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Goal of this talk: Under the (compressible) Euler scaling on the (Vlasov-
Maxwell-Boltzmann)ε>0 system (ε : Knudsen number, non-dimensional),

to construct an almost global smooth solution such that

sup
0≤t≤Tε

‖F ε −M[ρ̄,ū,T̄ ](t,x)‖(L2
x∩L∞x )L2

v (µ−1/2)

+ sup
0≤t≤Tε

‖(E ε,Bε)− (Ē , B̄)‖L2
x∩L∞x . ε1−a

with

M[ρ̄,ū,T̄ ](t, x , v) :=
ρ̄(t, x)

[2πT (t, x)]3/2
exp

{
− |v − u(t, x)|2

2T (t, x)

}
,

Tε ∼
1

η0εa + ε
1
2−a

, 0 ≤ a <
1

2
,

where (ρ̄, ū, T̄ , Ē , B̄) is a global smooth solution to the compress-
ible Euler-Maxwell near (1, 0, 3

2 , 0, 0) with a small amplitude η0 > 0
independent of ε.
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Remark:

The robust L2 ∩ L∞(wdv) approach in low-regularity function spaces
by Guo seems not applicable in case of the non-relativistic VMB.

However, we are able to design ε-dependent energy functional EN,ε(t)
and corresponding dissipation functional DN,ε(t) to close the a priori
estimate

sup
0≤t≤τ

[
EN,ε(t) + c

∫ t

0

DN,ε(s) ds

]
≤ 1

2
ε2.

L∞ bound of solutions is a consequence of Sobolev embeddings.

ε-singularity of EN,ε(t) and DN,ε(t) occurs to the highest-order
derivatives.
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Boltzmann equation (1872):

• The unknown:

F = F (t, x , v) ≥ 0, t > 0, x ∈ Ω ⊂ R3, v ∈ R3,

the velocity distribution function of particles in a rarefied gas.

• Governed by
{∂t + v · ∇x}F︸ ︷︷ ︸

free transport

= Q(F ,F )︸ ︷︷ ︸
binary collision

,

with the Boltzmann collision operator

Q(G ,F )(v) =

∫
R3

∫
S2

B(v − u, σ)[G (u′)F (v ′)︸ ︷︷ ︸
gain

−G (u)F (v)︸ ︷︷ ︸
loss

] dσdu,

where
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v ′ =
v + u

2
+
|v − u|

2
σ, u′ =

v + u

2
− |v − u|

2
σ,

satisfying

v + u = v ′ + u′,

|v |2 + |u|2 = |v ′|2 + |u′|2.

θ: deviation angle
cos θ = σ · v−u

|v−u| = v ′−u′
|v ′−u′| ·

v−u
|v−u|
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Collision kernel:

B(v − u, σ) = |v − u|γb(cos θ),

−3 < γ ≤ 1,

non-cutoff:

1

Cbθ1+2s
≤ sin θb(cos θ) ≤ Cb

θ1+2s
, ∀ θ ∈ (0,

π

2
],

Cb > 0, 0 < s < 1.

A physical example: For potential U(r) = r−` (` > 1) (inverse
power law),

γ =
`− 4

`
, s =

1

`
.

cutoff (H. Grad): ∫ π/2

0

sin θb(cos θ) dθ <∞.
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Basic properties of Q(F ,F ):

Collision invariants:∫
R3

φ(v)Q(F ,F )(v) dv = 0 for φ(v) = 1, v , |v |2.

Entropy-entropy product: For a solution F = F (t, x , v) satisfying
∂tF + v · ∇xF = Q(F ,F ),

∂t

∫
R3

F lnF dv +∇x ·
∫
R3

vf lnF dv

= −
∫
R3

Q(F ,F ) lnF dv ≤ 0,

where = holds iff Q(F ,F ) = 0 holds, iff F is taken as a local
Maxwellian:

M ≡ M[ρ̄,ū,θ̄](t, x , v) :=
ρ̄(t, x)√

(2πRθ(t, x))3

exp
{
− |v − u(t, x)|2

2Rθ(t, x)

}
.
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Long time dynamics:

It would be expected that the mesocopic motion by

∂tF + v · ∇xF = Q(F ,F )

is getting in large time close to the dynamics for

F (t, x , v) = M[ρ̄,ū,θ̄](t, x , v)

governed by the local conservation laws:

