Compressible Euler-Maxwell limit for global smooth solutions to the Vlasov-Maxwell-Boltzmann system

Renjun Duan

The Chinese University of Hong Kong

Partial Differential Equations in Fluid Dynamics (23w5066) Institute for Advanced Study in Mathematics, Hangzhou

August 6-11, 2023

This talk is in collaboration with Dongcheng Yang (CUHK) and Hongjun Yu (South China Normal University).

Supports from RGC of Hong Kong are acknowledged.

Goal of this talk: Under the (compressible) Euler scaling on the (Vlasov-Maxwell-Boltzmann $)_{\varepsilon>0}$ system (ϵ : Knudsen number, non-dimensional),

- to construct an almost global smooth solution such that

$$
\begin{aligned}
& \sup _{0 \leq t \leq T_{\varepsilon}}\left\|F^{\varepsilon}-M_{[\bar{\rho}, \bar{u}, \bar{T}](t, x)}\right\|_{\left(L_{x}^{2} \cap L_{x}^{\infty}\right) L_{v}^{2}\left(\mu^{-1 / 2}\right)} \\
&+\sup _{0 \leq t \leq T_{\varepsilon}}\left\|\left(E^{\varepsilon}, B^{\varepsilon}\right)-(\bar{E}, \bar{B})\right\|_{L_{x}^{2} \cap L_{x}^{\infty}} \lesssim \varepsilon^{1-a}
\end{aligned}
$$

with

$$
\begin{aligned}
M_{[\bar{\rho}, \bar{u}, \bar{T}]}(t, x, v) & :=\frac{\bar{\rho}(t, x)}{[2 \pi \bar{T}(t, x)]^{3 / 2}} \exp \left\{-\frac{|v-\bar{u}(t, x)|^{2}}{2 \bar{T}(t, x)}\right\}, \\
T_{\varepsilon} & \sim \frac{1}{\eta_{0} \varepsilon^{a}+\varepsilon^{\frac{1}{2}-a}}, \quad 0 \leq a<\frac{1}{2}
\end{aligned}
$$

where ($\bar{\rho}, \bar{u}, \bar{T}, \bar{E}, \bar{B}$) is a global smooth solution to the compressible Euler-Maxwell near $\left(1,0, \frac{3}{2}, 0,0\right)$ with a small amplitude $\eta_{0}>0$ independent of ε.

Remark:

- The robust $L^{2} \cap L^{\infty}(w d v)$ approach in low-regularity function spaces by Guo seems not applicable in case of the non-relativistic VMB.
- However, we are able to design ε-dependent energy functional $\mathcal{E}_{N, \varepsilon}(t)$ and corresponding dissipation functional $\mathcal{D}_{N, \varepsilon}(t)$ to close the a priori estimate

$$
\sup _{0 \leq t \leq \tau}\left[\mathcal{E}_{N, \varepsilon}(t)+c \int_{0}^{t} \mathcal{D}_{N, \varepsilon}(s) d s\right] \leq \frac{1}{2} \varepsilon^{2}
$$

L^{∞} bound of solutions is a consequence of Sobolev embeddings.

- ε-singularity of $\mathcal{E}_{N, \varepsilon}(t)$ and $\mathcal{D}_{N, \varepsilon}(t)$ occurs to the highest-order derivatives.

Boltzmann equation (1872):

- The unknown:

$$
F=F(t, x, v) \geq 0, t>0, x \in \Omega \subset \mathbb{R}^{3}, v \in \mathbb{R}^{3},
$$

the velocity distribution function of particles in a rarefied gas.

- Governed by

$$
\underbrace{\left\{\partial_{t}+v \cdot \nabla_{x}\right\} F}_{\text {free transport }}=\underbrace{Q(F, F)}_{\text {binary collision }},
$$

with the Boltzmann collision operator

$$
Q(G, F)(v)=\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} B(v-u, \sigma)[\underbrace{G\left(u^{\prime}\right) F\left(v^{\prime}\right)}_{\text {gain }}-\underbrace{G(u) F(v)}_{\text {loss }}] d \sigma d u,
$$

where

$$
v^{\prime}=\frac{v+u}{2}+\frac{|v-u|}{2} \sigma, \quad u^{\prime}=\frac{v+u}{2}-\frac{|v-u|}{2} \sigma
$$

satisfying

$$
\begin{aligned}
v+u & =v^{\prime}+u^{\prime} \\
|v|^{2}+|u|^{2} & =\left|v^{\prime}\right|^{2}+\left|u^{\prime}\right|^{2}
\end{aligned}
$$

$$
\begin{gathered}
\theta: \text { deviation angle } \\
\cos \theta=\sigma \cdot \frac{v-u}{|v-u|}=\frac{v^{\prime}-u^{\prime}}{\left|v^{\prime}-u^{\prime}\right|} \cdot \frac{v-u}{|v-u|}
\end{gathered}
$$

