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Mathematical gas dynamics

(t € R the time, y € R the space variable)

Gas dynamics is modeled by conservation laws :

Op + divy(pu) = 0,
O(pu) + Divy (pu ® u) Div, 3,

1 1
0u(golul? + p2) + v, (golul? + peu) < div (g + S,

Basic estimates are conservation of mass and decay of energy :

/ p(t,y)dy =M = / po(y) dy, / (5plul”+ pe) dy < Eq.
J R4 Rd JRE &
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Our context :
@ Physical domain R? (pure Cauchy problem). Initial data po, ug, . . .
Q M, EO < +00.
From O(R%)-invariance,
E(t7 y) € Symd

<= cons. of angular momentum.

Euler :
Z = —p]d

where p > 0 (the pressure).
Navier-Stokes :
Y= (—p+vdivyu)ly + p(Vyu)¥™.

Other relevant models —
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Boltzman. The unknown is a kinetic density f(¢,y,£) > 0,

(0r +&-Vy)f = Q[f]-

First momenta satisfy the conservation laws of mass,
momentum and energy. For instance

= d ,Y) = Y, d
ot = [ fende mit)= [ renos s
satisfy

Oip +divym = 0,

from which, again

/ p(t,y) dy =M.
]Rd

Vlasov-type. Here
(0 +&-Vy)f + F-Vef =0,

where F(t,y) = F|[f] is a self-induced force.



To establish new Natural estimates.
By this, we mean estimates involving only M, Ejy, and possibly of the
moment of inertia

2
I = / po(y) % dy (not a conserved quantity!).
Rd

New estimates look like Strichartz inequalities, involving space-time
integrals and expressing a gain of integrability.

For instance

—+o0
/ / pipdydt <4 Mi\/ME,
0 Rd

where <4 (---) means < ¢4(---) for an explicit (and not so big)
constant depending only upon the space dimension.
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Tools

Exploit the symmetric structure of the mass-momentum claws

T
, _ _(r pu
Dth’yA = 07 A= (pu pu ®u— E) .

Mind that row-wise Divergence is not an elliptic DO :
Apiv = {$ € Sym,_ 4| det § = 0} # {0}.

This is why discontinuites (shock waves, contacts) may occur in Euler
system.

Slightly better situation if A is positive semi-definite, because Ap;, does
not intersect the interior of Symy{, ;. Discontinuities still occur, but

improved integrability could happen :

Compensated Integrability
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What is Compensated Integrability ?

U C R™ an open domain. (Later on, we shall let n =1+ d, z = (¢,y).)

Definition 1

A symmetric tensor over U is an n X n symmetric matrix A whose
entries aj; are distributions over U C R".
Its (row-wise) Divergence is a vector of distributions :

When A is positive semi-definite, the entries are Radon measures.

Definition 2

The tensor A is Div-BV if its entries aj, as well as the coordinates
(Div A); are finite measures.
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Normal trace

Let U have a Lipschitz boundary. Denote ©/ be the outer unit normal
vector field to OU.

If Ais Div-BV over U, then A7 is defined by duality (Green formula)

— - -,

<A177 ¢>8U = <DiV A7¢>U + <A’V¢>U

This trace is a (vector-valued) distribution of order —1, at worst.

Proposition 1

For a Div-BV tensor A : U — Sym,,, the extension A by0, to U is
Div-BV over R™ iff AU is a finite measure over OU. And we have

| Div All s = || Div All s + 1| 47| .
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Two examples of Div-free (Div A = 0) tensors

Diagonal tensors (U =1L x --- x I,).
Given n functions of n — 1 variables f; = f;(Z;),

A= diag(fi, ... fu)-

Since 0;f; = 0, A is Div-free.

C.1. is reminiscent to the Gagliardo Inequality : the
function

flz)=det A =] ()
1
satisfies

Il oy < H Ifill Lo vy
1
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Special tensors.
Given a potential 8 : U — R, the matrix of cofactors

A=D20

is Div-free (because of Piola’s identity).

o If 0 is convex, then A : U — Sym;".
o If n = 2, every Div-free tensor is special.
False if n > 3.

Notice the formula

det A = (det D?6)™ 1.
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Div-free/BV tensors are ubiquitous

Second example : Relativistic GD.

