Small scale formations for the incompressible Boussinesq equation

Yao Yao National University of Singapore

joint work with Alexander Kiselev and Jaemin Park

Partial Differential Equations in Fluid Dynamics BIRS-IASM, Hangzhou

2D Boussinesq equation without density diffusivity

- $\rho(x, t)$: density of incompressible fluid.
- u(x, t): velocity field of fluid.
- The spatial domain Ω is either the plane \mathbb{R}^2 , the torus \mathbb{T}^2 , or the strip $\mathbb{T} \times [-\pi, \pi]$.
- Throughout this talk, we consider the 2D Boussinesq equation without density diffusivity:

$$\begin{cases} \rho_t + u \cdot \nabla \rho = \mathbf{0}, \\ u_t + u \cdot \nabla u = -\nabla p - \rho e_2 + \nu \Delta u, \\ \nabla \cdot u = \mathbf{0}, \end{cases}$$

- We'll discuss the viscous case $\nu > 0$, and the inviscid case $\nu = 0$.
- Goal: In both cases, we'll prove that solution can have small scale formation (infinite-in-time growth of Sobolev norms) as $t \to \infty$.

The viscous case: global well-posedness and upper bounds

When $\nu > 0$, global-wellposedness of regular solutions is known:

- For $\Omega = \mathbb{R}^2$: global regularity by Hou–Li '05 in the space $(u, \rho) \in H^m \times H^{m-1}$ for $m \ge 3$, and Chae '06 in $H^m \times H^m$ for $m \ge 3$.
- For bounded Ω : global regularity by Lan–Pan–Zhao '11 in $H^3 \times H^3$, and Hu–Kukavica–Ziane '13 in $H^m \times H^{m-1}$ for $m \ge 2$.

Upper bounds for the global solution:

- Ju '17: For bounded Ω , $\|\rho\|_{H^1} \lesssim e^{Ct^2}$;
- Kukavica–Wang '20: For bounded Ω , $\|\rho\|_{H^1} \leq e^{Ct}$ and $\|u\|_{W^{2,p}} \leq C_p$; for \mathbb{R}^2 , $\|\rho\|_{H^1} \leq e^{Ct^{(1+\beta)}}$.
- Kukavica-Massatt-Ziane '21: For bounded Ω , $\|\rho\|_{H^2} \leq C_{\epsilon} e^{\epsilon t}, \|u\|_{H^3} \leq C_{\epsilon} e^{\epsilon t}.$

- Note that the above estimates all deal with the upper bounds of solutions.
- Question. What about lower bounds? Can solutions have small scale formation as $t \to \infty$?
- Lower bound by Brandolese–Schonbek '12: in \mathbb{R}^2 , if ρ_0 does not have mean zero, $\|u(t)\|_{L^2} \sim (1+t)^{1/4}$. (This is due to potential energy converting to kinetic energy, and does not imply growth in higher derivatives)
- We are not aware of any examples of infinite-in-time growth of $\|\rho(t)\|_{H^m}$ in the literature.

Small scale formation in the viscous case

Theorem (Kiselev–Park–Y. '22, preprint)

Let $\nu > 0$, $\Omega = \mathbb{T}^2$. If the smooth initial data (ρ_0, u_0) satisfies the following

• Symmetry assumptions: ρ_0 is even-odd, u_{01} is odd-even, u_{02} is even-odd

• Sign assumptions: $\rho_0 \ge 0$ for $x_2 \ge 0$, and $\rho_0 = 0$ on the x_2 -axis.

Then the global-in-time smooth solution satisfies

$$\limsup_{t\to\infty} \frac{t^{-\frac{1}{6}}}{\|\rho(t)\|_{\dot{H}^1}} = +\infty.$$

Preserved for all time!

Remark: Under these assumptions one can show $\|\rho(t)\|_{\dot{H}^1}$ has a refined sub-exponential upper bound $\exp(Ct^{\alpha})$ for some $\alpha \in (0, 1)$, so the growth is somewhere between algebraic and sub-exponential.