Collision kernel:

$$
\begin{gathered}
B(v-u, \sigma)=|v-u|^{\gamma} b(\cos \theta), \\
-3<\gamma \leq 1,
\end{gathered}
$$

- non-cutoff:

$$
\begin{gathered}
\frac{1}{C_{b} \theta^{1+2 s}} \leq \sin \theta b(\cos \theta) \leq \frac{C_{b}}{\theta^{1+2 s}}, \quad \forall \theta \in\left(0, \frac{\pi}{2}\right] \\
C_{b}>0, \quad 0<s<1
\end{gathered}
$$

A physical example: For potential $U(r)=r^{-\ell}(\ell>1)$ (inverse power law),

$$
\gamma=\frac{\ell-4}{\ell}, \quad s=\frac{1}{\ell} .
$$

- cutoff (H. Grad):

$$
\int_{0}^{\pi / 2} \sin \theta b(\cos \theta) d \theta<\infty
$$

Basic properties of $Q(F, F)$:

- Collision invariants:

$$
\int_{\mathbb{R}^{3}} \phi(v) Q(F, F)(v) d v=0 \text { for } \phi(v)=1, v,|v|^{2}
$$

- Entropy-entropy product: For a solution $F=F(t, x, v)$ satisfying $\partial_{t} F+v \cdot \nabla_{x} F=Q(F, F)$,

$$
\begin{aligned}
\partial_{t} \int_{\mathbb{R}^{3}} F \ln F d v+\nabla_{x} \cdot \int_{\mathbb{R}^{3}} v f \ln F d & \\
& =-\int_{\mathbb{R}^{3}} Q(F, F) \ln F d v \leq 0,
\end{aligned}
$$

where $=$ holds iff $Q(F, F)=0$ holds, iff F is taken as a local Maxwellian:

$$
\bar{M} \equiv M_{[\bar{\rho}, \bar{u}, \bar{\theta}]}(t, x, v):=\frac{\bar{\rho}(t, x)}{\sqrt{(2 \pi R \bar{\theta}(t, x))^{3}}} \exp \left\{-\frac{|v-\bar{u}(t, x)|^{2}}{2 R \bar{\theta}(t, x)}\right\} .
$$

Long time dynamics:

It would be expected that the mesocopic motion by

$$
\partial_{t} F+v \cdot \nabla_{x} F=Q(F, F)
$$

is getting in large time close to the dynamics for

$$
F(t, x, v)=M_{[\bar{\rho}, \overline{,}, \bar{\theta}]}(t, x, v)
$$

governed by the local conservation laws:

$$
\begin{gathered}
\partial_{t} \int_{\mathbb{R}^{3}} \phi(v) F(t, x, v) d v+\nabla_{x} \cdot \int_{\mathbb{R}^{3}} v \phi(v) F(t, x, v) d v=0, \\
\phi(v)=1, v,|v|^{2}
\end{gathered}
$$

and the entropy inequality:

$$
\partial_{t} \int_{\mathbb{R}^{3}} F \ln F d v+\nabla_{x} \cdot \int_{\mathbb{R}^{3}} v f \ln F d v \leq 0 .
$$

These are approximately equivalent with the compressible Euler system:

$$
\left\{\begin{aligned}
\partial_{t} \bar{\rho}+\nabla_{x} \cdot(\bar{\rho} \bar{u}) & =0 \\
\partial_{t}(\bar{\rho} \bar{u})+\nabla_{x} \cdot(\bar{\rho} \bar{u} \otimes \bar{u})+\nabla_{x} \bar{p} & =0 \\
\partial_{t}\left[\bar{\rho}\left(\bar{\theta}+\frac{1}{2}|\bar{u}|^{2}\right)\right]+\nabla_{x} \cdot\left[\bar{\rho} \bar{u}\left(\bar{\theta}+\frac{1}{2}|\bar{u}|^{2}\right)\right]+\nabla_{x} \cdot(\bar{p} \bar{u}) & =0
\end{aligned}\right.
$$

with the entropy inequality

$$
\partial_{t}\left(\bar{\rho} \ln \frac{\bar{\rho}}{\bar{\theta}^{3 / 2}}\right)+\nabla_{x} \cdot\left(\bar{\rho} \bar{u} \ln \frac{\bar{\rho}}{\bar{\theta}^{3 / 2}}\right) \leq 0 .
$$

Question

Rigorous justification?
Cf. Chapter 6 of Hydrodynamic Limits of the Boltzmann Equation by Laure Saint-Raymond.

Analytical framework:

For the Boltzmann with cutoff,

- Nishida (1978): abstract Cauchy-Kovalevskaya + spectral analysis of linearized Boltzmann equation
- Ukai-Asano (1983): contraction mapping with time-dependent norm, include initial layer.

