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Let Ω be a bounded domain of RN with N ∈ {2, 3}, and Γ = ∂Ω.

Consider the incompressible flow governed by the equations
∂t~u− ν∆~u + (~u · ∇) ~u +∇p = ~f in Ω× (0, T ),

div ~u = 0 in Ω× (0, T ),

Boundary condition of ~u on Γ1 × (0, T )

(1.1)

Control problem:

For given initial state ~u0, target state ~u1, and T > 0, can we find

(1) the boundary control of ~u on Γ \ Γ1, as Γ1 is a properly

sub-boundary of Γ, such that the solution of (1.1) with ~u(·, 0) = ~u0

at the T−moment reaches or approaches ~u1 approximately, or

(2) the interior control ~f = Iωξ in (1.1) for a fixed sub-domain ω of Ω,

with Γ1 = Γ, such that the solution of (1.1) with ~u(·, 0) = ~u0 at the

T−moment reaches or approaches ~u1 approximately?



Notions of controllability

- Small time global approximate controllability: For any T > 0,

any initial and target states ~u0, ~u1, and any small number δ > 0,

one can find the boundary or interior control for (1.1), such that the

solution of (1.1) with ~u(·, 0) = ~u0 satisfies ‖~u(·, T )− ~u1‖ < δ;

- Small time global exact controllability: For any T > 0, and any

initial and target states ~u0, ~u1, one can find the boundary or

interior control for (1.1), such that the solution of (1.1) with

~u(·, 0) = ~u0 satisfies ~u(·, T ) = ~u1;

- Exact null controllability: In the above exact controllability

definition, when the target state ~u1 ≡ 0 vanishes, then we call it the

exact null controllability;

- Local exact controllability: In the above exact controllability

definition, when the target state ~u1 is only a small perturbation of

the initial data ~u0, then we call it the local exact controllability;

- Exact controllability to a trajectory: In the above exact

controllability definition, when the target state ~u1 is the state at

T−moment of a trajectory to the uncontrolled problem.



Lions’ question (1989)

Problem:

Let ε > 0, T > 0, and two states

~u0, ~u1 ∈ H0(Ω) = Closure in L2(Ω) of {f ∈ C∞0 (Ω),∇ · f = 0}

be arbitrarily fixed, is there an interior control ξ ∈ L2(ω × (0, T )) and at

least one Leray-Hopf weak solution ~u to the problem (1.1) for the

Navier-Stokes system with the no-slip boundary condition u|Γ = 0, which

satisfies the terminal constraint

‖~u(·, T )− ~u1‖L2(Ω) < ε.

Main difficulties:

- No smallness assumption on ‖~u0 − ~u1‖;

- The nonslip boundary condition u|Γ = 0.



Known results on incompressible Euler flow

Consider the following problem for incompressible Euler equation:

∂tu + (u ·∇)u + ∇p = 0, in Ω× (0, T ),

div(u) = 0, in Ω× (0, T ),

u · n = 0, on (Γ \ Γc)× (0, T ),

u(·, 0) = u0, in Ω

u(·, T ) = uT , in Ω.

(1.2)

Controllability in this case has been comprehensively studied, for instance

? (1993) J.-M. Coron, C. R. Acad. Sci. Paris Sér. I Math. (2d case,
simply connected)

? (1996) J.-M. Coron, J. Math. Pures Appl. (2d case,
multi-connected)

? (2000) O. Glass, ESAIM:Cocv. (3d case, multi-connected)

? (2016) E. Fernndez-Cara et al., Math. Control Signals Syst. (with
Boussinesq heat effects, simply connected 2d and 3d)



Known results on Navier-Stokes equations

- J. M. Coron, F. Marbach, F. Sueur: JEMS 2020, Global exact

controllability of NS with Navier condition.

- J. M. Coron, F. Marbach, F. Sueur, P. Zhang: Annals of PDE 2019,

Exact controllability of NS in a rectangle with non-slip BCs on the

top and bottom boundaries with a little help of a force.



Known results on viscous MHD

For the problem of MHD with viscosity and magnetic resistivity, BCs

being nonslip for velocity and Navier for magnetic field, with an internal

control:

- V. Barbu et al., Ad. Diff. Equ. (2005): local exact controllability for

a steady state.

- T. Havarneanu et al., SIAM J. Control Optim. (2007): local exact

controllability for a sufficient regular state.