Warning : the tensor involves the claw of energy, instead of that of the

mass :
o (24P PN g (2902 N
t -2 2 vz =2 -9
2 2
pc” +p . pce+p .
at ((32—1)2 ’U> + DlVy ((32—|1)|2 V& ’U) =+ Vyp = 0
The (symmetric!) energy-momentum tensor
p+p  p pc+p v
A — C2_|g‘2 02 , Cz—l’U‘2
g5y L vl

is Div-free.
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Third example : Maxwell system in vacuum.
The Electro-magnetic field is a closed 2-form
o= (E ~dy) A dt + Bydys N dys + Badys A dyr + Bsdyr A dys.
Its closedness expresses the GauB—Faraday law
B +culE=0, divB=0.

The electric/magnetic inductions are defined in terms of a Lagrangian

L(B,E) :
p=2L - o
OF’ OB
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The Div-free energy-momentum tensor (¢ = 1) is

A_(L-E-D HxE
“\ Dx . E '

The symmetry amounts to the identities
HxE=DxB, E®D+H®B=D@E+B®H
which are equivalent to the Lorentz invariance :

B2 _ |12
H(,;.g,inEi),

Div A = 0 follows from Noether's thm and Lorentz invariance.

D. Serre Compensated Integrability



HOW do we treat Div-BV tensor ?

BVpiw(R™) = {A € M(R";Sym,,) | DivA4 € M(R";R")}
mimics the space
BV(R") = {f € M(R")|Vf € M(R")},
for which we have (Gagliardo—Nirenberg—Sobolev)
BV (R™) C L+ (R"),
with a functional inequality
11z < enllVF -

But Div is not elliptic, unlike V ...

In the spirit of Compensated Compactness, we expect that some
non-linear quantity D(A) behaves better than the entries a;; do
individually ...
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Which quantity ?

Examin the case of a special tensor, in a periodic setting

][(detA)Tildx :][ det D20 dr = (det][A da:) N
——

null—Lagr.

This calculation suggests — the Gagliardo inequality does too, — that this
nice quantity is
A (det )7t

Notice that det™T is super-linear over Sym;

1
det™. We shall use the latter to study the former...

, hence not concave, unlike
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Main result : Compensated Integrability

Observe that (det A)+ is a well-defined measure,

1 (AGM) 1

On < (det A)% < —TrA.
n

Theorem 1 (Comp. Int. in R™ (D.S., JMPA 2019).)

Let A~ 0,, be a Div-BV tensor over R™. Then (det A)= € L1 (R™) and
we have

/ (det A)7T dz < c, || Div A[| 3.

Dual structure : the “2nd” BVP for the Monge-Ampére equation
detD?u=f (>0, u convex). (MAE)

The proof exploits Brenier's theorem in Optimal Transport.
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@ The constant ¢, is explicit and sharp! Equality happens when
A = xpl, and B is a ball.

e For general domains €2, the choice A = xq1, yields the Isoperimetric
Inequality

Vol() Area(0Q) a1
Vol(B,,) = (Area(aBn)> '

e With A = f(x)I,, one recovers the Sobolev embedding

BV(R™) C L#1(R").
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Periodic framework

Theorem 2 (D.S., Ann. IHP 2018.)

Let A > 0,, be a periodic Div-free tensor. Then

][(det A)%l dr < (det][ A da:) T

1
Looks like Jensen's Inequality ... but det™=T is not concave over Sym,',

1
contrary to det™®.

Similar proof : Duality with periodic MAE, whose existence theory is due
to Yan Yan Li (1990).

This is Div-quasi-concavity (terminology of Fonseca, Miiller, De
Philippis).
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Whence a weak-star upper semi-continuity result :

Theorem 3 (L. De Rosa, D. S. & R. Tione, JFA 2020.)

Let A, = 0, be a sequence of Div-BV tensors, such that Div A,, is

bounded in M(U) and A,, = A in L? with p > -~ . Then up to a
subsequence
* lgn (det A, ) < (det A)

Related results by
@ Skipper & Wiedemann (2021),
e Guerra, Raitd & Schrecker (2021, 2022).

Sound improvement when p = —"5 by De Rosa & Tione (2023);
concentration phenomenon.
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Variation on C.I.

Multi-linearization : Denote D,, : Sym,, X --- X Sym,, — R the
symmetric n-linear form such that

Dy (A, ..., A) = det A.
For instance
1
D2(A7 B) = 5 (a11 bz + a22b11 — 2G12b12)'

Recall that det is a hyperbolic polynomial over Sym,,, with forward cone
Sym,". Thus (Garding)

D, >0 over Sym)} x---x Sym;.