Hilbert expansion:

We start from Boltzmann equation (cutoff, hard potentials $0 \leq \gamma \leq 1$):

$$
\partial_{t} F^{\varepsilon}+v \cdot \nabla_{x} F^{\varepsilon}=\frac{1}{\varepsilon} Q\left(F^{\varepsilon}, F^{\varepsilon}\right) .
$$

The solution F^{ε} is found via the Hilbert expansion:

$$
F^{\varepsilon}=F_{0}+\sum_{n=1}^{6} \varepsilon^{n} F_{n}+\varepsilon^{3} F_{R}^{\varepsilon}
$$

where F_{0}, \cdots, F_{6} are independent of ε. As a consequence,

$$
F_{0} \equiv \bar{M}=M_{[\bar{\rho}, \bar{u}, \overline{\bar{T}}]}(t, x, v):=\frac{\bar{\rho}(t, x)}{\sqrt{(2 \pi \bar{T}(t, x))^{3}}} \exp \left\{-\frac{|v-\bar{u}(t, x)|^{2}}{2 \bar{T}(t, x)}\right\}
$$

where fluid parameters $(\bar{\rho}, \bar{u}, \bar{T})(t, x)$ are the solutions of the compressible Euler system. Then the remainder F_{R}^{ε} satisfies

$$
\partial_{t} F_{R}^{\varepsilon}+v \cdot \nabla_{x} F_{R}^{\varepsilon} \underbrace{-\frac{1}{\varepsilon}\left\{Q\left(\bar{M}, F_{R}^{\varepsilon}\right)+Q\left(F_{R}^{\varepsilon}, \bar{M}\right)\right\}}_{\text {linearization around a given Euler flow }}=\varepsilon^{2} Q\left(F_{R}^{\varepsilon}, F_{R}^{\varepsilon}\right)+\cdots .
$$

Theorem (Caflisch 1980)

Let $\Omega=\mathbb{T},[\bar{\rho}, \bar{u}, \bar{T}]\left(t, x_{1}\right)$ be a smooth solution without vacuum to the Euler system over $[0, \tau]$ and $\bar{M}=M_{[\bar{\rho}, \bar{u}, \bar{T}]}\left(t, x_{1}, v\right)$. There is $\varepsilon_{0}>0$ such that for each $0<\varepsilon \leq \varepsilon_{0}$, a smooth solution F^{ε} to the cutoff Boltzmann equation $\partial_{t} F^{\varepsilon}+v \cdot \nabla_{x} F^{\varepsilon}=\frac{1}{\varepsilon} Q\left(F^{\varepsilon}, F^{\varepsilon}\right)$ with $0 \leq \gamma \leq 1$ exists for $0 \leq t \leq \tau$ with

$$
\sup _{0 \leq t \leq \tau}\left\|F^{\varepsilon}-\bar{M}\right\|_{L_{x_{1}, v}^{2}} \leq C_{\tau} \varepsilon,
$$

where C_{τ} is independent of ε.

Proof:

- Construct smooth profiles $F_{i}(1 \leq 6)$ iteratively:

$$
F_{i}\left(t, x_{1}, v\right) \leq C|\xi|^{3 i} \bar{M},
$$

in particular, F_{1} cubic growth in large v due to $v_{1} \partial_{x_{1}} F_{0}=v_{1} \partial_{x_{1}} \bar{M}$.

- Cutoff assumption is essential, so can use Grad's splitting $L=-\nu+K$. To overcome large-velocity growth, develop a decomposition:

$$
F_{R}=\underbrace{\sqrt{\bar{M}} g}_{\text {low } v \text { part }}+\underbrace{\sqrt{\mu_{m}} h}_{\text {high } v \text { part }}
$$

where $\mu_{m}=\frac{1}{\sqrt{\left(2 \pi T_{m}\right)^{3}}} \exp \left\{-\frac{|v|^{2}}{2 T_{m}}\right\}$ with $T_{m}>\max _{t, x} T(t, x)$ so that $\mu_{m} \geq c \bar{M}$. Split K correspondingly as

$$
K h=\chi_{|v| \leq M} K h+\chi_{|v|>M} K h .
$$

- Show contraction in $H_{x_{1}}^{1} L_{\beta}^{\infty}$. Choice for initial data: $g(0)=h(0) \equiv 0$, so $F_{R}(0) \equiv 0$. Loss of positivity of ID and hence solutions.

