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Mathematical gas dynamics

(t ∈ R the time, y ∈ Rd the space variable)

Gas dynamics is modeled by conservation laws :

∂tρ+ divy(ρu) = 0,

∂t(ρu) + Divy(ρu ⊗ u) = DivyΣ,

∂t(
1

2
ρ|u|2 + ρε) + divy

(
(
1

2
ρ|u|2 + ρε)u

)
≤ divy(q + Σu).

Basic estimates are conservation of mass and decay of energy :∫
Rd

ρ(t , y) dy ≡ M :=

∫
Rd

ρ0(y) dy ,

∫
Rd

(
1

2
ρ|u|2 + ρε) dy ≤ E0.
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Our context :

1 Physical domain Rd (pure Cauchy problem). Initial data ρ0, u0, . . .

2 M ,E0 < +∞.

From O(Rd)-invariance,

Σ(t , y) ∈ Symd

⇐⇒ cons. of angular momentum.

Euler :
Σ = −pId

where p ≥ 0 (the pressure).

Navier-Stokes :
Σ = (−p + ν divyu)Id + µ(∇yu)sym.

Other relevant models −→
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Boltzman. The unknown is a kinetic density f (t , y , ξ) ≥ 0,

(∂t + ξ · ∇y)f = Q [f ].

First momenta satisfy the conservation laws of mass,
momentum and energy. For instance

ρ(t , y) :=

∫
Rd

f (t , y , ξ) dξ, m(t , y) :=

∫
Rd

f (t , y , ξ)ξ dξ

satisfy
∂tρ+ divym = 0,

from which, again ∫
Rd

ρ(t , y) dy ≡ M .

Vlasov-type. Here
(∂t + ξ · ∇y)f + F · ∇ξf = 0,

where F (t , y) = F [f ] is a self-induced force.
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Goal

To establish new Natural estimates.
By this, we mean estimates involving only M ,E0, and possibly of the
moment of inertia

I0 :=

∫
Rd

ρ0(y)
|y |2

2
dy (not a conserved quantity !).

New estimates look like Strichartz inequalities, involving space-time
integrals and expressing a gain of integrability.

For instance ∫ +∞

0

∫
Rd

ρ
1
d p dy dt ≤d M

1
d

√
ME0

where ≤d (· · · ) means ≤ cd(· · · ) for an explicit (and not so big)
constant depending only upon the space dimension.
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Tools

Exploit the symmetric structure of the mass-momentum claws

Divt,yA = 0, A :=

(
ρ ρuT

ρu ρu ⊗ u − Σ

)
.

Mind that row-wise Divergence is not an elliptic DO :

ΛDiv = {S ∈ Sym1+d | detS = 0} 6= {0}.

This is why discontinuites (shock waves, contacts) may occur in Euler
system.

Slightly better situation if A is positive semi-definite, because ΛDiv does
not intersect the interior of Sym+

1+d . Discontinuities still occur, but
improved integrability could happen :

Compensated Integrability
.
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What is Compensated Integrability ?

U ⊂ Rn an open domain. (Later on, we shall let n = 1 + d , x = (t , y).)

Definition 1

A symmetric tensor over U is an n × n symmetric matrix A whose
entries ajk are distributions over U ⊂ Rn .
Its (row-wise) Divergence is a vector of distributions :

(DivA)j =

n∑
k=1

∂kajk .

When A is positive semi-definite, the entries are Radon measures.

Definition 2

The tensor A is Div-BV if its entries ajk , as well as the coordinates
(DivA)i are finite measures.
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Normal trace

Let U have a Lipschitz boundary. Denote ~ν be the outer unit normal
vector field to ∂U .

If A is Div-BV over U , then A~ν is defined by duality (Green formula)

〈A~ν, ~φ〉∂U = 〈Div A, ~φ〉U + 〈A,∇~φ〉U .

This trace is a (vector-valued) distribution of order −1, at worst.

Proposition 1

For a Div-BV tensor A : U → Symn , the extension Ã by 0n to U c is
Div-BV over Rn iff A~ν is a finite measure over ∂U . And we have

‖Div Ã‖M = ‖DivA‖M + ‖A~ν‖M.
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Two examples of Div-free (DivA ≡ 0) tensors

Diagonal tensors (U = I1 × · · · × In).
Given n functions of n − 1 variables fj = fj (x̂j ),

A := diag(f1, . . . , fn).