∂t

∫
R3

φ(v)F (t, x , v) dv +∇x ·
∫
R3

vφ(v)F (t, x , v) dv = 0,

φ(v) = 1, v , |v |2

and the entropy inequality:

∂t

∫
R3

F lnF dv +∇x ·
∫
R3

vf lnF dv ≤ 0.
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These are approximately equivalent with the compressible Euler system:
∂t ρ̄+∇x · (ρ̄ū) = 0,

∂t(ρ̄ū) +∇x · (ρ̄ū ⊗ ū) +∇x p̄ = 0,
∂t
[
ρ̄(θ̄ + 1

2 |ū|
2)
]

+∇x ·
[
ρ̄ū(θ̄ + 1

2 |ū|
2)
]

+∇x · (p̄ū) = 0,

p̄ = R ρ̄θ̄ =
2

3
ρ̄θ̄,

with the entropy inequality

∂t(ρ̄ ln
ρ̄

θ̄3/2
) +∇x · (ρ̄ū ln

ρ̄

θ̄3/2
) ≤ 0.

Question

Rigorous justification?

Cf. Chapter 6 of Hydrodynamic Limits of the Boltzmann Equation by
Laure Saint-Raymond.
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Analytical framework:

For the Boltzmann with cutoff,

Nishida (1978): abstract Cauchy-Kovalevskaya + spectral analysis
of linearized Boltzmann equation

Ukai-Asano (1983): contraction mapping with time-dependent
norm, include initial layer.
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Hilbert expansion:

We start from Boltzmann equation (cutoff, hard potentials 0 ≤ γ ≤ 1):

∂tF
ε + v · ∇xF

ε =
1

ε
Q(F ε,F ε).

The solution F ε is found via the Hilbert expansion:

F ε = F0 +
6∑

n=1

εnFn + ε3F εR ,

where F0, · · ·,F6 are independent of ε. As a consequence,

F0 ≡ M = M[ρ̄,ū,T̄ ](t, x , v) :=
ρ̄(t, x)√

(2πT (t, x))3

exp
{
− |v − u(t, x)|2

2T (t, x)

}
,

where fluid parameters (ρ̄, ū, T̄ )(t, x) are the solutions of the compressible
Euler system. Then the remainder F εR satisfies

∂tF
ε
R + v · ∇xF

ε
R −

1

ε
{Q(M,F εR) + Q(F εR ,M)}︸ ︷︷ ︸

linearization around a given Euler flow

= ε2Q(F εR ,F
ε
R) + · · · .
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Theorem (Caflisch 1980)

Let Ω = T, [ρ̄, ū, T̄ ](t, x1) be a smooth solution without vacuum to the
Euler system over [0, τ ] and M = M[ρ̄,ū,T̄ ](t, x1, v). There is ε0 > 0 such
that for each 0 < ε ≤ ε0, a smooth solution F ε to the cutoff Boltzmann
equation ∂tF

ε + v · ∇xF
ε = 1

εQ(F ε,F ε) with 0 ≤ γ ≤ 1 exists for
0 ≤ t ≤ τ with

sup
0≤t≤τ

‖F ε −M‖L2
x1,v
≤ Cτε,

where Cτ is independent of ε.
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Proof:

Construct smooth profiles Fi (1 ≤ 6) iteratively:

Fi (t, x1, v) ≤ C |ξ|3iM,

in particular, F1 cubic growth in large v due to v1∂x1F0 = v1∂x1M.

Cutoff assumption is essential, so can use Grad’s splitting L = −ν+K .
To overcome large-velocity growth, develop a decomposition:

FR =
√
Mg︸ ︷︷ ︸

low v part

+
√
µmh︸ ︷︷ ︸

high v part

where µm = 1√
(2πTm)3

exp
{
− |v |

2

2Tm

}
with Tm > max

t,x
T (t, x) so that

µm ≥ cM. Split K correspondingly as

Kh = χ|v |≤MKh + χ|v |>MKh.

