whenever we have $i_1, \ldots, i_n \in I$ s.t.

•
$$x_{i_k} \in A_{i_k}$$
 with $\tau(x_{i_k}) = 0, \ k = 1, \cdots, n$,
• $i_k \neq i_{k+1}$.

In particular, we say two random variables $x, y \in A$ are **freely independent** if the subalgebras generated by $\{1, x\}$ and $\{1, y\}$ are freely independent.

Definition (Free product)

Let (\mathcal{A}_i, τ_i) be nc probability spaces. We can construct a linear function τ on the

$$*_{i\in I}\mathcal{A}_i:=\mathbb{C}1\oplus (igoplus_{k=1}^\inftyigoplus_{i_1
eq i_2
eq \cdots
eq i_k}^\infty\mathcal{A}_{i_1}^\circ\otimes\mathcal{A}_{i_2}^\circ\otimes\cdots\mathcal{A}_{i_k}^\circ),$$

where $\mathcal{A}_{i}^{\circ} := \ker \tau_{i}$ such that \mathcal{A}_{i} are freely independent in $*_{i \in I} \mathcal{A}_{i}$.

Thus, a free copy of two matrices $A, B \in M_n(\mathbb{C})$ is living in $M_n(\mathbb{C}) * M_n(\mathbb{C})$ and cannot be realized as finitely dimensional matrices. The rank over $M_n(\mathbb{C}) * M_n(\mathbb{C})$ is given through $\operatorname{tr}_n * \operatorname{tr}_n$.

Theorem (Bercovici-Voiculescu, 98)

Let x and y be two freely independen selfadjoint random variables. Then $\operatorname{rank}(x + y) < 1$ if and only if there exists $\lambda \in \mathbb{C}$ such that $\operatorname{rank}(x - \lambda) + \operatorname{rank}(y + \lambda) < 1$. Moreover, in such a case, we have

 $\operatorname{rank}(x+y) = \operatorname{rank}(x-\lambda) + \operatorname{rank}(y+\lambda).$

Theorem (Bercovici-Voiculescu, 98)

Let x and y be two freely independen selfadjoint random variables. Then $\operatorname{rank}(x + y) < 1$ if and only if there exists $\lambda \in \mathbb{C}$ such that $\operatorname{rank}(x - \lambda) + \operatorname{rank}(y + \lambda) < 1$. Moreover, in such a case, we have

$$\operatorname{rank}(x + y) = \operatorname{rank}(x - \lambda) + \operatorname{rank}(y + \lambda).$$

Combining the argument in the beginning, we see

$$egin{aligned} &\operatorname{rank}(A+UBU^*) \leq \min\{1,\min_{\lambda\in\sigma(A)\cap\sigma(-B)}\operatorname{rank}(A-\lambda)+\operatorname{rank}(B+\lambda)\}\ &=\operatorname{rank}(\hat{A}+\hat{B}), \end{aligned}$$

where (\hat{A}, \hat{B}) is a free copy of Hermitian matrices $A, B \in M_n(\mathbb{C})$.

Lemma

Let u be a Haar unitary random variable. Let $\{x, y\}$ be a set of random variables that is free from u. Then x, uyu^* are freely independent.

So (x, uyu^*) is a free copy of (x, y). In particular, taking x, y to be matrices A, B, we obtain a free copy $(A, uBu^*) \in (M_n(\mathbb{C}) * \mathbb{CZ})^2$ of (A, B). Then our goal is to show that for any unitary matrix $U \in M_n(\mathbb{C})$,

$$\operatorname{rank}(p(A, UBU^*)) \leq \operatorname{rank}(p(A, uBu^*))$$

for any polynomial *p*.

For that purpose, we need to build our Haar unitary random variables also in the matrix form for a given $n \in \mathbb{N}$.

