Further *a priori* estimates in gas dynamics through Compensated Integrability

Denis SERRE¹

Partial Differential Equations in Fluid Dynamics BIRS Workshop (Hangzhou, China), August 6–11, 2023

^{1.} UMPA, UMR 5669 CNRS

 $(t \in \mathbb{R} \text{ the time, } y \in \mathbb{R}^d \text{ the space variable})$

Gas dynamics is modeled by conservation laws :

$$\begin{aligned} \partial_t \rho + \operatorname{div}_y(\rho u) &= 0, \\ \partial_t(\rho u) + \operatorname{Div}_y(\rho u \otimes u) &= \operatorname{Div}_y \Sigma, \\ \partial_t(\frac{1}{2}\rho|u|^2 + \rho\varepsilon) + \operatorname{div}_y\left((\frac{1}{2}\rho|u|^2 + \rho\varepsilon)u\right) &\leq \operatorname{div}_y(q + \Sigma u). \end{aligned}$$

Basic estimates are conservation of mass and decay of energy :

$$\int_{\mathbb{R}^d}
ho(t,y)\,dy \equiv M := \int_{\mathbb{R}^d}
ho_0(y)\,dy, \qquad \int_{\mathbb{R}^d} (rac{1}{2}
ho|u|^2 +
hoarepsilon)\,dy \leq E_0.$$

Our context :

9 Physical domain \mathbb{R}^d (pure Cauchy problem). Initial data ρ_0, u_0, \ldots

② $M, E_0 < +\infty.$

From $O(\mathbb{R}^d)$ -invariance,

 $\Sigma(t,y) \in \mathbf{Sym}_d$

 \iff cons. of angular momentum.

Euler :

$$\Sigma = -pI_d$$

where $p \ge 0$ (the pressure).

Navier-Stokes :

$$\Sigma = (-p + \nu \operatorname{div}_y u)I_d + \mu (\nabla_y u)^{\operatorname{sym}}.$$

Other relevant models \longrightarrow

Boltzman. The unknown is a kinetic density $f(t, y, \xi) \ge 0$,

$$(\partial_t + \xi \cdot \nabla_y)f = Q[f].$$

First momenta satisfy the conservation laws of mass, momentum and energy. For instance

$$\rho(t,y) := \int_{\mathbb{R}^d} f(t,y,\xi) \, d\xi, \qquad m(t,y) := \int_{\mathbb{R}^d} f(t,y,\xi)\xi \, d\xi$$

satisfy

$$\partial_t \rho + \operatorname{div}_y m = 0,$$

from which, again

$$\int_{\mathbb{R}^d} \rho(t, y) \, dy \equiv M.$$

Vlasov-type. Here

$$(\partial_t + \xi \cdot \nabla_y)f + F \cdot \nabla_\xi f = 0,$$

where F(t, y) = F[f] is a self-induced force.

To establish new Natural estimates.

By this, we mean estimates involving only ${\cal M}, {\cal E}_0,$ and possibly of the moment of inertia

$$I_0 := \int_{\mathbb{R}^d}
ho_0(y) \, rac{|y|^2}{2} \, dy$$
 (not a conserved quantity!).

New estimates look like *Strichartz inequalities*, involving space-time integrals and expressing a gain of integrability.

For instance

$$\int_0^{+\infty} \int_{\mathbb{R}^d} \rho^{\frac{1}{d}} p \, dy \, dt \leq_d M^{\frac{1}{d}} \sqrt{ME_0}$$

where $\leq_d (\cdots)$ means $\leq c_d (\cdots)$ for an explicit (and not so big) constant depending only upon the space dimension.

.

Exploit the symmetric structure of the mass-momentum claws

$$\operatorname{Div}_{t,y} A = 0, \qquad A := \begin{pmatrix} \rho & \rho u^T \\ \rho u & \rho u \otimes u - \Sigma \end{pmatrix}.$$

Mind that row-wise Divergence is not an elliptic DO :

$$\Lambda_{\mathrm{Div}} = \{ S \in \mathbf{Sym}_{1+d} \mid \det S = 0 \} \neq \{ 0 \}.$$

This is why discontinuites (shock waves, contacts) may occur in Euler system.