Show contraction in H1
x1
L∞β . Choice for initial data: g(0) = h(0) ≡ 0,

so FR(0) ≡ 0. Loss of positivity of ID and hence solutions.
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Instead of using Caflisch’s decomposition, Guo-Jang-Jiang (2010) ap-
plied the L2-L∞ approach:

Let Ω = R3 or T3. Write F εR =
√
Mf ε, then

∂t f
ε + v · ∇x f

ε − 1

ε
{Q(M,

√
Mf ε) + Q(

√
Mf ε,M)}

= −{∂t + v · ∇x}
√
M√

M
f ε︸ ︷︷ ︸

(∗) ∼ (∂t , ∂x )ū|v |3f ε

+ · · · .

L2 estimate on f ε meets an obstacle.

Idea: Let

F εR = (1 + |v |2)−β
√
µmh

ε =
1

w(v)

√
µmh

ε,

µm = (2πTm)−
3
2 exp

(
− |v |

2

2Tm

)
, Tm < max

t,x
T̄ (t, x) < 2Tm,∫

(∗)f ε ∼ ‖(∂t , ∂x)ū‖L2‖hε‖L∞‖f ε‖L2 .
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Then hε satisfies

∂th
ε + v · ∇xh

ε +
1

ε
ν(M)hε +

1

ε
Kwh

ε = · · ·,

where Kwg = wK ( g
w ) and

− 1
√
µm
{Q(M,

√
µmg) + Q(

√
µmg ,M)} = (ν(M) + K )g .

Strategy of estimates:

Use L2 norm of f ε to control the low-order velocity part and L∞ norm
of hε for the large velocity part.

Obtain L∞ estimate for ε3/2hε along the trajectory in terms of L2

norm of f ε, close the estimates in L2 and apply the Gronwall argument
over [0, τ ].

Theorem (Guo-Jang-Jiang 2010)

sup
0≤t≤τ

(ε3/2‖hε(t)‖L∞x,v + ‖f ε(t)‖L2
x,v

) ≤ Cτ (ε3/2‖hε0‖L∞x,v , ‖f
ε

0 ‖L2
x,v

).

16/36



Guo-Jang (2010) further obtained the global higher-order Hilbert expansion

F ε =
2k−1∑
n=0

εnFn + εkF εR

to the Vlasov-Poisson-Boltzmann system.

Theorem (Guo-Jang 2010)

There exists a solution F ε(t, x , v) to the VPB system in the Euler scaling:

∂tF
ε + v · ∇xF

ε +∇xφ
ε · ∇vF

ε =
1

ε
Q(F ε,F ε),

∆xφ
ε =

∫
F ε dv − 1,

such that

sup
0≤t≤ε−m

‖F ε(t, · ·)−M[ρ̄,ū,T̄ ](t, ·, ·)‖ = O(ε), 0 < m ≤ 1

2

2k − 3

2k − 2
, k ≥ 6.

Here [ρ̄, ū, T̄ ](t, x) is the smooth solution around constant equilibrium for

the hydrodynamic compressible Euler-Poisson system with T̄ = C ρ̄
2
3 .
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Problems left:

What happens to the non-cutoff Boltzmann or Landau equation for
which the Grad’s splitting is no longer available?

Still possible to obtain L∞ estimates using the De Giorgi argument
instead of the direct L2-L∞ interplay: Alonso-Morimoto-Sun-Yang
(arXiv 2020), Guo-Hwang-Jang-Ouyang (ARMA 2020), Kim-Guo-
Hwang (PMJ 2020),...but so far unknown to employ them for the
fluid limit, as need to obtain estimate uniform in ε.

How to extend Guo-Jang’s work to the VMB system where the self-
consistent electromagnetic field satisfying the Maxwell equations is
included?

Again, L2-L∞ interplay fails for the fluid limit, as one loses the
Glassey-Strauss representation, although it works for the relativistic
case; see a recent work by Guo-Xiao (CMP 2021).
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Our strategy:

Derive an ε-dependent high-order energy estimates on basis
of the macro-micro decomposition of Liu-Yu (CMP,2002) and
Liu-Yang-Yu (Phys D 2004)
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VMB system for dynamics of electrons in R3
x :

∂tF + v · ∇xF − (E + v × B) · ∇vF = 1
εQ(F ,F ),

∂tE −∇x × B =
∫
R3 vF dv ,

∂tB +∇x × E = 0,
∇x · E = nb −

∫
R3 F dv , ∇x · B = 0.