- M. Badra, JMFM (2014): local exact controllability for a general

state.

Question: Does the controllability hold globally for the viscous MHD or

the ideal MHD, with the control being located on the boundary?



The ideal incompressible MHD system
We consider the following ideal MHD problem:

∂tu + (u ·∇)u− µ(H ·∇)H + ∇p = 0, in Ω× (0, T ),

∂tH + (u ·∇)H− (H ·∇)u = 0, in Ω× (0, T ),

div(u) = div(H) = 0, in Ω× (0, T ),

u · n = H · n = 0, on (Γ \ Γc)× (0, T ),

u(·, 0) = u0, H(·, 0) = H0 in Ω.

(2.1)

where u = (u1, u2)′ is the velocity field, H = (H1, H2)′ magnetic field,

p ∈ R pressure, and Ω = (0, L)× (0,W ), the controlled part of the

boundary Γc = ({0} × (0,W )) ∪ ({L} × (0,W )).

Ω

Γc Γc

← control devicescontrol devices →



The controllability goal

Question : Fix the following:

I A time T > 0.

I Initial data u0 and H0.

I Final data uT and HT .

Do there exist boundary controls g(x, t) and h(x, t) such that prescribing

M1(u)|Γc = g and M2(H)|Γc = h along Γc

implies that the solution (u,H, p) with initial data u0 and H0 satisfies

u(·, T ) = uT (·), H(·, T ) = HT (·) (2.2)

?



The controllability goal

Working directly with specific boundary conditions on Γc is too difficult.

Question′ : For each fixed choice of T > 0 and initial data (u0,H0),

does there exist a solution (u,H, p) to the under-determined problem

(2.1) such that

u(·, T ) = uT , H(·, T ) = HT in Ω ?

If the answer is yes: Inspect u|Γc , H|Γc and choose g = M1(u)|Γc ,

h = M2(H)|Γc .



A transformed problem for the control prob. (2.1)-(2.2)

Let z+ := u +
√
µH and z− := u−√µH, Elsässer variables, the control

problem (2.1)-(2.2) can be transformed into the following one:

∂tz
+ + (z− ·∇)z+ + ∇p+ = 0, in Ω× (0, T ),

∂tz
− + (z+ ·∇)z− + ∇p− = 0, in Ω× (0, T ),

div(z+) = div(z−) = 0, in Ω× (0, T ),

z+ · n = z− · n = 0, on (Γ \ Γc)× (0, T ),

z±(·, 0) = z±0 := u0 ±
√
µH0, in Ω,

z±(·, T ) = z±T := uT ±
√
µHT , in Ω.

(2.3)

Obviously, (2.3) is equivalent to (2.1)-(2.2) as long as ∇p+ = ∇p−.



By taking the divergence in the equation for H and also by multiplying

with n along Γ, one can obtain that q := (2
√
µ)−1(p+ − p−) is harmonic

satisfying
∆q = 0, in Ω× (0, T ),

∂nq|Γc = − sign(n1)
(
∂tH1 + (u1∂1 + u2∂2)H1 − (H1∂1 +H2∂2)u1

)
∂nq|Γ\Γc = 0.

(2.4)



Main results (ESAIM:COCV, 2021)

Theorem 1: Let the integer m ≥ 3 and the control time T > 0 be fixed.

Denote by

Cm,ασ,Γc
(Ω;R2) := {f ∈ Cm,α(Ω;R2) | div(f) = 0 in Ω, f ·n = 0 on Γ\Γc}.

Then, for all initial- and final data (z+
0 , z

−
0 , z

+
T , z

−
T ) ∈ Cm,ασ,Γc

(Ω;R2), there

exists a solution (z+, z−, p+, p−) to the control problem (2.3) such that

(z+, z−) ∈
[
C0([0, T ];C1,α(Ω;R2)) ∩ L∞([0, T ];Cm,α(Ω;R2))

]2
.

Returning the original system of incompressible ideal MHD (2.1)-(2.2),

we have the following small-time global exact controllability result.