Slightly better situation if A is positive semi-definite, because Λ_{Div} does not intersect the interior of \mathbf{Sym}_{1+d}^+ . Discontinuities still occur, but improved integrability could happen :

Compensated Integrability

What is Compensated Integrability?

 $U \subset \mathbb{R}^n$ an open domain. (Later on, we shall let n = 1 + d, x = (t, y).)

Definition 1

A <u>symmetric tensor</u> over U is an $n \times n$ symmetric matrix A whose entries a_{jk} are distributions over $U \subset \mathbb{R}^n$. Its (row-wise) Divergence is a vector of distributions :

$$(\operatorname{Div} A)_j = \sum_{k=1}^n \partial_k a_{jk}.$$

When A is positive semi-definite, the entries are Radon measures.

Definition 2

The tensor A is <u>Div-BV</u> if its entries a_{jk} , as well as the coordinates $(\text{Div } A)_i$ are finite measures.

Let U have a Lipschitz boundary. Denote $\vec{\nu}$ be the outer unit normal vector field to $\partial U.$

If A is Div-BV over U, then $A\vec{\nu}$ is defined by duality (Green formula)

$$\langle A\vec{\nu}, \vec{\phi} \rangle_{\partial U} = \langle \text{Div } A, \vec{\phi} \rangle_U + \langle A, \nabla \vec{\phi} \rangle_U.$$

This trace is a (vector-valued) distribution of order -1, at worst.

Proposition 1

For a Div-BV tensor $A: U \to \mathbf{Sym}_n$, the extension \widetilde{A} by 0_n to U^c is Div-BV over \mathbb{R}^n iff $A\vec{\nu}$ is a finite measure over ∂U . And we have

$$\|\operatorname{Div} \widetilde{A}\|_{\mathcal{M}} = \|\operatorname{Div} A\|_{\mathcal{M}} + \|A\vec{\nu}\|_{\mathcal{M}}.$$

Two examples of Div-free (Div $A \equiv 0$) tensors

Diagonal tensors (
$$U = I_1 \times \cdots \times I_n$$
).
Given n functions of $n - 1$ variables $f_j = f_j(\widehat{x_j})$,

$$A := \operatorname{diag}(f_1, \ldots, f_n).$$

Since $\partial_j f_j = 0$, A is Div-free.

 $\ensuremath{\mathsf{C.I.}}$ is reminiscent to the Gagliardo Inequality : the function

$$f(x) = \det A = \prod_{1}^{n} f_j(\widehat{x}_j)$$

satisfies

$$||f||_{L^1(U)} \le \prod_1^n ||f_j||_{L^{n-1}(U_j)}.$$

Special tensors.

Given a potential $\theta: U \to \mathbb{R}$, the matrix of cofactors

$$A=\widehat{{\rm D}^2\theta}$$

is Div-free (because of Piola's identity).

- If θ is convex, then $A: U \to \mathbf{Sym}_n^+$.
- If n = 2, every Div-free tensor is special. False if $n \ge 3$.

Notice the formula

$$\det A = (\det \mathbf{D}^2 \theta)^{n-1}.$$

Div-free/BV tensors are ubiquitous

Second example : Relativistic GD.

 $\ensuremath{\textit{Warning}}$: the tensor involves the claw of energy, instead of that of the mass :

$$\partial_t \left(\frac{\rho c^2 + p}{c^2 - |v|^2} - \frac{p}{c^2} \right) + \operatorname{div}_y \left(\frac{\rho c^2 + p}{c^2 - |v|^2} v \right) = 0,$$

$$\partial_t \left(\frac{\rho c^2 + p}{c^2 - |v|^2} v \right) + \operatorname{Div}_y \left(\frac{\rho c^2 + p}{c^2 - |v|^2} v \otimes v \right) + \nabla_y p = 0.$$

The (symmetric !) energy-momentum tensor

$$A = \begin{pmatrix} \frac{\rho c^2 + p}{c^2 - |v|^2} - \frac{p}{c^2} & \frac{\rho c^2 + p}{c^2 - |v|^2} v\\ \frac{\rho c^2 + p}{c^2 - |v|^2} v & \frac{\rho c^2 + p}{c^2 - |v|^2} v \otimes v + pI_3 \end{pmatrix}$$

is Div-free.