E = E (t, x) = (E1,E2,E3)(t, x): self-consistent electric field

B = B(t, x) = (B1,B2,B3)(t, x): self-consistent magnetic field

nb > 0 is assumed to be a constant denoting the spatially uniform
density of the ionic background. Take nb = 1 without loss of gener-
ality.
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For brevity we focus on the hard sphere model for the Boltzmann collision
operator:

Q(F1,F2)(v) =

∫
R3

∫
S2

|(v − v∗) · ω|{F1(v ′)F2(v ′∗)− F1(v)F2(v∗)} dω dv∗,

where ω ∈ S2 is a unit vector in R3, and the velocity pairs (v , v∗) before
collisions and (v ′, v ′∗) after collisions are given by

v ′ = v − [(v − v∗) · ω]ω, v ′∗ = v∗ + [(v − v∗) · ω]ω,

in terms of the conservations of momentum and kinetic energy:

v + v∗ = v ′ + v ′∗, |v |2 + |v∗|2 = |v ′|2 + |v ′∗|2.
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VMB system for the hard sphere model, global classical solutions near
global Maxwellians:

T3: Guo (2003)

R3: Strain (2006), D.-Strain (2011)
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Corresponding to VMB, the hydrodynamic description for the motion of
electrons at the fluid level is also given by the following compressible Euler-
Maxwell system which is an important fluid model in plasma physics:

∂t ρ̄+∇x · (ρ̄ū) = 0,
∂t(ρ̄ū) +∇x · (ρ̄ū ⊗ ū) +∇x p̄ = −ρ̄(Ē + ū × B̄),

∂t Ē −∇x × B̄ = ρ̄ū,
∂tB̄ +∇x × Ē = 0,

∇x · Ē = nb − ρ̄, ∇x · B̄ = 0.

Here the unknowns are the electron density ρ̄ = ρ̄(t, x) > 0, the electron
velocity ū = (ū1, ū2, ū3)(t, x), and the electromagnetic field (Ē , B̄) =
(Ē , B̄)(t, x). Moreover, p̄ = K ρ̄5/3 is the pressure satisfying the power law
with the adiabatic exponent γ = 5

3 . We take the physical constant K = 1
without loss of generality.

Remark: It can be formally derived from the VMB system in the isentropic
case for the macro fluid system:

ρ̄

θ̄3/2
≡ 1
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Euler-Maxwell system in Rd , global classical solutions near constant equi-
librium:

Germain-Masmoudi (2014), Ionescu-Pausader (2014): d = 3, elec-
trons dynamics, method of space-time resonance

Guo-Ionescu-Pausader (2016): d = 3, two-fluid model for electrons
and ions, can be relativistic

Deng (2017): d = 2, electrons dynamics

Many others for Euler-Poisson and results in T3 or T2
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Proposition (Ionescu-Pausader, JEMS 2014)

Let (ρ̄, ū, Ē , B̄)(t, x) be a global-in-time smooth solution to the compress-
ible Euler-Maxwell system, and let θ̄(t, x) = 3

2 ρ̄
2/3(t, x), then the following

estimate holds for all t ≥ 0:

‖(ρ̄− 1, ū, θ̄ − 3

2
, Ē , B̄)‖W N0,2

+ (1 + t)ϑ
{
‖(ρ̄− 1, θ̄ − 3

2
, B̄)‖W N,∞ + ‖(ū, Ē )‖W N+1,∞

}
≤ Cη0.

Here ϑ = 101/100, η0 > 0 is a sufficiently small constant and N0 > 0 is a
large integer, where integer N satisfies 3 ≤ N < N0.
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Macro-micro decomposition:

For a solution (F ,E ,B) to (VMB)ε system, we define

F = M[ρ,u,θ] + G ,

with 
ρ(t, x) ≡

∫
R3 ψ0(v)F (t, x , v) dv ,

ρ(t, x)ui (t, x) ≡
∫
R3 ψi (v)F (t, x , v) dv , for i = 1, 2, 3,

ρ(t, x)
[
e(t, x) + 1

2 |u(t, x)|2
]
≡
∫
R3 ψ4(v)F (t, x , v) dv .