Since ∂j fj = 0, A is Div-free.

C.I. is reminiscent to the Gagliardo Inequality : the
function

f (x ) = detA =

n∏
1

fj (x̂j )

satisfies

‖f ‖L1(U ) ≤
n∏
1

‖fj‖Ln−1(Uj ).
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Special tensors.
Given a potential θ : U → R, the matrix of cofactors

A = D̂2θ

is Div-free (because of Piola’s identity).

If θ is convex, then A : U → Sym+
n .

If n = 2, every Div-free tensor is special.
False if n ≥ 3.

Notice the formula

detA = (det D2θ)n−1.
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Div-free/BV tensors are ubiquitous

Second example : Relativistic GD.

Warning : the tensor involves the claw of energy, instead of that of the
mass :

∂t

(
ρc2 + p

c2 − |v |2
− p

c2

)
+ divy

(
ρc2 + p

c2 − |v |2
v

)
= 0,

∂t

(
ρc2 + p

c2 − |v |2
v

)
+ Divy

(
ρc2 + p

c2 − |v |2
v ⊗ v

)
+∇yp = 0.

The (symmetric !) energy-momentum tensor

A =

(
ρc2+p
c2−|v |2 −

p
c2

ρc2+p
c2−|v |2 v

ρc2+p
c2−|v |2 v

ρc2+p
c2−|v |2 v ⊗ v + pI3

)

is Div-free.
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Third example : Maxwell system in vacuum.

The Electro-magnetic field is a closed 2-form

α = (~E · dy) ∧ dt + B1dy2 ∧ dy3 + B2dy3 ∧ dy1 + B3dy1 ∧ dy2.

Its closedness expresses the Gauß–Faraday law

∂t ~B + curl ~E = 0, div ~B = 0.

The electric/magnetic inductions are defined in terms of a Lagrangian

L(~B , ~E ) :

~D =
∂L

∂~E
, ~H = − ∂L

∂~B
.
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The Div-free energy-momentum tensor (c = 1) is

A =

(
L− ~E · ~D ~H × ~E
~D × ~B (L + ~B · ~H ) I3 − ~E ⊗ ~D − ~H ⊗ ~B

)
.

The symmetry amounts to the identities

~H × ~E = ~D × ~B , ~E ⊗ ~D + ~H ⊗ ~B = ~D ⊗ ~E + ~B ⊗ ~H

which are equivalent to the Lorentz invariance :

L = `

(
~E · ~B , |

~B |2 − |~E |2

2

)
.

DivA ≡ 0 follows from Noether’s thm and Lorentz invariance.
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HOW do we treat Div-BV tensor ?

BVDiv(Rn) = {A ∈M(Rn ;Symn) |DivA ∈M(Rn ;Rn)}

mimics the space

BV (Rn) = {f ∈M(Rn) | ∇f ∈M(Rn)},

for which we have (Gagliardo–Nirenberg–Sobolev)

BV (Rn) ⊂ L
n

n−1 (Rn),

with a functional inequality

‖f ‖ n
n−1
≤ cn‖∇f ‖M.

But Div is not elliptic, unlike ∇ ...

In the spirit of Compensated Compactness, we expect that some
non-linear quantity D(A) behaves better than the entries aij do
individually ...
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Which quantity ?

Examin the case of a special tensor, in a periodic setting

−
∫

(detA)
1

n−1 dx = −
∫

det D2θ︸ ︷︷ ︸
null−Lagr.

dx =

(
det−
∫

Adx

) 1
n−1

.

This calculation suggests – the Gagliardo inequality does too, – that this
nice quantity is

A
D7−→ (detA)

1
n−1 .

Notice that det
1

n−1 is super-linear over Sym+
n , hence not concave, unlike

det
1
n . We shall use the latter to study the former...
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Main result : Compensated Integrability

Observe that (detA)
1
n is a well-defined measure,

0n ≤ (detA)
1
n

(AGM)

≤ 1

n
TrA.

Theorem 1 (Comp. Int. in Rn (D.S., JMPA 2019).)

Let A� 0n be a Div-BV tensor over Rn . Then (detA)
1
n ∈ L

n
n−1 (Rn) and

we have ∫
Rn

(detA)
1

n−1 dx ≤ cn‖DivA‖
n

n−1

M .