Instead of using Caflisch's decomposition, Guo-Jang-Jiang (2010) applied the $L^{2}-L^{\infty}$ approach:

Let $\Omega=\mathbb{R}^{3}$ or \mathbb{T}^{3}. Write $F_{R}^{\varepsilon}=\sqrt{M} f^{\varepsilon}$, then

$$
\begin{aligned}
\partial_{t} f^{\varepsilon}+v \cdot \nabla_{x} f^{\varepsilon}-\frac{1}{\varepsilon}\left\{Q\left(\bar{M}, \sqrt{\bar{M}} f^{\varepsilon}\right)\right. & \left.+Q\left(\sqrt{\bar{M}} f^{\varepsilon}, \bar{M}\right)\right\} \\
& =\underbrace{-\frac{\left\{\partial_{t}+v \cdot \nabla_{x}\right\} \sqrt{\bar{M}}}{\sqrt{\bar{M}}} f^{\varepsilon}}_{(*) \sim\left(\partial_{t}, \partial_{x}\right) \bar{u}|v|^{3} f^{\varepsilon}}+\cdots .
\end{aligned}
$$

L^{2} estimate on f^{ε} meets an obstacle.
Idea: Let

$$
\begin{gathered}
F_{R}^{\varepsilon}=\left(1+|v|^{2}\right)^{-\beta} \sqrt{\mu_{m}} h^{\varepsilon}=\frac{1}{w(v)} \sqrt{\mu_{m}} h^{\varepsilon}, \\
\mu_{m}=\left(2 \pi T_{m}\right)^{-\frac{3}{2}} \exp \left(-\frac{|v|^{2}}{2 T_{m}}\right), \quad T_{m}<\max _{t, x} \bar{T}(t, x)<2 T_{m}, \\
\int(*) f^{\epsilon} \sim\left\|\left(\partial_{t}, \partial_{x}\right) \bar{u}\right\|_{L^{2}}\left\|h^{\epsilon}\right\|_{L^{\infty}}\left\|f^{\epsilon}\right\|_{L^{2} .}
\end{gathered}
$$

Then h^{ε} satisfies

$$
\partial_{t} h^{\varepsilon}+v \cdot \nabla_{x} h^{\varepsilon}+\frac{1}{\varepsilon} \nu(\bar{M}) h^{\varepsilon}+\frac{1}{\varepsilon} K_{w} h^{\varepsilon}=\cdots,
$$

where $K_{w} g=w K\left(\frac{g}{w}\right)$ and

$$
-\frac{1}{\sqrt{\mu_{m}}}\left\{Q\left(\bar{M}, \sqrt{\mu_{m}} g\right)+Q\left(\sqrt{\mu_{m}} g, \bar{M}\right)\right\}=(\nu(\bar{M})+K) g .
$$

Strategy of estimates:

- Use L^{2} norm of f^{ε} to control the low-order velocity part and L^{∞} norm of h^{ε} for the large velocity part.
- Obtain L^{∞} estimate for $\varepsilon^{3 / 2} h^{\varepsilon}$ along the trajectory in terms of L^{2} norm of f^{ε}, close the estimates in L^{2} and apply the Gronwall argument over $[0, \tau]$.

Theorem (Guo-Jang-Jiang 2010)

$$
\sup _{0 \leq t \leq \tau}\left(\varepsilon^{3 / 2}\left\|h^{\varepsilon}(t)\right\|_{L_{x, v}^{\infty}}+\left\|f^{\varepsilon}(t)\right\|_{L_{x, v}^{2}}\right) \leq C_{\tau}\left(\varepsilon^{3 / 2}\left\|h_{0}^{\varepsilon}\right\|_{L_{x, v}^{\infty}},\left\|f_{0}^{\varepsilon}\right\|_{L_{x, v}^{2}}\right)
$$

Guo-Jang (2010) further obtained the global higher-order Hilbert expansion

$$
F^{\varepsilon}=\sum_{n=0}^{2 k-1} \varepsilon^{n} F_{n}+\varepsilon^{k} F_{R}^{\varepsilon}
$$

to the Vlasov-Poisson-Boltzmann system.

Theorem (Guo-Jang 2010)

There exists a solution $F^{\varepsilon}(t, x, v)$ to the VPB system in the Euler scaling:

$$
\begin{aligned}
\partial_{t} F^{\varepsilon}+v \cdot \nabla_{x} F^{\varepsilon}+\nabla_{x} \phi^{\varepsilon} \cdot \nabla_{v} F^{\varepsilon} & =\frac{1}{\varepsilon} Q\left(F^{\varepsilon}, F^{\varepsilon}\right), \\
\Delta_{x} \phi^{\varepsilon} & =\int F^{\varepsilon} d v-1,
\end{aligned}
$$

such that
$\sup _{0 \leq t \leq \varepsilon^{-m}}\left\|F^{\varepsilon}(t, \cdot \cdot)-M_{[\bar{\rho}, \bar{u}, \bar{T}]}(t, \cdot, \cdot)\right\|=O(\varepsilon), \quad 0<m \leq \frac{1}{2} \frac{2 k-3}{2 k-2}, k \geq 6$.
Here $[\bar{\rho}, \bar{u}, \bar{T}](t, x)$ is the smooth solution around constant equilibrium for the hydrodynamic compressible Euler-Poisson system with $\bar{T}=C \bar{\rho}^{\frac{2}{3}}$.