Theorem 2: Let the integer m ≥ 3 and T > 0 be fixed. Then, for all

initial- and final data (u0,H0,uT ,HT ) ∈ Cm,ασ,Γc
(Ω;R2)4, the problem

∂tu + (u ·∇)u− µ(H ·∇)H + ∇p = 0, in Ω× (0, T ),

∂tH + (u ·∇)H− (H ·∇)u + ∇q = 0, in Ω× (0, T ),

div(u) = div(H) = 0, in Ω× (0, T ),

u · n = H · n = 0, on (Γ \ Γc)× (0, T ),

u(·, 0) = u0, H(·, 0) = H0 in Ω

(2.5)

with

u(·, T ) = uT , H(·, T ) = HT in Ω, (2.6)

has a solution (u,H, p, q), with

(u,H) ∈
[
C0([0, T ];C1,α(Ω;R2)) ∩ L∞([0, T ];Cm,α(Ω;R2))

]2
and q(·, t) being for each t ∈ [0, T ] a harmonic function given by (2.4).



A local null controllability result
By choosing T = 1 and z±T = 0, and applying the curl operator in (2.3),

one obtains the following control problem

∂tj
+ + (z− ·∇)j+ = g+, in Ω× (0, 1),

∂tj
− + (z+ ·∇)j− = g−, in Ω× (0, 1),

curl(z±) = j±, div(z±) = 0, in Ω× (0, 1),

z+ · n = z− · n = 0, on (Γ \ Γc)× (0, 1),

j+(·, 0) = curl(z+
0 ), j−(·, 0) = curl(z−0 ) in Ω,

j+(·, 1) = 0, j−(·, 1) = 0 in Ω

z+(·, 0) = z+
0 , z

−(·, 0) = z−0 , in Ω,

z+(·, 1) = 0, z−(·, 1) = 0, in Ω,

(2.7)

where

g± := ∂2z
∓
1 ∂1z

±
1 + ∂2z

∓
2 ∂2z

±
1 − ∂1z

∓
1 ∂1z

±
2 − ∂1z

∓
2 ∂2z

±
2 . (2.8)



A local null controllability result

The following local null controllability result is the main step for proving

Theorems 1 and 2.

Proposition 3: Let m ≥ 3 be fixed. There exists a constant s̃ > 0, such

that if the initial data (z+
0 , z

−
0 ) ∈ Cm,ασ,Γc

(Ω;R2)2 satisfy the constraint

max{‖z+
0 ‖m,α,Ω, ‖z

−
0 ‖m,α,Ω} < s̃,

then the problem (2.7) admits a solution (z+, z−, j+, j−) of regularity

(z+, z−, j+, j−) ∈
[
C0([0, 1];C1,α(Ω;R2)) ∩ L∞([0, 1];Cm,α(Ω;R2))

]2
×
[
C0([0, 1];C0,α(Ω)) ∩ L∞([0, 1];Cm−1,α(Ω))

]2
,

with z+(x, 1) = z−(x, 1) = 0 for all x ∈ Ω.



Proof of Theorem 2
(1) Assuming that Proposition 3 is true, we show now how to deduce

Theorems 1 and 2 with the help of a scaling and gluing argument, as for

instance in [Coron 1993, 1995] for the Euler equation.

Note that if (u,H, p, q) solve (2.5), then this is also true for (û, Ĥ, p̂, q̂)

defined by

û(x, t) := − u(x, T − t),

Ĥ(x, t) := −H(x, T − t),

p̂(x, t) := p(x, T − t),

q̂(x, t) := q(x, T − t).

(2.9)

(2) Next, split [0, T ] into [0, T/2] ∩ [T/2, 1], choose 0 < ε < T/2 small

such that ũ0 := εu0, H̃0 := εH0 and ũT := εuT , H̃T := εHT satisfy
max

{
‖ũ0 +

√
µH̃0‖m,α,Ω, ‖ũ0 −

√
µH̃0‖m,α,Ω

}
< s̃

max
{
‖ũT +

√
µH̃T ‖m,α,Ω, ‖ũT −

√
µH̃T ‖m,α,Ω

}
< s̃,

where s̃ > 0 is the small constant given in Proposition 3.



Proof of Theorem 2 (cont.)
By applying Proposition 3 with T = 1, we get solutions (u∗,H∗, p∗, q∗)

and (u∗∗,H∗∗, p∗∗, q∗∗) of (2.5), obeying
(u∗,H∗)(·, 0) = (u0(·),H0(·)),

(u∗,H∗, p∗, q∗)(·, 1) ≡ (0,0, 0, 0),

(u∗∗,H∗∗)(·, 0) = −(uT (·), HT (·)),

(u∗∗,H∗∗, p∗∗, q∗∗)(·, 1) ≡ (0,0, 0, 0).