Lemma

Let *u* be a free Haar unitary random variable. For each integer *n*, with the help of free compressions by matrix units, we can construct $\hat{U} = (u_{ij})_{i,j=1}^{n}$ such that

- \hat{U} is a Haar unitary random variable.
- $\hat{U} \text{ is free from } M_n(\mathcal{M}) \text{ if } \mathcal{M} \text{ is free from } \{u_{ij}\}.$
- *u_{ij}*, *i*, *j* = 1,..., *n* form an algebra isomorphic to the polynomials of *n*² formal variables with rank preserving.

(1)(2) are well-known results in free probability. (3) follows from a result by Mai-Speicher-Y., 23.

14 / 22

Let $A, B \in M_n(\mathbb{C}) \subseteq M_n(\mathcal{M})$. Then Item (1)(2) of our free compression lemma for Haar unitaries says that there is a Haar unitary

$$\hat{U} = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ u_{21} & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & & \vdots \\ u_{n1} & u_{n2} & \cdots & u_{nn} \end{pmatrix} \in M_n(\mathcal{M}).$$

that is free from A, B. Hence our goal now is show that for any unitary matrix U,

$$\operatorname{rank}(p(A, UBU^*)) \leq \operatorname{rank}(p(A, \hat{U}B\hat{U}^*)))$$

for any polynomial *p*.

Definition

Let A be a $n \times n$ matrix over nc polynomials in formal variables. The **inner rank** of A, denoted by $\rho(A)$, is the minimal integer r such that the factorizations A = PQ holds, where P, Q are $n \times r$ and $r \times n$ matrices respectively.

$$(A+B) \leq \rho(A) + \rho(B).$$

$$\ \, o(AB) \leq \min\{\rho(A),\rho(B)\}.$$

It actually can be defined on any ring R. For any evalution map Φ from polynomials to a ring R and we denote it by ρ_R, we have

$$\rho_R(\Phi(A)) \leq \rho(A).$$

• For a matrix $A \in M_n(\mathbb{C})$, $\rho_{\mathbb{C}}(A) = \operatorname{rank}(A)$.

Let $x_{ij}, i, j = 1, ..., n$ be formal variables and $U = (U_{ij})_{i,j=1}^n \in M_n(\mathbb{C})$ a unitary matrix. Consider the homomorphism Φ defined by $\Phi(x_{ij}) = U_{ij}$, we have

$$\mathsf{rank}(P(U_{ij})) =
ho_{\mathbb{C}}(P(U_{ij})) \le
ho(P)$$

for any matrix P over $x_{ij}, i, j = 1, ..., n$. Then it remains to show that

$$\rho(P) \leq \operatorname{rank}(P(u_{ij})),$$

where $\hat{U} = (u_{ij})_{i,j=1}^n$ is built out of the free compression of a Haar unitary. Actually Item (3) of our compression lemma claims that

$$\rho(P) = \operatorname{rank}(P(u_{ij})).$$

Summary: universality of free variables

Let $A, B \in M_n(\mathbb{C}) \subseteq M_n(\mathcal{M})$. Then for the Haar unitary

$$\hat{U}=(u_{ij})_{i,j=1}^n\in M_n(\mathcal{M}).$$

that is free from A, B, through a matrix \overline{U} of formal variables $x_{ij}, i, j = 1, ..., n$ $\overline{U} = (x_{ij})_{i,j=1}^{n},$

We have

 $\mathsf{rank}(\textit{p}(\textit{A},\textit{UBU}^*)) \leq \rho(\textit{p}(\textit{A},\bar{\textit{U}}\textit{B}\bar{\textit{U}}^{-1})) = \mathsf{rank}(\textit{p}(\textit{A},\hat{\textit{U}}\textit{B}\hat{\textit{U}}^*))$

for any polynomial p.

Summary: universality of free variables

Let $A, B \in M_n(\mathbb{C}) \subseteq M_n(\mathcal{M})$. Then for the Haar unitary

$$\hat{U}=(u_{ij})_{i,j=1}^n\in M_n(\mathcal{M}).$$

that is free from A, B, through a matrix \overline{U} of formal variables $x_{ij}, i, j = 1, ..., n$ $\overline{U} = (x_{ij})_{i,i=1}^{n},$

We have

$$\mathsf{rank}(p(A, UBU^*)) \leq
ho(p(A, ar{U}Bar{U}^{-1})) = \mathsf{rank}(p(A, \hat{U}B\hat{U}^*))$$

for any polynomial p.