Problems left:

- What happens to the non-cutoff Boltzmann or Landau equation for which the Grad's splitting is no longer available?

Still possible to obtain L^{∞} estimates using the De Giorgi argument instead of the direct $L^{2}-L^{\infty}$ interplay: Alonso-Morimoto-Sun-Yang (arXiv 2020), Guo-Hwang-Jang-Ouyang (ARMA 2020), Kim-GuoHwang (PMJ 2020),...but so far unknown to employ them for the fluid limit, as need to obtain estimate uniform in ε.

- How to extend Guo-Jang's work to the VMB system where the selfconsistent electromagnetic field satisfying the Maxwell equations is included?

Again, $L^{2}-L^{\infty}$ interplay fails for the fluid limit, as one loses the Glassey-Strauss representation, although it works for the relativistic case; see a recent work by Guo-Xiao (CMP 2021).

Our strategy:

- Derive an ε-dependent high-order energy estimates on basis of the macro-micro decomposition of Liu-Yu (CMP,2002) and Liu-Yang-Yu (Phys D 2004)

VMB system for dynamics of electrons in \mathbb{R}_{x}^{3} :

$$
\left\{\begin{array}{l}
\partial_{t} F+v \cdot \nabla_{x} F-(E+v \times B) \cdot \nabla_{v} F=\frac{1}{\varepsilon} Q(F, F), \\
\partial_{t} E-\nabla_{x} \times B=\int_{\mathbb{R}^{3}} v F d v, \\
\partial_{t} B+\nabla_{x} \times E=0, \\
\nabla_{x} \cdot E=n_{b}-\int_{\mathbb{R}^{3}} F d v, \quad \nabla_{x} \cdot B=0 .
\end{array}\right.
$$

- $E=E(t, x)=\left(E_{1}, E_{2}, E_{3}\right)(t, x)$: self-consistent electric field
- $B=B(t, x)=\left(B_{1}, B_{2}, B_{3}\right)(t, x)$: self-consistent magnetic field
- $n_{b}>0$ is assumed to be a constant denoting the spatially uniform density of the ionic background. Take $n_{b}=1$ without loss of generality.

For brevity we focus on the hard sphere model for the Boltzmann collision operator:
$Q\left(F_{1}, F_{2}\right)(v)=\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}}\left|\left(v-v_{*}\right) \cdot \omega\right|\left\{F_{1}\left(v^{\prime}\right) F_{2}\left(v_{*}^{\prime}\right)-F_{1}(v) F_{2}\left(v_{*}\right)\right\} d \omega d v_{*}$,
where $\omega \in \mathbb{S}^{2}$ is a unit vector in \mathbb{R}^{3}, and the velocity pairs $\left(v, v_{*}\right)$ before collisions and ($v^{\prime}, v_{*}^{\prime}$) after collisions are given by

$$
v^{\prime}=v-\left[\left(v-v_{*}\right) \cdot \omega\right] \omega, \quad v_{*}^{\prime}=v_{*}+\left[\left(v-v_{*}\right) \cdot \omega\right] \omega,
$$

in terms of the conservations of momentum and kinetic energy:

$$
v+v_{*}=v^{\prime}+v_{*}^{\prime}, \quad|v|^{2}+\left|v_{*}\right|^{2}=\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2} .
$$

VMB system for the hard sphere model, global classical solutions near global Maxwellians:

- \mathbb{T}^{3} : Guo (2003)
- \mathbb{R}^{3} : Strain (2006), D.-Strain (2011)

Corresponding to VMB, the hydrodynamic description for the motion of electrons at the fluid level is also given by the following compressible EulerMaxwell system which is an important fluid model in plasma physics:

$$
\left\{\begin{aligned}
\partial_{t} \bar{\rho}+\nabla_{x} \cdot(\bar{\rho} \bar{u}) & =0, \\
\partial_{t}(\bar{\rho} \bar{u})+\nabla_{x} \cdot(\bar{\rho} \bar{u} \otimes \bar{u})+\nabla_{x} \bar{\rho} & =-\bar{\rho}(\bar{E}+\bar{u} \times \bar{B}), \\
\partial_{t} \bar{E}-\nabla_{x} \times \bar{B} & =\bar{\rho} \bar{u}, \\
\partial_{t} \bar{B}+\nabla_{x} \times \bar{E} & =0, \\
\nabla_{x} \cdot \bar{E}=n_{b}-\bar{\rho}, \quad \nabla_{x} \cdot \bar{B} & =0 .
\end{aligned}\right.
$$

Here the unknowns are the electron density $\bar{\rho}=\bar{\rho}(t, x)>0$, the electron velocity $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right)(t, x)$, and the electromagnetic field $(\bar{E}, \bar{B})=$ $(\bar{E}, \bar{B})(t, x)$. Moreover, $\bar{p}=K \bar{\rho}^{5 / 3}$ is the pressure satisfying the power law with the adiabatic exponent $\gamma=\frac{5}{3}$. We take the physical constant $K=1$ without loss of generality.