(3) Now, define(ua,Ha, pa, qa) (x, t) :=
(
ε−1u∗, ε−1H∗, ε−2p∗, ε−2q∗

)
(x, ε−1t), Ω× [0, ε],

(ua,Ha, pa, qa) (x, t) := (0,0, 0, 0) , Ω× [ε, T/2],

as well as
(
ub,Hb

)
(x, t) := −

(
ε−1u∗∗, ε−1H∗∗

)
(x, ε−1(T − t)), Ω× [T − ε, T ],(

pb, qb
)

(x, t) :=
(
ε−2p∗∗, ε−2q∗∗

)
(x, ε−1(T − t)), Ω× [T − ε, T ],(

ub,Hb, pb, qb
)

(x, t) := (0,0, 0, 0) , Ω× [T/2, T − ε],



Proof of Theorem 2 (cont.)

Then, the functions

u(x, t) :=

ua(x, t), (x, t) ∈ Ω× [0, T/2],

ub(x, t), (x, t) ∈ Ω× [T/2, T ],

H(x, t) :=

Ha(x, t), (x, t) ∈ Ω× [0, T/2],

Hb(x, t), (x, t) ∈ Ω× [T/2, T ],

p(x, t) :=

pa(x, t), (x, t) ∈ Ω× [0, T/2],

pb(x, t), (x, t) ∈ Ω× [T/2, T ],

q(x, t) :=

qa(x, t), (x, t) ∈ Ω× [0, T/2],

qb(x, t), (x, t) ∈ Ω× [T/2, T ],

are solutions of the control problem (2.5)-(2.6).



Proof of Proposition 3
Similar to [Coron, 1993] for the Euler equation, we introduce three

extensions of the domain Ω as

ΩΩ2 Ω3Γc ΓcΩ1

where

Ω2 := (−l, L+ l)× (−l,W + l),

for a positive constant l > 0, and Ω ⊆ Ω1 ⊆ Ω2, Ω2 ⊆ Ω3, with

Ω1 ⊆ {x = (x1, x2)′ ∈ R2 | 0 ≤ x2 ≤W}.



Construction of a special flow

I Define

y∗(x, t) =

(
γ(t)χ(x)

0

)
, (x, t) ∈ Ω3 × [0, 1],

with γ ∈ C∞0 (0, 1) being non-negative and γ(t) > M as t ∈ [ 1
4 ,

3
4 ],

for a large M > 0, and χ ∈ C∞0 (Ω3) a cutoff function satisfying

χ(x) = 1 for x ∈ Ω2.

I The functions (y,H, p, q) defined by
y(x, t) := y∗(x, t), (x, t) ∈ Ω× [0, 1],

H(x, t) := 0, (x, t) ∈ Ω× [0, 1],

p(x, t) := −x1
d
dtγ(t), (x, t) ∈ Ω× [0, 1],

q(x, t) := 0, (x, t) ∈ Ω× [0, 1],

(2.10)

with x = (x1, x2)′, are solutions of (2.1) with T = 1 and the data

u0 = uT = H0 = HT = 0.



For (x, s, t) ∈ Ω3 × [0, 1]× [0, 1], denote by Y(x, s, t) the flow defined by d
dtY(x, s, t) = y∗(Y(x, s, t), t),

Y(x, s, s) = x.

It is easy to have

Lemma 1: The constant M > 0 can be chosen large enough, such that

Y(x, 0, 1) /∈ Ω2 for all x ∈ Ω2.

Lemma 2: For any given z ∈ C0(Ω× [0, 1];R2), denote by the extension

z := y∗ + π(z− y), with π the continuous extension operator

C0(Ω)→ C0(Ω3), supp(π(f)) ⊆ Ω2, let Z(x, s, t) be defined by d
dtZ(x, s, t) = z(Z(x, s, t), t),

Z(x, s, s) = x.

Then, there exists a small ν > 0, such that ‖z− y‖C0(Ω×[0,1]) < ν

implies Z(x, 0, 1) /∈ Ω2 for all x ∈ Ω2.



Proof of Proposition 3: The local controllability result given in

Proposition 3 is proved by using a fixed point argument for problem (2.7)

in a small neighborhood of the special flow (2.10).

Remark:

(1) I.Kukavica, M. Novack, V. Vicol (JDE 2022) continued to study the

same problem for investigating when the extra-force ∇q vanishes in

the magnetic equation of the control problem (2.5)-(2.6).