Evolution of potential energy

- Define the potential energy $E_P(t) := \int_{\mathbb{T}^2} \rho x_2 dx$, and kinetic energy $E_K(t) := \int_{\mathbb{T}^2} |u|^2 dx$.
- It's well-known that the total energy is decreasing in time:

$$\frac{d}{dt}(E_P(t)+E_K(t))=-\nu\|\nabla u(t)\|_{L^2}^2.$$

This implies that $\int_0^\infty \|\nabla u(t)\|_{L^2}^2 dt < C(\nu, \rho_0, u_0).$

- Since the two equations are coupled by the gravity force, we'll track the evolution of potential energy $E_P(t)$ itself.
- A quick computation gives $\frac{d}{dt}E_P(t) = \int_{\mathbb{T}^2} \rho u_2 dx$, which is uniformly bounded.
- Let's take one more time derivative:

$$\frac{d^2}{dt^2}E_P(t) = \underbrace{\sum_{i,j=1}^2 \int_{\mathbb{T}^2} ((-\Delta)^{-1}\partial_2 \rho) \partial_i u_j \partial_j u_i dx}_{=:A(t)} - \underbrace{\nu \int_{\mathbb{T}^2} \nabla \rho \cdot \nabla u_2 dx}_{=:B(t)} - \frac{\|\partial_1 \rho\|_{\dot{H}^{-1}}^2}{=:B(t)}$$

• Let's take one more time derivative:

$$\frac{d^2}{dt^2}E_P(t) = \underbrace{\sum_{i,j=1}^2 \int_{\mathbb{T}^2} \left(\left(-\Delta\right)^{-1} \partial_2 \rho \right) \partial_i u_j \, \partial_j u_i dx}_{=:A(t)} - \underbrace{\nu \int_{\mathbb{T}^2} \nabla \rho \cdot \nabla u_2 dx}_{=:B(t)} - \left\| \partial_1 \rho \right\|_{\dot{H}^{-1}}^2$$

- Since $\int_0^\infty \|\nabla u(t)\|_{L^2}^2 dt < \infty$, this implies $\int_0^\infty A(t) dt < \infty$.
- Suppose $\limsup_{t\to\infty} \|\nabla \rho\|_{L^2} < \infty$, we have $\int_0^t B(s) ds \lesssim t^{1/2}$.
- This implies $\int_0^t \|\partial_1 \rho\|_{\dot{H}^{-1}}^2 ds \lesssim t^{1/2}$, so $\|\partial_1 \rho\|_{\dot{H}^{-1}}^2$ needs to decay to zero like $t^{-1/2}$ as $t \to \infty$.
- Key observation (by a Fourier argument): If $\|\partial_1 \rho(t)\|_{\dot{H}^{-1}} \ll 1$ and $\rho \equiv 0$ on x_2 axis, we have $\|\rho\|_{\dot{H}^1} \gg 1$. More precisely, $\|\rho\|_{\dot{H}^1} \gtrsim \|\partial_1 \rho(t)\|_{\dot{H}^{-1}}^{-1}$.

• This contradicts our assumption $\limsup_{t\to\infty} \|\nabla\rho\|_{L^2} < \infty$. (A more careful argument gives us algebraic growth in time).

Inviscid 2D Boussinesq equation

• In the inviscid case $\mu = 0$, let us work with the variables ρ and vorticity ω :

$$\begin{cases} \rho_t + \mathbf{u} \cdot \nabla \rho = \mathbf{0}, \\ \omega_t + \mathbf{u} \cdot \nabla \omega = -\partial_1 \rho, \end{cases}$$

where u can be recovered from the Biot-Savart law $u = \nabla^{\perp} (-\Delta)^{-1} \omega$.

- Whether smooth initial data can lead to a blow-up in \mathbb{T}^2 or \mathbb{R}^2 is an outstanding open question.
- It is well-known that away from the axis of symmetry, the 3D axisymmetric Euler equation is closely related to 2D Boussinesq:

$$\begin{cases} D_t(ru^{\theta}) = 0, \\ D_t\left(\frac{\omega^{\theta}}{r}\right) = r^{-4}\partial_z(ru^{\theta})^2, \end{cases}$$

where $D_t := \partial_t + u^r \partial_r + u^z \partial_z$ is the material derivative, and (u^r, u^z) can be recovered from ω^{θ}/r by a similar Biot-Savart law.

In the presence of boundary, or for non-smooth initial data, there are many exciting developments on finite-time blow-up:

- Luo-Hou '14: convincing numerical evidence for blow-up at the boundary for 3D axisymmetric Euler
- Elgindi–Jeong '20: blow-up in domain with a corner
- Elgindi '21: blow-up for $C^{1,\alpha}$ solutions for 3D Euler
- Chen-Hou '21: blow-up for $C^{1,\alpha}$ solutions with boundary
- Wang–Lai–Gómez-Serrano–Buckmaster '22: numerics for approximate self-similar blow-up solution using physics-informed neural networks.
- Chen–Hou '22: stable nearly self-similar blowup for smooth solutions (combination of analysis + computer-assisted estimates)

Question: Can one construct solutions with infinite-in-time growth for more general class of initial data?