Third example : Maxwell system in vacuum.

The *Electro-magnetic field* is a closed 2-form

 $\alpha = (\vec{E} \cdot dy) \wedge dt + B_1 dy_2 \wedge dy_3 + B_2 dy_3 \wedge dy_1 + B_3 dy_1 \wedge dy_2.$

Its closedness expresses the Gauß–Faraday law

$$\partial_t \vec{B} + \operatorname{curl} \vec{E} = 0, \qquad \operatorname{div} \vec{B} = 0.$$

The electric/magnetic inductions are defined in terms of a Lagrangian $L(\vec{B},\vec{E})$:

$$\vec{D} = \frac{\partial L}{\partial \vec{E}}, \qquad \vec{H} = -\frac{\partial L}{\partial \vec{B}}.$$

The Div-free energy-momentum tensor (c = 1) is

$$A = \begin{pmatrix} L - \vec{E} \cdot \vec{D} & \vec{H} \times \vec{E} \\ \vec{D} \times \vec{B} & (L + \vec{B} \cdot \vec{H}) I_3 - \vec{E} \otimes \vec{D} - \vec{H} \otimes \vec{B} \end{pmatrix}.$$

The symmetry amounts to the identities

$$\vec{H}\times\vec{E}=\vec{D}\times\vec{B},\qquad \vec{E}\otimes\vec{D}+\vec{H}\otimes\vec{B}=\vec{D}\otimes\vec{E}+\vec{B}\otimes\vec{H}$$

which are equivalent to the Lorentz invariance :

$$L = \ell \left(\vec{E} \cdot \vec{B}, \frac{|\vec{B}|^2 - |\vec{E}|^2}{2} \right).$$

Div $A \equiv 0$ follows from Noether's thm and Lorentz invariance.

 $BV_{\text{Div}}(\mathbb{R}^n) = \{A \in \mathcal{M}(\mathbb{R}^n; \mathbf{Sym}_n) | \text{Div} A \in \mathcal{M}(\mathbb{R}^n; \mathbb{R}^n) \}$

mimics the space

$$BV(\mathbb{R}^n) = \{ f \in \mathcal{M}(\mathbb{R}^n) \, | \, \nabla f \in \mathcal{M}(\mathbb{R}^n) \},\$$

for which we have (Gagliardo-Nirenberg-Sobolev)

$$BV(\mathbb{R}^n) \subset L^{\frac{n}{n-1}}(\mathbb{R}^n),$$

with a functional inequality

$$\|f\|_{\frac{n}{n-1}} \le c_n \|\nabla f\|_{\mathcal{M}}.$$

But Div is not elliptic, unlike ∇ ...

In the spirit of Compensated Compactness, we expect that some non-linear quantity D(A) behaves better than the entries a_{ij} do individually \ldots

Examin the case of a special tensor, in a periodic setting

$$\int (\det A)^{\frac{1}{n-1}} dx = \int \underbrace{\det D^2 \theta}_{\text{null-Lagr.}} dx = \left(\det \oint A \, dx \right)^{\frac{1}{n-1}}.$$

This calculation suggests – the Gagliardo inequality does too, – that this nice quantity is

$$A \xrightarrow{D} (\det A)^{\frac{1}{n-1}}.$$

Notice that $\det^{\frac{1}{n-1}}$ is super-linear over \mathbf{Sym}_n^+ , hence not concave, unlike $\det^{\frac{1}{n}}$. We shall use the latter to study the former...

Main result : Compensated Integrability

Observe that $(\det A)^{\frac{1}{n}}$ is a well-defined measure,

$$0_n \le (\det A)^{\frac{1}{n}} \stackrel{(\text{AGM})}{\le} \frac{1}{n} \operatorname{Tr} A.$$

Theorem 1 (Comp. Int. in \mathbb{R}^n (D.S., JMPA 2019).)

Let $A \succ \mathbf{0}_n$ be a Div-BV tensor over \mathbb{R}^n . Then $(\det A)^{\frac{1}{n}} \in L^{\frac{n}{n-1}}(\mathbb{R}^n)$ and we have $\int_{\mathbb{R}^n} (\det A)^{\frac{1}{n-1}} dx \leq c_n \|\operatorname{Div} A\|_{\mathcal{M}}^{\frac{n}{n-1}}.$

Dual structure : the "2nd" BVP for the Monge-Ampère equation

$$\det \mathbf{D}^2 u = f \quad (>0, \ u \text{ convex}). \tag{MAE}$$

The proof exploits Brenier's theorem in Optimal Transport.