(2) Recently, M. Rissel (arXiv: 2306.03712) extends this study to a

general simply-connected domain in 2D.



The viscous incompressible MHD system

Next, we consider the following problem in Ω ⊂ R2, with viscosity ν1 > 0

and resistivity ν2 > 0:

∂tu− ν1∆u + (u · ∇)u− µ(B · ∇)B +∇p = 0 in Ω× (0, Tctrl),

∂tB− ν2∆B + (u · ∇)B− (B · ∇)u = 0 in Ω× (0, Tctrl),

∇ · u = ∇ ·B = 0 in Ω× (0, Tctrl),

u · ~n = 0, (∇× u)× ~n =
[
M1~u + L1

~B
]
τ
, on (Γ \ Γc)× (0, Tctrl),

B · ~n = 0, (∇×B)× ~n =
[
M2~u + L2

~B
]
τ
, on (Γ \ Γc)× (0, Tctrl),

u(·, 0) = u0, B(·, 0) = B0 in Ω,

(3.1)

where ~n is the unit outward normal vector on Γ, and the notation

[h]τ = h− (h · ~n) ~n and friction matrices

L1, L2,M1,M2 ∈ C∞(Γ \ Γc;R2×2).



Theorem 3 (Manuel & W.: arXiv 2203:10758): Assume one of the

following configurations

(a) Ω is a bounded simply-connected subdomain of R2, and the open

subset Γc ⊆ Γ is connected. The friction coefficient matrices satisfy

L1, L2,M1 ∈ C∞(Γ \ Γc;R2×2) and M2 ≡ 0.

(b) For r2 > r1 > 0 and Dr = {x ∈ R2 | |x| < r}, the domain

Ω ⊆ Ar2r1 = Dr2 \Dr1 is simply-connected and bounded by a closed

Lipschitz curve Γ, while the controlled part is Γc = Γ \ ∂Ar2r1 . The

friction coefficient matrices M1, L1, L2 ∈ C∞ are arbitrary and

M2 = ρI2×2, for ρ ∈ R.

Ω

(a) A planar simply-connected

domain with Γc being connected.

Ω

(b) An annulus section where the

controls act along the cuts.

Figure: The controls act along the dashed boundaries which represent Γc.



Then, for any given initial states u0,B0 ∈ L2
c(Ω), target states

u1,B1 ∈  L2
c(Ω), Tctrl > 0, and δ > 0, there exists at least one weak

controlled trajectory

(u,B) ∈
[
C0
w([0, Tctrl];L

2
c(Ω)) ∩ L2((0, Tctrl);H

1(Ω))
]2

to the MHD equations (3.1) which obeys the terminal condition

‖u(·, Tctrl)− u1‖L2(Ω) + ‖B(·, Tctrl)−B1‖L2(Ω) < δ, (3.2)

where L2
c(Ω) =

{
f ∈ L2(Ω) : ∇ · f = 0 in Ω, f · ~n = 0 on Γ \ Γc

}
.

Remark: For the general case that Ω is a multi-connected domain of RN

with N = 2, 3, to have the similar small time global approximate

controllability as stated in the above theorem, one needs to modify the

second equation of (3.1) as

∂tB− ν2∆B + (u · ∇)B− (B · ∇)u = ∇q + ξ, in Ω× (0, Tctrl),

with ξ = 0 when the friction matrix M2 = 0 in (3.1).



Idea of the proof (domain extension)
For simplicity: Consider 2-D simply-connected case with u1 = B1 = 0

(null controllability)

Let E ⊆ RN be a smoothly bounded domain with

Ω ⊆ E , Γc ⊆ E , Γc ∩ E 6= ∅, Γ \ Γc ⊆ ∂E

Also introduce

I extended initial defined in E ,

I extended friction coefficient matrices

M1,M2, L1, L2 ∈ C∞(E ,RN×N )

Figure: Domain extensions.



Idea of the proof (weak controlled trajectories)

A weak controlled trajectory is any pair

(u,B) ∈
[
C0
w([0, T ];L2

c(Ω)) ∩ L2((0, T );H1(Ω))
]2
,

which is the restriction to Ω of a Leray-Hopf weak solution to

∂tu− ν1∆u + (u · ∇)u− µ(B · ∇)B +∇p = ξ in E × (0, T ),

∂tB− ν2∆B + (u · ∇)B− (B · ∇)u +∇q = η in E × (0, T ),

∇ · u = 0, ∇ ·B = 0 in E × (0, T ),

(∇× u)× ~n = [M1u + L1B]τ , u · ~n = 0 on ∂E × (0, T ),

(∇×B)× ~n = [M2u + L2B]τ , B · ~n = 0 on ∂E × (0, T ),

u(·, 0) = u0, B(·, 0) = B0 in E .

with external forces ξ, η supported in E \ Ω.