Here ψi (v) are given by collision invariants

ψ0(v) = 1, ψi (v) = vi (i = 1, 2, 3), ψ4(v) =
1

2
|v |2.
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Zero-order fluid-type (compressible Euler-Maxwell) system:
∂tρ+∇x · (ρu) = 0,
∂t(ρu) +∇x · (ρu ⊗ u) +∇xp + ρ(E + u × B)

= −
∫
R3 v ⊗ v · ∇xG dv ,

∂t [ρ(θ + 1
2 |u|

2)] +∇x · [ρu(θ + 1
2 |u|

2) + pu] + ρu · E
= −

∫
R3

1
2 |v |

2v · ∇xG dv ,

coupled to {
∂tE −∇x × B = ρu, ∂tB +∇x × E = 0,

∇x · E = 1− ρ, ∇x · B = 0,

where the pressure p = Rρθ = 2
3ρθ.
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From

∂tG+P1(v ·∇xG )+P1(v ·∇xM)−(E+v×B)·∇vG =
1

ε
LMG+

1

ε
Q(G ,G ),

we write
G = εL−1

M [P1(v · ∇xM)] + L−1
M Θ,

Θ := ε∂tG + εP1(v · ∇xG )− ε(E + v × B) · ∇vG − Q(G ,G ).

First-order fluid-type (compressible Navier-Stokes-Maxwell) system:

∂tρ+∇x · (ρu) = 0,
∂t(ρui ) +∇x · (ρuiu) + ∂xip + ρ(E + u × B)i

= ε
∑3

j=1 ∂xj (µ(θ)Dij)−
∫
R3 vi (v · ∇xL

−1
M Θ) dv , i = 1, 2, 3,

∂t [ρ(θ + 1
2 |u|

2)] +∇x · [ρu(θ + 1
2 |u|

2) + pu] + ρu · E
= ε

∑3
j=1 ∂xj (κ(θ)∂xj θ) + ε

∑3
i,j=1 ∂xj (µ(θ)uiDij)

−
∫
R3

1
2 |v |

2v · ∇xL
−1
M Θ dv ,

coupled to {
∂tE −∇x × B = ρu, ∂tB +∇x × E = 0,

∇x · E = 1− ρ, ∇x · B = 0.

Here, Dij = ∂xjui + ∂xiuj − 2
3δij∇x · u.
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Macro perturbation:

(ρ̃, ũ, θ̃, Ẽ , B̃)(t, x) = (ρ− ρ̄, u − ū, θ − θ̄,E − E ,B − B̄)(t, x).

Micro perturbation:

√
µf (t, x , v) = G (t, x , v)− G (t, x , v),

where G (t, x , v) is given by

G (t, x , v) ≡ εL−1
M P1

{
v · ( |v − u|2∇x θ̄

2Rθ2
+

(v − u) · ∇x ū

Rθ
)M
}
.

Note: It’s the linearisation of the Chapman-Enskog part εL−1
M [P1(v ·∇xM)]

around Euler-Maxwell solutions.
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We define the instant energy as

EN(t) ≡
∑

|α|≤N−1

{‖∂α(ρ̃, ũ, θ̃, Ẽ , B̃)(t)‖2 + ‖∂αf (t)‖2}

+
∑

|α|+|β|≤N,|β|≥1

‖∂αβ f (t)‖2

+ ε2
∑
|α|=N

{‖∂α(ρ̃, ũ, θ̃, Ẽ , B̃)(t)‖2 + ‖∂αf (t)‖2},

and the dissipation rate as

DN(t) ≡ ε
∑

1≤|α|≤N

‖∂α(ρ̃, ũ, θ̃)(t)‖2 + ε
∑
|α|=N

‖∂αf (t)‖2
ν

+
1

ε

∑
|α|≤N−1

‖∂αf (t)‖2
ν +

1

ε

∑
|α|+|β|≤N,|β|≥1

‖∂αβ f (t)‖2
ν .
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Theorem (D.-Yang-Yu, M3AS 23)

Let (ρ̄, ū, θ̄, Ē , B̄)(t, x) be a global smooth solution to the compressible
Euler-Maxwell system given in Proposition. Construct a local Maxwellian
M[ρ̄,ū,θ̄](t, x , v). Then there exists a small constant ε0 > 0 such that for
each ε ∈ (0, ε0], the Cauchy problem on the Vlasov-Maxwell-Boltzmann
system with well prepared initial data