- The constant c_n is explicit and sharp! Equality happens when $A = \chi_B I_n$ and B is a ball.
- For general domains Ω , the choice $A = \chi_{\Omega} I_n$ yields the Isoperimetric Inequality

$$\frac{\operatorname{Vol}(\Omega)}{\operatorname{Vol}(B_n)} \le \left(\frac{\operatorname{Area}(\partial\Omega)}{\operatorname{Area}(\partial B_n)}\right)^{\frac{n}{n-1}}$$

• With $A = f(x)I_n$, one recovers the Sobolev embedding

$$BV(\mathbb{R}^n) \subset L^{\frac{n}{n-1}}(\mathbb{R}^n).$$

Theorem 2 (D.S., Ann. IHP 2018.)

Let $A \succ 0_n$ be a periodic Div-free tensor. Then

$$\oint (\det A)^{\frac{1}{n-1}} dx \le \left(\det \oint A dx\right)^{\frac{1}{n-1}}$$

Looks like Jensen's Inequality ... but $det^{\frac{1}{n-1}}$ is **not** concave over Sym_n^+ , contrary to $det^{\frac{1}{n}}$.

Similar proof : Duality with periodic MAE, whose existence theory is due to Yan Yan Li (1990).

This is Div-<u>quasi-concavity</u> (terminology of Fonseca, Müller, De Philippis).

Whence a weak-star upper semi-continuity result :

Theorem 3 (L. De Rosa, D. S. & R. Tione, JFA 2020.)

Let $A_m \succ 0_n$ be a sequence of Div-BV tensors, such that $\operatorname{Div} A_m$ is bounded in $\mathcal{M}(U)$ and $A_m \xrightarrow{*} A$ in L^p with $p > \frac{n}{n-1}$. Then up to a subsequence

*
$$\lim_{m \to \infty} (\det A_m)^{\frac{1}{n-1}} \le (\det A)^{\frac{1}{n-1}}.$$

Related results by

- Skipper & Wiedemann (2021),
- Guerra, Raiță & Schrecker (2021, 2022).

Sound improvement when $p = \frac{n}{n-1}$ by De Rosa & Tione (2023); concentration phenomenon.

Variation on C.I.

Multi-linearization : Denote $D_n : \mathbf{Sym}_n \times \cdots \times \mathbf{Sym}_n \to \mathbb{R}$ the symmetric *n*-linear form such that

$$D_n(A,\ldots,A) = \det A.$$

For instance

$$D_2(A,B) = \frac{1}{2} \left(a_{11}b_{22} + a_{22}b_{11} - 2a_{12}b_{12} \right).$$

Recall that det is a hyperbolic polynomial over Sym_n , with forward cone Sym_n^+ . Thus (Gårding)

$$D_n \ge 0$$
 over $\mathbf{Sym}_n^+ \times \cdots \times \mathbf{Sym}_n^+$.

In particular

$$D_n(A_1,\ldots,A_n) \le \frac{1}{n!} \det(A_1+\cdots+A_n).$$

Applying C.I. to $A_1 + \cdots + A_n$, then rescaling, we infer

Theorem 4

Let $A_1, \ldots, A_n \succ \mathbf{0}_n$ be Div-BV tensors over \mathbb{R}^n . Then $(D_n(A_1, \ldots, A_n))^{\frac{1}{n}} \in L^{\frac{n}{n-1}}(\mathbb{R}^n)$ and we have

$$\int_{\mathbb{R}^n} (D_n(A_1,\ldots,A_n))^{\frac{1}{n-1}} dx \le c_n \prod_{1}^n \|\operatorname{Div} A_j\|_{\mathcal{M}}^{\frac{1}{n-1}}$$

It is known that

$$\|\frac{1}{|x|} \star f\|_{\infty} \leq_n TV(f), \qquad \forall f \in BV(\mathbb{R}^n).$$

Hint (L. Tartar) : $BV(\mathbb{R}^n)$ actually embeds into $L^{\frac{n}{n-1},1}$ (Alvino 1977), while $x \mapsto \frac{1}{r}$ belongs to $L^{n,\infty}$.