In particular

n!
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Applying C.I. to A; + --- + A,,, then rescaling, we infer

Theorem 4

Let Ay,...,A,~ 0, be Div-BV tensors over R™. Then
(Dp(Ay,...,An))" € L7 (R™) and we have

" 1
/ (D(As, ..., )T do < o []I1Div 4517
= 1
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Application to Functional Analysis

It is known that
1 n

Hint (L. Tartar) : BV (R") actually embeds into L#1 ! (Alvino 1977),
while z — % belongs to L™°.

Choosing
r, TRx
A= o(r) 9(=) -7
~— r’ rnt
truncation .
Div—free
and Ay =--- = A, = f(x) I,, we obtain the following improvement

—
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A Radon-like transform

Define

Rf(z;w) ::/r”_zf(z—l—rw) dr, zeR™ we S"L.
R
Then BV-functions satisfy

sup IRF (25 Il 2=1 n TV (f).

Sn 1)

The “classical” inequality is an estimate Rf in L°LL only.
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Another variant : Evolution problems

Againn =1+ d and x = (¢,y). A splits accordingly

T
A(p " >, det A = pdeto.

m %m m—+o
The positiveness of A amounts to that of p and o, its Schur complement.

Denote M = [ p(t,y) dy. The following involves again a scaling
argument :

Theorem 6 (D.S. 2021.)

Let A = 0,, be a Div-free tensor over (0, T) x R®. Then

g 1 1
|t [ (pdeto)io <o 3 (1m0, )llae+ Im(T ) ).
0 R4
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Various applications of C.I.

C.1. applies to models that involve a positive Div-BV (often Div-free)
tensor :

Compressible Euler, (classical as well relativistic)

Boltzmann equation,

Particle dynamics or mean field models, under a radial, repulsive
interaction force,

Hard spheres dynamics,

@ Multi-D scalar conservation laws (coll. with L. Silvestre).
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It does not if the Div-free tensor is indefinite (or can be so) :

@ Navier-Stokes system,
@ Incompressible Euler equation,
o Maxwell's equations,

@ Attractive particle dynamics.
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Euler system of GD

Context : physical domain R¢, finite mass M and initial energy Ej.

Recall the Div-free tensor

T
p pU 1 1 0 0
A= = .
(pu pu®u +p1d) p(u) N (u) i (0 pla
We have
det A = pp?.

Cauchy—-Schwarz gives

lpu(t)|h < V2ME, .

Whence

We have

400
/ dt/ phpdy <g M3+/MEy .
0 R4




The action of the projective group, yields an improved dispersion :

Estimate 2 (mono-atomic gas : v =1+ f’, )

Suppose p = % pe (p = p1+% for isentropic flow). We have

+oo
/ tdt/ p%pdyng%\/MI.
0 R¢

The technique being more flexible when n = 2, Besov regularity can be
achieved in one space dimension :

Theorem 7 (d = 1, F. Golse, 2008.)

Assume a mono-atomic gas (p = p®). Then admissible flows satisfy

1
14
oo,loc”

p,u € B

Other results for p = p” with 1 <y < 3...
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Improved estimates

The time-space integrals do not depend upon the choice of the Galilean
frame.
The right-hand sides do ... Optimize the choice!

This lets us replace

By // (2) (=) — wo(y) [2dz dy

+M / Po€o dya
Rd

1
; / / po(w)po(2)|z — y[2dz dy.
R4 xRe

and
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Comments

@ The first estimate assumes neither an equation of state (only p > 0),
nor an entropy condition. It involves only the decay of the
mechanical energy t — E(t).

@ The second one does not depend at all upon the initial velocity field !

@ Say that the gas is barotropic (p(p) = p? for v > 1). Then

e} 00 Ar’+%
pE Lt (L71J) ﬂLt (LZ)mLfl/ .
N—— N—— ——

mass energy C.I.

The internal energy may not concentrate.

@ Strichartz-like estimates are new for the Euler system. Previous
dispersive estimates, like (J.-Y. Chemin, Mono-atomic, 1990)

. 2
tz/ pdy <=,
Rd
involve only a space integral.
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Further estimates (I)

Denote p : R4 — R, the extension of p by 0 on ¢ < 0.