Remark: It can be formally derived from the VMB system in the isentropic case for the macro fluid system:

$$
\frac{\bar{\rho}}{\bar{\theta}^{3 / 2}} \equiv 1
$$

Euler-Maxwell system in \mathbb{R}^{d}, global classical solutions near constant equilibrium:

- Germain-Masmoudi (2014), lonescu-Pausader (2014): d = 3, electrons dynamics, method of space-time resonance
- Guo-lonescu-Pausader (2016): $d=3$, two-fluid model for electrons and ions, can be relativistic
- Deng (2017): $d=2$, electrons dynamics
- Many others for Euler-Poisson and results in \mathbb{T}^{3} or \mathbb{T}^{2}

Proposition (Ionescu-Pausader, JEMS 2014)

Let $(\bar{\rho}, \bar{u}, \bar{E}, \bar{B})(t, x)$ be a global-in-time smooth solution to the compressible Euler-Maxwell system, and let $\bar{\theta}(t, x)=\frac{3}{2} \bar{\rho}^{2 / 3}(t, x)$, then the following estimate holds for all $t \geq 0$:

$$
\begin{aligned}
& \left\|\left(\bar{\rho}-1, \bar{u}, \bar{\theta}-\frac{3}{2}, \bar{E}, \bar{B}\right)\right\|_{W^{N_{0}, 2}} \\
& +(1+t)^{\vartheta}\left\{\left\|\left(\bar{\rho}-1, \bar{\theta}-\frac{3}{2}, \bar{B}\right)\right\|_{W^{N, \infty}}+\|(\bar{u}, \bar{E})\|_{W^{N+1, \infty}}\right\} \leq C \eta_{0} .
\end{aligned}
$$

Here $\vartheta=101 / 100, \eta_{0}>0$ is a sufficiently small constant and $N_{0}>0$ is a large integer, where integer N satisfies $3 \leq N<N_{0}$.

Macro-micro decomposition:

For a solution (F, E, B) to $(\mathrm{VMB})_{\varepsilon}$ system, we define

$$
F=M_{[\rho, u, \theta]}+G
$$

with

$$
\left\{\begin{array}{l}
\rho(t, x) \equiv \int_{\mathbb{R}^{3}} \psi_{0}(v) F(t, x, v) d v \\
\rho(t, x) u_{i}(t, x) \equiv \int_{\mathbb{R}^{3}} \psi_{i}(v) F(t, x, v) d v, \quad \text { for } i=1,2,3 \\
\rho(t, x)\left[e(t, x)+\frac{1}{2}|u(t, x)|^{2}\right] \equiv \int_{\mathbb{R}^{3}} \psi_{4}(v) F(t, x, v) d v
\end{array}\right.
$$

Here $\psi_{i}(v)$ are given by collision invariants

$$
\psi_{0}(v)=1, \quad \psi_{i}(v)=v_{i}(i=1,2,3), \quad \psi_{4}(v)=\frac{1}{2}|v|^{2}
$$

Zero-order fluid-type (compressible Euler-Maxwell) system:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla_{x} \cdot(\rho u)=0, \\
\partial_{t}(\rho u)+\nabla_{x} \cdot(\rho u \otimes u)+\nabla_{x} p+\rho(E+u \times B) \\
\quad=-\int_{\mathbb{R}^{3}} v \otimes v \cdot \nabla_{x} G d v, \\
\partial_{t}\left[\rho\left(\theta+\frac{1}{2}|u|^{2}\right)\right]+\nabla_{x} \cdot\left[\rho u\left(\theta+\frac{1}{2}|u|^{2}\right)+p u\right]+\rho u \cdot E \\
\quad=-\int_{\mathbb{R}^{3}} \frac{1}{2}|v|^{2} v \cdot \nabla_{x} G d v,
\end{array}\right.
$$

coupled to

$$
\left\{\begin{array}{r}
\partial_{t} E-\nabla_{x} \times B=\rho u, \quad \partial_{t} B+\nabla_{x} \times E=0, \\
\nabla_{x} \cdot E=1-\rho, \quad \nabla_{x} \cdot B=0,
\end{array}\right.
$$

where the pressure $p=R \rho \theta=\frac{2}{3} \rho \theta$.