Choosing

$$A_1 = \underbrace{\phi(r)}_{\text{truncation}} g(\frac{x}{r}) \underbrace{\frac{x \otimes x}{r^{n+1}}}_{\text{Div-free}}$$

and $A_2 = \cdots = A_n = f(x) I_n$, we obtain the following improvement

Theorem 5

Define

$$Rf(z;\omega) := \int_{\mathbb{R}} r^{n-2} f(z+r\omega) \, dr, \qquad z \in \mathbb{R}^n, \, \omega \in S^{n-1}.$$

Then BV-functions satisfy

$$\sup_{z} \|Rf(z;\cdot)\|_{L^{\frac{n-1}{n-2}}(S^{n-1})} \le_{n} TV(f).$$

The "classical" inequality is an estimate Rf in $L^{\infty}_{z}L^{1}_{\omega}$ only.

Another variant : Evolution problems

Again n = 1 + d and x = (t, y). A splits accordingly

$$A = \begin{pmatrix} \rho & m^T \\ m & \frac{1}{\rho} m \otimes m + \sigma \end{pmatrix}, \qquad \det A = \rho \det \sigma.$$

The positiveness of A amounts to that of ρ and σ , its Schur complement.

Denote $M \equiv \int \rho(t, y) \, dy$. The following involves again a scaling argument :

Theorem 6 (D.S. 2021.)

Let $A \succ 0_n$ be a Div-free tensor over $(0, T) \times \mathbb{R}^d$. Then

$$\int_0^T dt \int_{\mathbb{R}^d} (\rho \det \sigma)^{\frac{1}{d}} dx \le_d M^{\frac{1}{d}} \left(\|m(0, \cdot)\|_{\mathcal{M}} + \|m(T, \cdot)\|_{\mathcal{M}} \right).$$

C.I. applies to models that involve a positive Div-BV (often Div-free) tensor :

- Compressible Euler, (classical as well relativistic)
- Boltzmann equation,
- Particle dynamics or mean field models, under a radial, <u>repulsive</u> interaction force,
- Hard spheres dynamics,
- Multi-D scalar conservation laws (coll. with L. Silvestre).

It does not if the Div-free tensor is indefinite (or can be so) :

- Navier-Stokes system,
- Incompressible Euler equation,
- Maxwell's equations,
- Attractive particle dynamics.

Euler system of GD

Context : physical domain \mathbb{R}^d , finite mass M and initial energy E_0 .

Recall the Div-free tensor

$$A = \begin{pmatrix} \rho & \rho u^T \\ \rho u & \rho u \otimes u + pI_d \end{pmatrix} = \rho \begin{pmatrix} 1 \\ u \end{pmatrix} \otimes \begin{pmatrix} 1 \\ u \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & pI_d \end{pmatrix}.$$

We have

$$\det A = \rho p^d.$$

Cauchy-Schwarz gives

$$\|\rho u(t)\|_1 \le \sqrt{2ME_0}$$
.

Whence

Estimate 1 We have $\int_{0}^{+\infty} dt \int_{\mathbb{R}^d} \rho^{\frac{1}{d}} p \ dy \leq_d M^{\frac{1}{d}} \sqrt{ME_0} \ .$ The action of the projective group, yields an improved dispersion :

Estimate 2 (mono-atomic gas : $\gamma = 1 + \frac{2}{d}$.)

Suppose $p=rac{2}{d}\,
hoarepsilon$ ($p=
ho^{1+rac{2}{d}}$ for isentropic flow). We have

$$\int_0^{+\infty} t \, dt \int_{\mathbb{R}^d} \rho^{\frac{1}{d}} p \, dy \leq_d M^{\frac{1}{d}} \sqrt{MI_0} \, .$$

The technique being more flexible when n = 2, Besov regularity can be achieved in one space dimension :

Theorem 7 (d = 1, F. Golse, 2008.)

Assume a mono-atomic gas $(p = \rho^3)$. Then admissible flows satisfy

$$\rho, u \in B^{\frac{1}{4}, 4}_{\infty, \text{loc}}.$$

Other results for $p = \rho^{\gamma}$ with $1 < \gamma < 3...$

The time-space integrals do not depend upon the choice of the Galilean frame.