F ε(0, x , v) ≡ M[ρ̄,ū,θ̄](0, x , v) ≥ 0, (E ε,Bε)(0, x) ≡ (Ē , B̄)(0, x),

admits a unique smooth solution (F ε(t, x , v),E ε(t, x),Bε(t, x)) for all t ∈
[0,Tε] with

Tε =
1

4C1

1

η0εa + ε
1
2−a

, for a ∈ [0,
1

2
),

where generic constant C1 > 1 and small constant η0 > 0 are independent
of ε. Moreover, it holds that F ε(t, x , v) ≥ 0 and

EN(t) +
1

2

∫ t

0

DN(s) ds ≤ 1

2
ε2−2a,

for any t ∈ [0,Tε].
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Theorem (Conti)

In particular, there exists a constant C > 0 independent of ε and Tmax

such that

sup
t∈[0,Tε]

{
‖
F ε(t, x , v)−M[ρ̄,ū,θ̄](t, x , v)

√
µ

‖L2
xL

2
v

+ ‖
F ε(t, x , v)−M[ρ̄,ū,θ̄](t, x , v)

√
µ

‖L∞x L2
v

+ ‖(E ε − Ē ,Bε − B̄)(t, x)‖L2
x

+ ‖(E ε − Ē ,Bε − B̄)(t, x)‖L∞x
}

≤ Cε1−a.

Note: For a = 1
4 , we get the distance in L2

x ∩ L∞x ∼ ε
3
4 uniformly in the

time interval [0,Tε] with Tε ∼ ε−1/4 that can be almost global.
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Remark:

Although the L2 − L∞ approach works well for the Boltzmann with cutoff
potentials, in particular, for the hard-sphere model, it cannot be applicable
to the VMB case for the hard-sphere model, since one loses the Glassey-
Strauss representation for the electric-magnetic fields E and B that is true
in the relativistic case, for instance,

4πE (t, x) = −
∫
|y−x|≤t

∫
R3

(ω + v̂)(1− |v̂ |2)

(1 + v̂ · ω)2
F (t − |y − x |, y , v) dv

dy

|y − x |2

+ other terms,

with v̂ = v√
1+|v |2

and ω = y−x
|y−x| . The relativistic velocity v̂ is bounded,

so the expression 1+ v̂ ·ω is bounded away from 0, Guo-Xiao (CMP 2021).

33/36



One point of the proof:

We use the bootstrap argument. Assume

sup
0≤t≤T

EN(t) ≤ ε2−2a, a ∈ [0,
1

2
).

We are devoted to showing

EN(t) +
1

2

∫ t

0

DN(s) ds ≤ 1

2
ε2−2a.

Indeed, one can prove

EN(t) +

∫ t

0

DN(s) ds ≤C1(η0 + ε
1
2−a)

∫ t

0

DN(s) ds

+ C1[η0 + ε
1
2 + (η0ε

a + ε
1
2−a)t]ε2−2a.

We therefore require that

C1(η0 + ε
1
2−a) ≤ 1

2
, C1[η0 + ε

1
2 + (η0ε

a + ε
1
2−a)t] ≤ 1

2
,

yielding

a ∈ [0,
1

2
), and t ≤ Tmax =

1

4C1

1

η0εa + ε
1
2−a

.
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The key is obtain the estimate

ε2×
∑
|α|=N

{
‖∂α(ρ̃, ũ, θ̃, Ẽ , B̃)(t)‖2 + ‖∂αf (t)‖2 +

1

ε

∫ t

0

‖∂αf (s)‖2
ν ds

}

≤ C (η0 + ε
1
2−a)

∫ t

0

DN(s) ds + C [η0 + ε
1
2 + (η0ε

2a + ε
1
2−a)t]ε2−2a.

from

∂tF√
µ

+
v · ∇xF√

µ
− (E + v × B) · ∇vF√

µ
=

1

ε
Lf +

1

ε
Γ(

M − µ
√
µ

, f )

+
1

ε
Γ(f ,

M − µ
√
µ

) +
1

ε
Γ(

G
√
µ
,
G
√
µ

) +
1

ε

LMG
√
µ
.

35/36



Thank you!
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