From

$$
\partial_{t} G+P_{1}\left(v \cdot \nabla_{x} G\right)+P_{1}\left(v \cdot \nabla_{x} M\right)-(E+v \times B) \cdot \nabla_{v} G=\frac{1}{\varepsilon} L_{M} G+\frac{1}{\varepsilon} Q(G, G),
$$

we write

$$
\begin{gathered}
G=\varepsilon L_{M}^{-1}\left[P_{1}\left(v \cdot \nabla_{x} M\right)\right]+L_{M}^{-1} \Theta, \\
\Theta:=\varepsilon \partial_{t} G+\varepsilon P_{1}\left(v \cdot \nabla_{x} G\right)-\varepsilon(E+v \times B) \cdot \nabla_{v} G-Q(G, G) .
\end{gathered}
$$

First-order fluid-type (compressible Navier-Stokes-Maxwell) system:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla_{x} \cdot(\rho u)=0, \\
\partial_{t}\left(\rho u_{i}\right)+\nabla_{x} \cdot\left(\rho u_{i} u\right)+\partial_{x_{i}} p+\rho(E+u \times B)_{i} \\
\quad=\varepsilon \sum_{j=1}^{3} \partial_{x_{j}}\left(\mu(\theta) D_{i j}\right)-\int_{\mathbb{R}^{3}} v_{i}\left(v \cdot \nabla_{x} L_{M}^{-1} \Theta\right) d v, \quad i=1,2,3, \\
\partial_{t}\left[\rho\left(\theta+\frac{1}{2}|u|^{2}\right)\right]+\nabla_{x} \cdot\left[\rho u\left(\theta+\frac{1}{2}|u|^{2}\right)+p u\right]+\rho u \cdot E \\
\quad=\varepsilon \sum_{j=1}^{3} \partial_{x_{j}}\left(\kappa(\theta) \partial_{\left.x_{x_{j}} \theta\right)+\varepsilon \sum_{i, j=1}^{3} \partial_{x_{j}}\left(\mu(\theta) u_{i} D_{i j}\right)} \quad-\quad \int_{\mathbb{R}^{3}} \frac{1}{2}|v|^{2} v \cdot \nabla_{x} L_{M}^{-1} \Theta d v,\right.
\end{array}\right.
$$

coupled to

$$
\left\{\begin{array}{r}
\partial_{t} E-\nabla_{x} \times B=\rho u, \quad \partial_{t} B+\nabla_{x} \times E=0, \\
\nabla_{x} \cdot E=1-\rho, \quad \nabla_{x} \cdot B=0 .
\end{array}\right.
$$

Here, $D_{i j}=\partial_{x_{j}} u_{i}+\partial_{x_{i}} u_{j}-\frac{2}{3} \delta_{i j} \nabla_{x} \cdot u$.

Macro perturbation:

$$
(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta}, \widetilde{E}, \widetilde{B})(t, x)=(\rho-\bar{\rho}, u-\bar{u}, \theta-\bar{\theta}, E-\bar{E}, B-\bar{B})(t, x) .
$$

Micro perturbation:

$$
\sqrt{\mu} f(t, x, v)=G(t, x, v)-\bar{G}(t, x, v),
$$

where $\bar{G}(t, x, v)$ is given by

$$
\bar{G}(t, x, v) \equiv \varepsilon L_{M}^{-1} P_{1}\left\{v \cdot\left(\frac{|v-u|^{2} \nabla_{x} \bar{\theta}}{2 R \theta^{2}}+\frac{(v-u) \cdot \nabla_{x} \bar{u}}{R \theta}\right) M\right\} .
$$

Note: It's the linearisation of the Chapman-Enskog part $\varepsilon L_{M}^{-1}\left[P_{1}\left(v \cdot \nabla_{x} M\right)\right]$ around Euler-Maxwell solutions.

We define the instant energy as

$$
\begin{aligned}
\mathcal{E}_{N}(t) \equiv & \sum_{|\alpha| \leq N-1}\left\{\left\|\partial^{\alpha}(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta}, \widetilde{E}, \widetilde{B})(t)\right\|^{2}+\left\|\partial^{\alpha} f(t)\right\|^{2}\right\} \\
& +\sum_{|\alpha|+|\beta| \leq N,|\beta| \geq 1}\left\|\partial_{\beta}^{\alpha} f(t)\right\|^{2} \\
& +\varepsilon^{2} \sum_{|\alpha|=N}\left\{\left\|\partial^{\alpha}(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta}, \widetilde{E}, \widetilde{B})(t)\right\|^{2}+\left\|\partial^{\alpha} f(t)\right\|^{2}\right\},
\end{aligned}
$$

and the dissipation rate as

$$
\begin{aligned}
\mathcal{D}_{N}(t) \equiv & \varepsilon \sum_{1 \leq|\alpha| \leq N}\left\|\partial^{\alpha}(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta})(t)\right\|^{2}+\varepsilon \sum_{|\alpha|=N}\left\|\partial^{\alpha} f(t)\right\|_{\nu}^{2} \\
& +\frac{1}{\varepsilon} \sum_{|\alpha| \leq N-1}\left\|\partial^{\alpha} f(t)\right\|_{\nu}^{2}+\frac{1}{\varepsilon} \sum_{|\alpha|+|\beta| \leq N,|\beta| \geq 1}\left\|\partial_{\beta}^{\alpha} f(t)\right\|_{\nu}^{2} .
\end{aligned}
$$