The right-hand sides do ... Optimize the choice !

This lets us replace

$$ME_0 \longmapsto \frac{1}{4} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \rho_0(y) \rho_0(z) |u_0(z) - u_0(y)|^2 dz \, dy + M \int_{\mathbb{R}^d} \rho_0 \varepsilon_0 \, dy,$$

and

$$MI_0 \quad \longmapsto \quad \frac{1}{4} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \rho_0(y) \rho_0(z) |z - y|^2 dz \, dy.$$

Comments

- The first estimate assumes neither an equation of state (only p ≥ 0), nor an entropy condition. It involves only the decay of the mechanical energy t → E(t).
- The second one does not depend at all upon the initial velocity field !
- Say that the gas is barotropic ($p(\rho) = \rho^{\gamma}$ for $\gamma > 1$). Then

The internal energy may not concentrate.

• Strichartz-like estimates are new for the Euler system. Previous dispersive estimates, like (J.-Y. Chemin, Mono-atomic, 1990)

$$t^2 \int_{\mathbb{R}^d} p \ dy \leq rac{2}{d} \ I_0 \, ,$$

involve only a space integral.

Further estimates (I)

Denote $\widetilde{p} : \mathbb{R}^{1+d} \to \mathbb{R}_+$ the extension of p by 0 on t < 0.

Applying multi-linearized C.I., with again

$$A_1 = \phi(r)g(\frac{x}{r}) \, \frac{x \otimes x}{r^{n+1}}$$

and $A_2 = \cdots = A_n = A$ (the mass-momentum tensor), and noting that

$$A \succ \begin{pmatrix} 0 & 0 \\ 0 & pI_d \end{pmatrix},$$

we obtain an estimate for the Radon-like transform ($\omega \in S^d)$

$$Tp(\tau, z; \omega) := \left[\frac{\omega_0^2}{(E_0\omega_0^2 + M|\omega'|^2)^{\frac{d}{2}+1}}\right]^{\frac{1}{d}} \int_{\mathbb{R}} r^{d-1} \widetilde{p}(\tau + r\omega_0, z + r\omega') \, dr.$$
$$\dots \longrightarrow$$

Estimate 3

Admissible flows of finite mass and energy satisfy

$$\sup_{\tau,z} \|Tp(\tau,z;\cdot)\|_{L^{\frac{d}{d-1}}(S^d)} \leq_d E_0^{\frac{1}{2}-\frac{1}{d}}.$$

Combining with $L^{\frac{d}{d-1}}(S^d) \subset L^1(S^d),$ this implies the more readible (but weaker)

$$\sup_{\tau,z} \int_0^{+\infty} \int_{\mathbb{R}^d} \left[\frac{(\tau-t)^2}{(E_0(\tau-t)^2 + M|z-y|^2)^{\frac{d}{2}+1}} \right]^{\frac{1}{d}} p(t,y) \, dy \, dt \le_d E_0^{\frac{1}{2}-\frac{1}{d}}$$

where the kernel in the singular integral has degree -1.

Further estimates (III)

So far, the velocity was estimated only through the kinetic energy $E_{kin}[t] \leq E[t] \leq E_0$. Is there a Strichartz-like estimate involving u?

Apply multi-lin C.I. to shifts of the mass-momentum tensor : $A_j(t,y) = A(t,y+h_j)$. Noting that

$$A \succ \rho \begin{pmatrix} 1 \\ u \end{pmatrix} \otimes \begin{pmatrix} 1 \\ u \end{pmatrix},$$

we obtain

Estimate 4

Admissible flows of finite mass and energy satisfy

$$\sup_{h_0,\dots,h_d} \int_0^{+\infty} \int_{\mathbb{R}^d} \left(\prod_0^d \rho_j \cdot V(u_0,\dots,u_d)^2 \right)^{\frac{1}{d}} dy \, dt \leq_d M^{\frac{1}{d}} \sqrt{ME_0} \,,$$

where V is the volume of the d-simplex spanned by u_0, \ldots, u_d .