Applying multi-linearized C.I., with again

T, TRT
A = ¢(T)g(;) gy
and As = --- = A,, = A (the mass-momentum tensor), and noting that

0 O
A><O pld)’

we obtain an estimate for the Radon-like transform (w € S%)

1

2 d
wo d—1~ /
r® p(r 4 rwo, z + rw') dr.
(E0w8+M|w/|2)g+l‘| /R ( ’ )

Ip(r, 2;w) =

.
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Further estimates (II)

Admissible flows of finite mass and energy satisfy

1
2

=

D | Tp(7, 20t ) o Bo

Combining with L7°7(S%) C L'(S%), this implies the more readible (but
weaker)

+oo
sup / /
Ré

where the kernel in the singular integral has degree —1.

(r—)° p(t,y) dydt <q B2 7
) >d
(Eo(T — )24+ M|z — y[2)2 ! v 0
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Further estimates (lII)

So far, the velocity was estimated only through the kinetic energy
Fyin[t] < E[t] < Ey. Is there a Strichartz-like estimate involving u ?

Apply multi-lin C.1. to shifts of the mass-momentum tensor :
A;(t,y) = A(t,y + h;). Noting that

=002 (0)

we obtain

Estimate 4

Admissible flows of finite mass and energy satisfy

+00 d d .
sup / /Rd (HPj'V(um...,ud)Q) dy dt <4 M i/ MEy ,
0 0

ho,---,ha

where V is the volume of the d-simplex spanned by ug, ..., ug.
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@ The expression estimated above

d b
(H pj - V(ug,..., ud)2>
0

is quadratic in the velocity, like the density of kinetic energy p|ul|?, ...

@ but it is contains something like

p1+5

instead of p.
. 1 .
The same gain of a factor pd, as in

T
//p%pdydtsd Mi\/ME,
0 R4

compared to (perfect gas)

sup/ pdy < (v —1)Eo.
]Rd

t
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Kinetic equations (Boltzman)

f(t,y,€) the distribution of mass, & the velocity of particles.

Essentially the same estimates, but p%p is replaced by its kinetic
1
counterpart (det Z)¢ where

T
=)= [ 100 (¢ ) a6

That is

d! ®(1+d)
derZ= g [ ) T V€ o) o dEa

Notice the homogeneity :

(det Z)7 ~ f117 |y,
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The 1-D estimate

+o00
[ [ [ 50108 —eie i < erry/3TE;
0 R/R

was known to J.-M. Bony (1987). Used by C. Cercignani (2005) to prove
that DiPerna—Lions’ renormalized solutions are distributional.

Can one use our Strichartz-like estimate in order to prove that multi-d
Boltzmann solutions are distributional ?
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Hard spheres dynamics

Large number of spherical particles B,(t), o € [1, N]. Elastic collisions.
Total mass M = Nm.

Initial data : positions/velocities. Yields conserved quantities :

m
energy  Bo = > [ua(0)[”,

standard deviation of velocity u.

Theorem 8 (R. K. Alexander 1975.)

Global existence with pairwise collisions only, for almost every initial data.

Ya. Sinai's question :

Is the number K of collisions finite 7 If so, how does it behave
with N ?
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Answers :

@ Yes (Vaserstein 1979, lliner 1989),
e log K = O(N?log N) (Burago & al. 1998),
e log K = O(Nlog N) (Burdzy 2022),

@ For some configuration, log K ~ % log 2 (Burago & lvanov 2018) :
the collision number may be really (exponentially) large!

The above estimates don't involve Functional Analysis. The upper
bounds are huge (useless ?).

B.&I.’s explicit construction is discouraging ...
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Weighted estimate, using C.I.

The dynamics is encoded into a positive Div-free tensor Ay, though a
singular one : its support is a graph.

The tensor Ap; is rank-one a.e : det Ap; = 0!

Apply a modified version of C.l., adapted to singular supports :
(det A)ﬁ is a set of Dirac masses at the nodes of the graph.
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Estimate 5 (D.S., ARMA 2021.)

We have
§ |u0ut - uin| Sd Nz’l_/“
———

ol weight

Way better than NV .1 Even in B. & I.’s example (K ~ 2V/2), almost
every collision is “exponentially small”.

In other words (g, = mu, the linear momenta)

mean [TV (t — ¢.(1))] <4 vV MEy .
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Thank you for your attention !
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