Caution: \overline{U}^{-1} actually breaks down the homorphism but a linearization trick can save the rank inequality.

Theorem

Let U_N be a Haar unitary random matrices, i.e., matrix-valued random variable sampled according to the Haar measure on $N \times N$ unitary matrices. Let X_N, Y_N be deterministic matrices such that $\{\mu_{X_N}\}_{N\geq 1}, \{\mu_{Y_N}\}_{N\geq 1}$ converge in distribution to probability measures μ_x, μ_y respectively. Then $Y_N := U_N X_N U_N^*$ is asymptotic free from X_N . That is, for freely independent random variables $x, y \in (\mathcal{M}, \tau)$ with analytic distributions μ_x, μ_y , we have

$$\lim_{N\to\infty} \operatorname{tr}_n(p(X_N, U_N Y_N U_N^*)) = \tau(p(x, y)),$$

for any polynomial p.

In particular, we see that for two fixed matrices A, B in $M_n(\mathbb{C})$, we have $(X_N, Y_N) := (A \otimes I_N, U_{Nn}(B \otimes I_N)U_{Nn}^*)$ converge in distribution towards a free copy (\hat{A}, \hat{B}) of (A, B), where U_{Nn} is a sequence of Haar unitary random matrices.

It follows that for any polynomial p and

$$P := \begin{pmatrix} 0 & p \\ p^* & 0 \end{pmatrix}$$

 $\mu_{P(X_m,Y_m)}$ converges weakly towards $\mu_{P(\hat{A},\hat{B})}.$ Thanks to Portmanteau theorem, we conclude

$$\limsup_{m\to\infty} \mu_{P(X_m,Y_m)}(\{\lambda\}) \leq \mu_{P(\hat{A},\hat{B})}(\{\lambda\}), \quad \forall \lambda \in \mathbb{C}.$$

This implies that

$$\lim_{m\to\infty}\mu_{P(X_m,Y_m)}(\{\lambda\})=\mu_{P(\hat{A},\hat{B})}(\{\lambda\}),\quad\forall\lambda\in\mathbb{C}$$

and

$$\lim_{n\to\infty} \operatorname{rank}(p(X_m,Y_m)) = \operatorname{rank}(p(\hat{A},\hat{B}).$$

Sheng Yin (Baylor University)

r

Dimensionless optimal rank upper bound

Theorem (Arizmendi-Cébron-Speicher-Y, 24)

Let A, B be two matrices in $M_n(\mathbb{C})$. We consider the set of matrices

$$\chi = \coprod_{N=1}^{\infty} \left\{ (X, Y) \in M_N(\mathbb{C})^2 \mid \frac{1}{n} \operatorname{rank}(\lambda - A) = \frac{1}{N} \operatorname{rank}(\lambda - X), \\ \frac{1}{n} \operatorname{rank}(\lambda - B) = \frac{1}{N} \operatorname{rank}(\lambda - Y) \right\}$$

Then for any polynomial $p \in \mathbb{C} \langle x, y
angle$

$$\sup_{X,Y\in\chi}\frac{1}{N}\operatorname{rank} p(X,Y) = \frac{1}{n}\operatorname{rank}(p(\hat{A},\hat{B})) = \frac{1}{n}\rho(A,\bar{U}B\bar{U}^{-1}),$$

where \hat{A} , \hat{B} are freely independent copies of A, B and $\bar{U} = (x_{ij})_{i,j=1}^{n}$ is a matrix over polynomials in x_{ij} , i, j = 1, ..., n.