• The expression estimated above

$$\left(\prod_{0}^{d} \rho_j \cdot V(u_0, \dots, u_d)^2\right)^{\frac{1}{d}}$$

is quadratic in the velocity, like the density of kinetic energy $\rho |u|^2$, ... • but it is contains something like

$$\rho^{1+\frac{1}{d}}$$

instead of ρ .

The same gain of a factor $\rho^{\frac{1}{d}}$, as in

$$\int_0^T \int_{\mathbb{R}^d} \rho^{\frac{1}{d}} p \, dy \, dt \leq_d M^{\frac{1}{d}} \sqrt{ME_0} \,,$$

compared to (perfect gas)

$$\sup_t \int_{\mathbb{R}^d} p \, dy \le (\gamma - 1) E_0.$$

Kinetic equations (Boltzman)

 $f(t, y, \xi)$ the distribution of mass, ξ the velocity of particles.

Essentially the same estimates, but $\rho^{\frac{1}{d}}p$ is replaced by its kinetic counterpart $(\det\Xi)^{\frac{1}{d}}$ where

$$\Xi(t,y) = \int_{\mathbb{R}^d} f(t,y,\xi) \begin{pmatrix} 1 & \xi^T \\ \xi & \xi \otimes \xi \end{pmatrix} d\xi.$$

That is

$$\det \Xi = \frac{d!}{d+1} \int_{\mathbb{R}^d}^{\otimes (1+d)} f(\xi_0) \cdots f(\xi_d) V(\xi_0, \dots, \xi_d)^2 d\xi_0 \cdots d\xi_d.$$

Notice the homogeneity :

$$(\det \Xi)^{\frac{1}{d}} \sim f^{1+\frac{1}{d}} |u|^2.$$

The 1-D estimate

$$\int_0^{+\infty} dt \int_{\mathbb{R}} \int_{\mathbb{R}} f(t, y, \xi) f(t, y, \xi') |\xi' - \xi|^2 d\xi \, d\xi' \le cM\sqrt{ME_0}$$

was known to J.-M. Bony (1987). Used by C. Cercignani (2005) to prove that DiPerna–Lions' renormalized solutions are distributional.

Open Problem 1

Can one use our Strichartz-like estimate in order to prove that multi-d Boltzmann solutions are distributional ?

Hard spheres dynamics

Large number of spherical particles $B_{\alpha}(t)$, $\alpha \in [\![1, N]\!]$. Elastic collisions. Total mass M = Nm.

Initial data : positions/velocities. Yields conserved quantities :

energy $E_0=rac{m}{2}\sum |u_lpha(0)|^2,$ standard deviation of velocity $ar{u}.$

Theorem 8 (R. K. Alexander 1975.)

Global existence with pairwise collisions only, for almost every initial data.

Ya. Sinai's question :

Is the number K of collisions finite ? If so, how does it behave with N ?

Answers :

- Yes (Vaserstein 1979, Illner 1989),
- $\log K = O(N^2 \log N)$ (Burago & al. 1998),
- $\log K = O(N \log N)$ (Burdzy 2022),
- For some configuration, $\log K \sim \frac{N}{2} \log 2$ (Burago & Ivanov 2018) : the collision number may be really (exponentially) large !

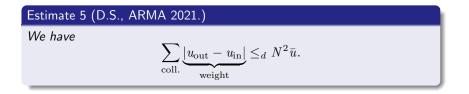
The above estimates don't involve Functional Analysis. The upper bounds are huge (useless?).

B.&I.'s explicit construction is discouraging ...

The dynamics is encoded into a positive Div-free tensor A_{hs} , though a singular one : its support is a graph.

The tensor A_{hs} is rank-one a.e : det $A_{hs} \equiv 0$!

Apply a modified version of C.I., adapted to singular supports : $(\det A)^{\frac{1}{n-1}}$ is a set of Dirac masses at the nodes of the graph.



Way better than $N^N \dots !$ Even in B. & I.'s example $(K \sim 2^{N/2})$, almost every collision is "exponentially small".

In other words ($q_{\alpha} = mu_{\alpha}$ the linear momenta)

$$\operatorname{mean}\left[TV(t\mapsto q_{\alpha}(t))\right]\leq_{d}\sqrt{ME_{0}}.$$

Thank you for your attention !