Dual structure : the “2nd” BVP for the Monge-Ampère equation

det D2u = f (> 0, u convex). (MAE)

The proof exploits Brenier’s theorem in Optimal Transport.
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The constant cn is explicit and sharp ! Equality happens when
A = χB In and B is a ball.

For general domains Ω, the choice A = χΩIn yields the Isoperimetric
Inequality

Vol(Ω)

Vol(Bn)
≤
(

Area(∂Ω)

Area(∂Bn)

) n
n−1

.

With A = f (x )In , one recovers the Sobolev embedding

BV (Rn) ⊂ L
n

n−1 (Rn).
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Periodic framework

Theorem 2 (D.S., Ann. IHP 2018.)

Let A � 0n be a periodic Div-free tensor. Then

−
∫

(detA)
1

n−1 dx ≤
(

det−
∫

Adx

) 1
n−1

.

Looks like Jensen’s Inequality ... but det
1

n−1 is not concave over Sym+
n ,

contrary to det
1
n .

Similar proof : Duality with periodic MAE, whose existence theory is due
to Yan Yan Li (1990).

This is Div-quasi-concavity (terminology of Fonseca, Müller, De
Philippis).
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Whence a weak-star upper semi-continuity result :

Theorem 3 (L. De Rosa, D. S. & R. Tione, JFA 2020.)

Let Am � 0n be a sequence of Div-BV tensors, such that DivAm is
bounded in M(U ) and Am

∗
⇀ A in Lp with p > n

n−1 . Then up to a
subsequence

∗ lim
m→∞

(detAm)
1

n−1 ≤ (detA)
1

n−1 .

Related results by

Skipper & Wiedemann (2021),

Guerra, Rait, ă & Schrecker (2021, 2022).

Sound improvement when p = n
n−1 by De Rosa & Tione (2023) ;

concentration phenomenon.
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Variation on C.I.

Multi-linearization : Denote Dn : Symn × · · · × Symn → R the
symmetric n-linear form such that

Dn(A, . . . ,A) = detA.

For instance

D2(A,B) =
1

2
(a11b22 + a22b11 − 2a12b12) .

Recall that det is a hyperbolic polynomial over Symn , with forward cone
Sym+

n . Thus (Gårding)

Dn ≥ 0 over Sym+
n × · · · × Sym+

n .

In particular

Dn(A1, . . . ,An) ≤ 1

n!
det(A1 + · · ·+ An).
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Applying C.I. to A1 + · · ·+ An , then rescaling, we infer

Theorem 4

Let A1, . . . ,An� 0n be Div-BV tensors over Rn . Then
(Dn(A1, . . . ,An))

1
n ∈ L

n
n−1 (Rn) and we have∫

Rn

(Dn(A1, . . . ,An))
1

n−1 dx ≤ cn

n∏
1

‖DivAj‖
1

n−1

M .
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Application to Functional Analysis

It is known that

‖ 1

|x |
? f ‖∞ ≤n TV (f ), ∀f ∈ BV (Rn).

Hint (L. Tartar) : BV (Rn) actually embeds into L
n

n−1 ,1 (Alvino 1977),
while x 7→ 1

r belongs to Ln,∞.

Choosing

A1 = φ(r)︸︷︷︸
truncation

g(
x

r
)

x ⊗ x

rn+1︸ ︷︷ ︸
Div−free

and A2 = · · · = An = f (x ) In , we obtain the following improvement
−→
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A Radon-like transform

Theorem 5

Define

Rf (z ;ω) :=

∫
R
rn−2f (z + rω) dr , z ∈ Rn , ω ∈ Sn−1.

Then BV-functions satisfy

sup
z
‖Rf (z ; ·)‖

L
n−1
n−2 (Sn−1)

≤n TV (f ).

The “classical” inequality is an estimate Rf in L∞z L1
ω only.
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Another variant : Evolution problems

Again n = 1 + d and x = (t , y). A splits accordingly

A =

(
ρ mT

m 1
ρm ⊗m + σ

)
, detA = ρ detσ.

The positiveness of A amounts to that of ρ and σ, its Schur complement.

Denote M ≡
∫
ρ(t , y) dy . The following involves again a scaling

argument :

Theorem 6 (D.S. 2021.)

