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2D Boussinesq equation without density di↵usivity

⇢(x , t): density of incompressible fluid.

u(x , t): velocity field of fluid.

The spatial domain ⌦ is either the plane R2, the torus T2, or the strip
T⇥ [�⇡,⇡].

Throughout this talk, we consider the 2D Boussinesq equation without
density di↵usivity:

8
><

>:

⇢t + u ·r⇢ = 0,

ut + u ·ru = �rp � ⇢e2 + ⌫�u,

r · u = 0,
x1

x2

We’ll discuss the viscous case ⌫ > 0, and the inviscid case ⌫ = 0.

Goal: In both cases, we’ll prove that solution can have small scale formation
(infinite-in-time growth of Sobolev norms) as t ! 1.



The viscous case: global well-posedness and upper bounds

When ⌫ > 0, global-wellposedness of regular solutions is known:

For ⌦ = R2: global regularity by Hou–Li ’05 in the space
(u, ⇢) 2 H

m ⇥ H
m�1 for m � 3, and Chae ’06 in H

m ⇥ H
m for m � 3.

For bounded ⌦: global regularity by Lan–Pan–Zhao ’11 in H
3 ⇥ H

3, and
Hu–Kukavica–Ziane ’13 in H

m ⇥ H
m�1 for m � 2.

Upper bounds for the global solution:

Ju ’17: For bounded ⌦, k⇢kH1 . e
Ct

2
;

Kukavica–Wang ’20: For bounded ⌦, k⇢kH1 . e
Ct and kukW 2,p  Cp;

for R2, k⇢kH1 . e
Ct

(1+�)
.

Kukavica–Massatt–Ziane ’21: For bounded ⌦,
k⇢kH2  C✏e

✏t , kukH3  C✏e
✏t .



What about lower bounds?

Note that the above estimates all deal with the upper bounds of solutions.

Question. What about lower bounds? Can solutions have small scale
formation as t ! 1?

Lower bound by Brandolese–Schonbek ’12: in R2, if ⇢0 does not have mean
zero, ku(t)kL2 ⇠ (1 + t)1/4. (This is due to potential energy converting to
kinetic energy, and does not imply growth in higher derivatives)

We are not aware of any examples of infinite-in-time growth of k⇢(t)kHm in
the literature.



Small scale formation in the viscous case

Theorem (Kiselev–Park–Y. ’22, preprint)

Let ⌫ > 0, ⌦ = T2
. If the smooth initial data (⇢0, u0) satisfies the following

Symmetry assumptions: ⇢0 is even-odd, u01 is odd-even, u02 is even-odd.

Sign assumptions: ⇢0 � 0 for x2 � 0, and ⇢0 = 0 on the x2-axis.

Then the global-in-time smooth solution satisfies

lim sup
t!1

t
� 1

6 k⇢(t)k
Ḣ1 = +1.

Remark: Under these assumptions one can show k⇢(t)k
Ḣ1 has a refined

sub-exponential upper bound exp(Ct↵) for some ↵ 2 (0, 1), so the growth is
somewhere between algebraic and sub-exponential.

x2

x1



Evolution of potential energy

Define the potential energy EP(t) :=
´
T2 ⇢x2dx , and kinetic energy

EK (t) :=
´
T2 |u|2dx .

It’s well-known that the total energy is decreasing in time:

d

dt
(EP(t) + EK (t)) = �⌫kru(t)k2

L2 .

This implies that
´1
0 kru(t)k2

L2dt < C (⌫, ⇢0, u0).

Since the two equations are coupled by the gravity force, we’ll track the
evolution of potential energy EP(t) itself.

A quick computation gives d

dt
EP(t) =

´
T2 ⇢u2dx , which is uniformly

bounded.

Let’s take one more time derivative:

d
2

dt2
EP(t) =

2X

i,j=1

ˆ
T2

((��)�1@2⇢) @iuj @juidx

| {z }
=:A(t)

� ⌫

ˆ
T2

r⇢ ·ru2dx

| {z }
=:B(t)

�k@1⇢k2
Ḣ�1 .



Let’s take one more time derivative:

d
2

dt2
EP(t) =

2X

i,j=1

ˆ
T2

((��)�1@2⇢) @iuj @juidx

| {z }
=:A(t)

� ⌫

ˆ
T2

r⇢ ·ru2dx

| {z }
=:B(t)

�k@1⇢k2
Ḣ�1

.

Since
´1
0

kru(t)k2
L2dt < 1, this implies

´1
0

A(t)dt < 1.

Suppose lim sup
t!1 kr⇢kL2 < 1, we have

´
t

0
B(s)ds . t

1/2.

This implies
´
t

0
k@1⇢k2

Ḣ�1
ds . t

1/2, so k@1⇢k2
Ḣ�1

needs to decay to zero like

t
�1/2 as t ! 1.

Key observation (by a Fourier argument): If k@1⇢(t)kḢ�1 ⌧ 1 and ⇢ ⌘ 0 on
x2 axis, we have k⇢k

Ḣ1 � 1. More precisely, k⇢k
Ḣ1 & k@1⇢(t)k�1

Ḣ�1
.

This contradicts our assumption lim sup
t!1 kr⇢kL2 < 1. (A more careful

argument gives us algebraic growth in time).