Idea of the proofs (asymptotic expansions)

Apply the transformations

z± = u±√µB, p± = p±√µq, λ± =
ν1 ± ν2

2
, ξ± = ξ ±√µη.

Scaling: for any positive ε≪ 1 define

z±,ε(x, t) = εz±(x, εt), p±,ε(x, t) = ε2p±(x, εt), ξ±,ε(x, t) = ε2ξ±(x, εt),

which satisfy in ET
ε

= E × (0, Tε ) a problem of the form

∂tz
±,ε − ε∆(λ±z+,ε + λ∓z−,ε) + (z∓,ε · ∇)z±,ε +∇p±,ε = ξ±,ε in ET

ε
,

∇ · z±,ε = 0 in ET
ε
,

z±,ε · ~n = 0 on ∂ET
ε
,

(∇× z±,ε)× n = [M±z+,ε + L±z−,ε]τ on ∂ET
ε
,

z±,ε(·, 0) = εz±0 = ε(u0 ±
√
µB0) in E ,

where M±, L± are determined from M1,M2, L1, L2.



Idea of the proofs (asymptotic expansions)
Goal: choose ξ±,ε such that

‖z±,ε(·, T/ε)‖L2(E) = O(ε
9
8 ), as ε −→ 0. (3.3)

Then: for ε = ε(δ) > 0 sufficiently small one has

‖u(·, T )‖L2(E) + ‖B(·, T )‖L2(E) = O(ε
1
8 ) < δ.

Ansatz: (d(x) = dist(x, ∂E))
z±,ε = y∗ +

√
εv±(x, t, d(x)/

√
ε) + εz±,1 + technical profiles + εr±,ε,

p±,ε = p∗ + εp±,1 + technical profiles + επ±,ε,

ξ±,ε = ξ∗ +
√
εµ±(x, t; d(x)/

√
ε) + εξ±,1 + εζ̃±,ε.

Main ingredients:
I flushing profile (y∗, p∗, ξ∗) solving controlled incompressible Euler

problem,

I (z±,1, p±,1, ξ±,1) solving linearized ideal MHD type controllability

problems,

I v± solving linearized Prandtl type problem with controls µ±.



The zero order profiles (y∗, p∗, ξ∗) are chosen for t ∈ [0, T ] as a special

solution to the controlled Euler system
∂ty
∗ + (y∗ · ∇)y∗ +∇p∗ = ξ∗ in ET ,

∇ · y∗ = σ∗ in ET ,

y∗ · ~n = 0 on ΣT ,

y∗(·, 0) = y∗(·, T ) = 0 in E ,

(3.4)

which can be solved by using the return method, with

supp(ξ∗) ⊆ (E \ Ω)× (0, T ), supp(σ∗) ⊆ (E \ Ω)× (0, T ).



Boundary layer profile problem
The boundary layer profiles (v+,v−)(x, t; z) in the expansion satisfy the

following problem
∂tv
± − ∂2

z (λ±v+ + λ∓v−) + [(y∗ · ∇)v± + (v∓ · ∇)y∗]τ + fz∂zv
± = µ±

∂zv
±(x, t; 0) = g±(x, t), x ∈ E , t ∈ R+,

v±(x, t, z) −→ 0 (z → +∞), x ∈ E , t ∈ R+,

v±(x, 0; z) = 0, x ∈ E , z ∈ R+,

(3.5)

where f(x, t) = −y∗(x,t)·~n(x)
d(x) , g±(x, t) = χ∂E(x)N±(y∗,y∗)(x, t) being

given by the Navier condition.

For the above problem (3.5), one can find controls µ± satisfying

supp(µ±(·, t; z)) ⊆ E \ Ω, such that∥∥∥∥v±(·, T
ε

;
d(·)
ε

)

∥∥∥∥
L2(E)

≤ Cε 5
8 .

Thus, we get the conclusion ‖z±,ε(·, T/ε)‖L2(E) = O(ε
9
8 ).



Thank You!
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