Let A � 0n be a Div-free tensor over (0,T )× Rd . Then∫ T

0

dt

∫
Rd

(ρdetσ)
1
d dx ≤d M

1
d (‖m(0, ·)‖M + ‖m(T , ·)‖M) .
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Various applications of C.I.

C.I. applies to models that involve a positive Div-BV (often Div-free)
tensor :

Compressible Euler, (classical as well relativistic)

Boltzmann equation,

Particle dynamics or mean field models, under a radial, repulsive
interaction force,

Hard spheres dynamics,

Multi-D scalar conservation laws (coll. with L. Silvestre).
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It does not if the Div-free tensor is indefinite (or can be so) :

Navier-Stokes system,

Incompressible Euler equation,

Maxwell’s equations,

Attractive particle dynamics.
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Euler system of GD

Context : physical domain Rd , finite mass M and initial energy E0.

Recall the Div-free tensor

A =

(
ρ ρuT

ρu ρu ⊗ u + pId

)
= ρ

(
1

u

)
⊗
(

1

u

)
+

(
0 0
0 pId

)
.

We have
detA = ρpd .

Cauchy–Schwarz gives

‖ρu(t)‖1 ≤
√

2ME0 .

Whence

Estimate 1

We have ∫ +∞

0

dt

∫
Rd

ρ
1
d p dy ≤d M

1
d

√
ME0 .
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The action of the projective group, yields an improved dispersion :

Estimate 2 (mono-atomic gas : γ = 1 + 2
d .)

Suppose p = 2
d ρε (p = ρ1+ 2

d for isentropic flow). We have∫ +∞

0

t dt

∫
Rd

ρ
1
d p dy ≤d M

1
d

√
MI0 .

The technique being more flexible when n = 2, Besov regularity can be
achieved in one space dimension :

Theorem 7 (d = 1, F. Golse, 2008.)

Assume a mono-atomic gas (p = ρ3). Then admissible flows satisfy

ρ, u ∈ B
1
4 ,4

∞,loc.

Other results for p = ργ with 1 < γ < 3...
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Improved estimates

The time-space integrals do not depend upon the choice of the Galilean
frame.
The right-hand sides do ... Optimize the choice !

This lets us replace

ME0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|u0(z )− u0(y)|2dz dy

+M

∫
Rd

ρ0ε0 dy ,

and

MI0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|z − y |2dz dy .
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Comments

The first estimate assumes neither an equation of state (only p ≥ 0),
nor an entropy condition. It involves only the decay of the
mechanical energy t 7→ E (t).

The second one does not depend at all upon the initial velocity field !

Say that the gas is barotropic (p(ρ) = ργ for γ > 1). Then

ρ ∈ L∞t (L1
y)︸ ︷︷ ︸

mass

⋂
L∞t (Lγy)︸ ︷︷ ︸

energy

⋂
L
γ+ 1

d
t,y︸ ︷︷ ︸
C.I.

.

The internal energy may not concentrate.

Strichartz-like estimates are new for the Euler system. Previous
dispersive estimates, like (J.-Y. Chemin, Mono-atomic, 1990)

t2

∫
Rd

p dy ≤ 2

d
I0 ,

involve only a space integral.
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Further estimates (I)

Denote p̃ : R1+d → R+ the extension of p by 0 on t < 0.

Applying multi-linearized C.I., with again

A1 = φ(r)g(
x

r
)
x ⊗ x

rn+1

and A2 = · · · = An = A (the mass-momentum tensor), and noting that

A �
(

0 0
0 pId

)
,

we obtain an estimate for the Radon-like transform (ω ∈ Sd)

Tp(τ, z ;ω) :=

[
ω2

0

(E0ω2
0 + M |ω′|2)

d
2 +1

] 1
d ∫

R
rd−1p̃(τ + rω0, z + rω′) dr .

. . . −→
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Further estimates (II)

Estimate 3

Admissible flows of finite mass and energy satisfy

sup
τ,z
‖Tp(τ, z ; ·)‖

L
d

d−1 (Sd )
≤d E

1
2−

1
d

0 .