Inviscid 2D Boussinesq equation

In the inviscid case µ = 0, let us work with the variables ⇢ and vorticity !:
(
⇢t + u ·r⇢ = 0,

!t + u ·r! = �@1⇢,

where u can be recovered from the Biot-Savart law u = r?(��)�1!.

Whether smooth initial data can lead to a blow-up in T2 or R2 is an
outstanding open question.

It is well-known that away from the axis of symmetry, the 3D axisymmetric
Euler equation is closely related to 2D Boussinesq:

(
Dt(ru✓) = 0,

Dt

⇣
!✓

r

⌘
= r

�4@z(ru✓)2,

where Dt := @t + u
r@r + u

z@z is the material derivative, and (ur , uz) can be
recovered from !✓/r by a similar Biot-Savart law.



Blow-up for inviscid 2D Boussinesq and 3D Euler

In the presence of boundary, or for non-smooth initial data, there are many
exciting developments on finite-time blow-up:

Luo–Hou ’14: convincing numerical evidence for blow-up at the boundary for
3D axisymmetric Euler

Elgindi–Jeong ’20: blow-up in domain with a corner

Elgindi ’21: blow-up for C 1,↵ solutions for 3D Euler

Chen–Hou ’21: blow-up for C 1,↵ solutions with boundary

Wang–Lai–Gómez-Serrano–Buckmaster ’22: numerics for approximate
self-similar blow-up solution using physics-informed neural networks.

Chen–Hou ’22: stable nearly self-similar blowup for smooth solutions
(combination of analysis + computer-assisted estimates)

Question: Can one construct solutions with infinite-in-time growth for more
general class of initial data?



Infinite-in-time growth in a strip

Theorem (Kiselev–Park–Y. ’22, preprint)

Let ⌦ = T⇥ [0,⇡]. Let ⇢0 2 C
1(⌦) be even in x1, and !0 2 C

1(⌦) be odd in

x1, with
´
[0,⇡]⇥[0,⇡] !0dx � 0. Assume that there exists k0 > 0 such that

⇢0 � k0 > 0 on {0}⇥ [0,⇡], and ⇢0  0 on {⇡}⇥ [0,⇡]. Then the solution

satisfies the following during its lifespan:

k!(t)kLp(⌦) & t
3� 2

p ,

ku(t)kL1(⌦) & t,

sup
⌧2[0,t]

kr⇢(⌧)kL1(⌦) & t
2.

x1

x2

0 ⇡

⇡

�⇡

The proof is a soft argument, based on an interplay
between various monotone and conservative quantities.



Monotonicity of vorticity integral

Let Q be the right half of the strip. Simple but useful observation:

d

dt

ˆ
Q

!dx =⇠⇠⇠⇠⇠⇠⇠:0ˆ
Q

�u ·r!dx �
ˆ
Q

@1⇢dx

=

ˆ ⇡

0
⇢(0, x2, t)| {z }

�k0

dx2 �
ˆ ⇡

0
⇢(⇡, x2, t)| {z }

0

dx2

� k0⇡.

Since
´
@Q u · dl =

´
Q
!dx � k0⇡t, we have ku(t)kL1 grows at least linearly.

On the other hand, kukL2 is bounded for all times by energy conservation.

Combining the boundedness of kukL2(Q) and linear growth of
´
@Q u · dl , we

know u must change rapidly in a small neighborhood of @Q, leading to
super-linear growth of ru (and !).



Infinite-in-time growth in T2

To our best knowledge, there has been no blow-up / infinite-in-time growth
results in T2.
In T2, we obtain infinite-in-time growth for a large class of initial data
satisfying certain symmetry/sign conditions:

Theorem (Kiselev–Park–Y. ’22, preprint)

Let ⇢0 2 C
1(T2) be even-odd, and !0 2 C

1(T2) be odd-odd. Assume ⇢0 � 0
on {0}⇥ [0,⇡] with k0 := sup

x22[0,⇡] ⇢0(0, x2) > 0, and ⇢0  0 on {⇡}⇥ [0,⇡].
Then the solution satisfies the following during its lifespan:

sup
⌧2[0,t]

kr⇢(⌧)kL1(T2) & t
1/2. (1)

x2

x10 ⇡

⇡

�⇡



3D axisymmetric Euler in an annular cylinder

Using a similar idea, we obtain infinite-in-time growth for the 3D axisymmetric
Euler equation in an annular cylinder

⌦ = {(r , ✓, z) : r 2 [⇡, 2⇡]; ✓ 2 T, z 2 T}.

Theorem (Kiselev–Park–Y. ’22, preprint)

Let u
✓
0 2 C

1(⌦) be even in z , !✓
0 2 C

1(⌦) odd in z , with
´ ⇡
0

´ 2⇡
⇡ !✓

0drdz � 0.
Assume there exists k0 > 0 such that u

✓
0 � k0 > 0 on z = ⇡, and |u✓0 |  1

8k0 on

z = 0. Then the solution to axisymmetric 3D Euler satisfies

k!✓(t)kLp(⌦) & t
3� 2

p and ku(t)kL1(⌦) & t

during the lifespan of the solution.

z

⇡ 2⇡ r

�⇡

⇡

z

Q



Thank you for your attention!