Dimensionless optimal rank upper bound

Theorem (Arizmendi-Cébron-Speicher-Y, 24)

Let A, B be two matrices in $M_n(\mathbb{C})$. We consider the set of matrices

$$\chi = \coprod_{N=1}^{\infty} \left\{ (X, Y) \in M_N(\mathbb{C})^2 \mid \frac{1}{n} \operatorname{rank}(\lambda - A) = \frac{1}{N} \operatorname{rank}(\lambda - X), \\ \frac{1}{n} \operatorname{rank}(\lambda - B) = \frac{1}{N} \operatorname{rank}(\lambda - Y) \right\}$$

Then for any polynomial $p \in \mathbb{C} \langle x, y
angle$

$$\sup_{X,Y\in\chi}\frac{1}{N}\operatorname{rank} p(X,Y) = \frac{1}{n}\operatorname{rank}(p(\hat{A},\hat{B})) = \frac{1}{n}\rho(A,\bar{U}B\bar{U}^{-1}),$$

where \hat{A} , \hat{B} are freely independent copies of A, B and $\bar{U} = (x_{ij})_{i,j=1}^{n}$ is a matrix over polynomials in x_{ij} , i, j = 1, ..., n.

The upper bound is not optimal for a fixed dimension. For example, $p = (xy - yx)^2 z - z(xy - yx)^2$ is vanishing on 2×2 matrices but $\sup_{X,Y,Z \in \chi} \frac{1}{N} \operatorname{rank}(p(X, Y, Z)) > 0$ for some matrices A, B, C.

Sheng Yin (Baylor University)

21/22

Theorem (Arizmendi-Cébron-Speicher-Y, 24)

Let A, B be two matrices. Then we have

- $\operatorname{rank}(A+B) \leq \min\{n, \min_{\lambda \in \sigma(A) \cap \sigma(-B)}(\operatorname{rank}(A-\lambda) + \operatorname{rank}(B+\lambda))\};$
- $\operatorname{rank}(AB BA) \leq \min\{n, \min_{\lambda \in \mathbb{C}} 2 \operatorname{rank}(A \lambda),$

 $\min_{\lambda \in \mathbb{C}} 2 \operatorname{rank}(B - \lambda) \};$

• $\operatorname{rank}(AB + BA) \le \min\{n, 2\operatorname{rank}(A), 2\operatorname{rank}(B), \operatorname{rank}(A) + \min_{\lambda \neq 0}\operatorname{rank}(B - \lambda), \min_{\lambda \neq 0}\operatorname{rank}(A - \lambda) + \operatorname{rank}(B)\}$

where the quantities on right hand side come from rank $(\hat{A} + \hat{B})$, rank $(\hat{A}\hat{B} - \hat{B}\hat{A})$, rank $(\hat{A}\hat{B} + \hat{B}\hat{A})$ for a free copy (\hat{A}, \hat{B}) of (A, B).

22 / 22

Theorem (Arizmendi-Cébron-Speicher-Y, 24)

Let A, B be two matrices. Then we have

- $\operatorname{rank}(A+B) \leq \min\{n, \min_{\lambda \in \sigma(A) \cap \sigma(-B)}(\operatorname{rank}(A-\lambda) + \operatorname{rank}(B+\lambda))\};$
- $\operatorname{rank}(AB BA) \leq \min\{n, \min_{\lambda \in \mathbb{C}} 2 \operatorname{rank}(A \lambda),$

 $\min_{\lambda \in \mathbb{C}} 2 \operatorname{rank}(B - \lambda) \};$

• $\operatorname{rank}(AB + BA) \le \min\{n, 2\operatorname{rank}(A), 2\operatorname{rank}(B), \operatorname{rank}(A) + \min_{\lambda \neq 0}\operatorname{rank}(B - \lambda), \min_{\lambda \neq 0}\operatorname{rank}(A - \lambda) + \operatorname{rank}(B)\}$

where the quantities on right hand side come from rank $(\hat{A} + \hat{B})$, rank $(\hat{A}\hat{B} - \hat{B}\hat{A})$, rank $(\hat{A}\hat{B} + \hat{B}\hat{A})$ for a free copy (\hat{A}, \hat{B}) of (A, B).

Thank you!