Combining with L
d

d−1 (Sd) ⊂ L1(Sd), this implies the more readible (but
weaker)

sup
τ,z

∫ +∞

0

∫
Rd

[
(τ − t)2

(E0(τ − t)2 + M |z − y |2)
d
2 +1

] 1
d

p(t , y) dy dt ≤d E
1
2−

1
d

0

where the kernel in the singular integral has degree −1.
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Further estimates (III)

So far, the velocity was estimated only through the kinetic energy
Ekin[t ] ≤ E [t ] ≤ E0. Is there a Strichartz-like estimate involving u ?

Apply multi-lin C.I. to shifts of the mass-momentum tensor :
Aj (t , y) = A(t , y + hj ). Noting that

A � ρ
(

1

u

)
⊗
(

1

u

)
,

we obtain

Estimate 4

Admissible flows of finite mass and energy satisfy

sup
h0,...,hd

∫ +∞

0

∫
Rd

(
d∏
0

ρj ·V (u0, . . . , ud)2

) 1
d

dy dt ≤d M
1
d

√
ME0 ,

where V is the volume of the d -simplex spanned by u0, . . . , ud .
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The expression estimated above(
d∏
0

ρj ·V (u0, . . . , ud)2

) 1
d

is quadratic in the velocity, like the density of kinetic energy ρ|u|2, ...

but it is contains something like

ρ1+ 1
d

instead of ρ.
The same gain of a factor ρ

1
d , as in∫ T

0

∫
Rd

ρ
1
d p dy dt ≤d M

1
d

√
ME0 ,

compared to (perfect gas)

sup
t

∫
Rd

p dy ≤ (γ − 1)E0.
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Kinetic equations (Boltzman)

f (t , y , ξ) the distribution of mass, ξ the velocity of particles.

Essentially the same estimates, but ρ
1
d p is replaced by its kinetic

counterpart (det Ξ)
1
d where

Ξ(t , y) =

∫
Rd

f (t , y , ξ)

(
1 ξT

ξ ξ ⊗ ξ

)
dξ.

That is

det Ξ =
d !

d + 1

∫ ⊗(1+d)

Rd

f (ξ0) · · · f (ξd)V (ξ0, . . . , ξd)2dξ0 · · · dξd .

Notice the homogeneity :

(det Ξ)
1
d ∼ f 1+ 1

d |u|2.
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The 1-D estimate∫ +∞

0

dt

∫
R

∫
R
f (t , y , ξ)f (t , y , ξ′)|ξ′ − ξ|2dξ dξ′ ≤ cM

√
ME0

was known to J.-M. Bony (1987). Used by C. Cercignani (2005) to prove
that DiPerna–Lions’ renormalized solutions are distributional.

Open Problem 1

Can one use our Strichartz-like estimate in order to prove that multi-d
Boltzmann solutions are distributional ?
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Hard spheres dynamics

Large number of spherical particles Bα(t), α ∈ [[1,N ]]. Elastic collisions.
Total mass M = Nm.

Initial data : positions/velocities. Yields conserved quantities :

energy E0 =
m

2

∑
|uα(0)|2,

standard deviation of velocity ū.

Theorem 8 (R. K. Alexander 1975.)

Global existence with pairwise collisions only, for almost every initial data.

Ya. Sinai’s question :

Is the number K of collisions finite ? If so, how does it behave
with N ?
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Answers :

Yes (Vaserstein 1979, Illner 1989),

logK = O(N 2 logN ) (Burago & al. 1998),

logK = O(N logN ) (Burdzy 2022),

For some configuration, logK ∼ N
2 log 2 (Burago & Ivanov 2018) :

the collision number may be really (exponentially) large !

The above estimates don’t involve Functional Analysis. The upper
bounds are huge (useless ?).

B.&I.’s explicit construction is discouraging ...
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Weighted estimate, using C.I.

The dynamics is encoded into a positive Div-free tensor Ahs , though a
singular one : its support is a graph.

The tensor Ahs is rank-one a.e : detAhs ≡ 0 !

Apply a modified version of C.I., adapted to singular supports :

(detA)
1

n−1 is a set of Dirac masses at the nodes of the graph.
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Estimate 5 (D.S., ARMA 2021.)

We have ∑
coll.

|uout − uin|︸ ︷︷ ︸
weight

≤d N 2ū.

Way better than NN ... ! Even in B. & I.’s example (K ∼ 2N/2), almost
every collision is “exponentially small”.

In other words (qα = muα the linear momenta)

mean [TV (t 7→ qα(t))] ≤d

√
ME0 .
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Thank you for your attention !
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