Theorem (Kiselev–Park–Y. '22, preprint)

au

Let $\Omega = \mathbb{T} \times [0, \pi]$. Let $\rho_0 \in C^{\infty}(\Omega)$ be even in x_1 , and $\omega_0 \in C^{\infty}(\Omega)$ be odd in x_1 , with $\int_{[0,\pi]\times[0,\pi]} \omega_0 dx \ge 0$. Assume that there exists $k_0 > 0$ such that $\rho_0 \ge k_0 > 0$ on $\{0\} \times [0,\pi]$, and $\rho_0 \le 0$ on $\{\pi\} \times [0,\pi]$. Then the solution satisfies the following during its lifespan:

$$egin{aligned} \|\omega(t)\|_{L^p(\Omega)} \gtrsim t^{3-rac{2}{p}}, \ \|u(t)\|_{L^\infty(\Omega)} \gtrsim t, \ \sup_{\in [0,t]} \|
abla
ho(au)\|_{L^\infty(\Omega)} \gtrsim t^2 \end{aligned}$$

The proof is a soft argument, based on an interplay between various monotone and conservative quantities.

Monotonicity of vorticity integral

• Let Q be the right half of the strip. Simple but useful observation:

$$\int_{Q} \frac{d}{dt} \int_{Q} \omega dx = \int_{Q} \frac{1}{\sqrt{\omega dx}} \int_{Q} \frac{\partial_{1} \rho dx}{\partial t}$$
$$= \int_{0}^{\pi} \frac{\rho(0, x_{2}, t)}{\sum k_{0}} dx_{2} - \int_{0}^{\pi} \frac{\rho(\pi, x_{2}, t)}{\sum k_{0}} dx_{2}$$
$$\geq k_{0}\pi.$$

• Since $\int_{\partial Q} u \cdot dl = \int_{Q} \omega dx \ge k_0 \pi t$, we have $\|u(t)\|_{L^{\infty}}$ grows at least linearly.

- On the other hand, $||u||_{L^2}$ is bounded for all times by energy conservation.
- Combining the boundedness of ||u||_{L²(Q)} and linear growth of ∫_{∂Q} u · dl, we know u must change rapidly in a small neighborhood of ∂Q, leading to super-linear growth of ∇u (and ω).

Infinite-in-time growth in \mathbb{T}^2

- To our best knowledge, there has been no blow-up / infinite-in-time growth results in $\mathbb{T}^2.$
- In T², we obtain infinite-in-time growth for a large class of initial data satisfying certain symmetry/sign conditions:

Theorem (Kiselev–Park–Y. '22, preprint)

Let $\rho_0 \in C^{\infty}(\mathbb{T}^2)$ be even-odd, and $\omega_0 \in C^{\infty}(\mathbb{T}^2)$ be odd-odd. Assume $\rho_0 \ge 0$ on $\{0\} \times [0, \pi]$ with $k_0 := \sup_{x_2 \in [0, \pi]} \rho_0(0, x_2) > 0$, and $\rho_0 \le 0$ on $\{\pi\} \times [0, \pi]$. Then the solution satisfies the following during its lifespan:

$$\sup_{\tau\in[0,t]} \|\nabla\rho(\tau)\|_{L^{\infty}(\mathbb{T}^2)} \gtrsim t^{1/2}.$$
 (1)

3D axisymmetric Euler in an annular cylinder

Using a similar idea, we obtain infinite-in-time growth for the 3D axisymmetric Euler equation in an annular cylinder

$$\Omega = \{(r, heta, z) : r \in [\pi, 2\pi]; heta \in \mathbb{T}, z \in \mathbb{T}\}.$$

Theorem (Kiselev–Park–Y. '22, preprint)

Let $u_0^{\theta} \in C^{\infty}(\Omega)$ be even in z, $\omega_0^{\theta} \in C^{\infty}(\Omega)$ odd in z, with $\int_0^{\pi} \int_{\pi}^{2\pi} \omega_0^{\theta} dr dz \ge 0$. Assume there exists $k_0 > 0$ such that $u_0^{\theta} \ge k_0 > 0$ on $z = \pi$, and $|u_0^{\theta}| \le \frac{1}{8}k_0$ on z = 0. Then the solution to axisymmetric 3D Euler satisfies

$$\|\omega^{ heta}(t)\|_{L^p(\Omega)}\gtrsim t^{3-rac{2}{p}} \quad ext{ and } \|u(t)\|_{L^\infty(\Omega)}\gtrsim t$$

during the lifespan of the solution.

Thank you for your attention!