Theorem (D.-Yang-Yu, M3AS 23)

Let $(\bar{\rho}, \bar{u}, \bar{\theta}, \bar{E}, \bar{B})(t, x)$ be a global smooth solution to the compressible Euler-Maxwell system given in Proposition. Construct a local Maxwellian $M_{[\bar{\rho}, \bar{u}, \bar{\theta}]}(t, x, v)$. Then there exists a small constant $\varepsilon_{0}>0$ such that for each $\varepsilon \in\left(0, \varepsilon_{0}\right]$, the Cauchy problem on the Vlasov-Maxwell-Boltzmann system with well prepared initial data

$$
F^{\varepsilon}(0, x, v) \equiv M_{[\bar{\rho}, \overline{\bar{u}}, \bar{\theta}]}(0, x, v) \geq 0, \quad\left(E^{\varepsilon}, B^{\varepsilon}\right)(0, x) \equiv(\bar{E}, \bar{B})(0, x),
$$

admits a unique smooth solution $\left(F^{\varepsilon}(t, x, v), E^{\varepsilon}(t, x), B^{\varepsilon}(t, x)\right)$ for all $t \in$ $\left[0, T_{\varepsilon}\right]$ with

$$
T_{\varepsilon}=\frac{1}{4 C_{1}} \frac{1}{\eta_{0} \varepsilon^{a}+\varepsilon^{\frac{1}{2}-a}}, \quad \text { for } \quad a \in\left[0, \frac{1}{2}\right),
$$

where generic constant $C_{1}>1$ and small constant $\eta_{0}>0$ are independent of ε. Moreover, it holds that $F^{\varepsilon}(t, x, v) \geq 0$ and

$$
\mathcal{E}_{N}(t)+\frac{1}{2} \int_{0}^{t} \mathcal{D}_{N}(s) d s \leq \frac{1}{2} \varepsilon^{2-2 a}
$$

for any $t \in\left[0, T_{\varepsilon}\right]$.

Theorem (Conti)

In particular, there exists a constant $C>0$ independent of ε and $T_{\max }$ such that

$$
\begin{aligned}
& \sup _{t \in\left[0, T_{\varepsilon}\right]}\left\{\left\|\frac{F^{\varepsilon}(t, x, v)-M_{[\bar{\rho}, \bar{u}, \bar{\theta}]}(t, x, v)}{\sqrt{\mu}}\right\|_{L_{x}^{2} L_{v}^{2}}\right. \\
& \\
& \quad+\left\|\frac{F^{\varepsilon}(t, x, v)-M_{[\bar{p}, \overline{,}, \bar{\theta}]}(t, x, v)}{\sqrt{\mu}}\right\|_{L_{x}^{\infty} L_{v}^{2}} \\
& \\
& \quad+\left\|\left(E^{\varepsilon}-\bar{E}, B^{\varepsilon}-\bar{B}\right)(t, x)\right\|_{L_{x}^{2}} \\
& \\
& \left.\quad+\left\|\left(E^{\varepsilon}-\bar{E}, B^{\varepsilon}-\bar{B}\right)(t, x)\right\|_{L_{x}^{\infty}}\right\}
\end{aligned}
$$

Note: For $a=\frac{1}{4}$, we get the distance in $L_{x}^{2} \cap L_{x}^{\infty} \sim \varepsilon^{\frac{3}{4}}$ uniformly in the time interval $\left[0, T_{\varepsilon}\right]$ with $T_{\varepsilon} \sim \varepsilon^{-1 / 4}$ that can be almost global.

Remark:

Although the $L^{2}-L^{\infty}$ approach works well for the Boltzmann with cutoff potentials, in particular, for the hard-sphere model, it cannot be applicable to the VMB case for the hard-sphere model, since one loses the GlasseyStrauss representation for the electric-magnetic fields E and B that is true in the relativistic case, for instance,

$$
\begin{aligned}
4 \pi E(t, x)=- & \int_{|y-x| \leq t} \int_{\mathbb{R}^{3}} \frac{(\omega+\hat{v})\left(1-|\hat{v}|^{2}\right)}{(1+\hat{v} \cdot \omega)^{2}} F(t-|y-x|, y, v) d v \frac{d y}{|y-x|^{2}} \\
& + \text { other terms },
\end{aligned}
$$

with $\hat{v}=\frac{v}{\sqrt{1+|v|^{2}}}$ and $\omega=\frac{y-x}{|y-x|}$. The relativistic velocity \hat{v} is bounded, so the expression $1+\hat{v} \cdot \omega$ is bounded away from 0 , Guo-Xiao (CMP 2021).

One point of the proof:

We use the bootstrap argument. Assume

$$
\sup _{0 \leq t \leq T} \mathcal{E}_{N}(t) \leq \varepsilon^{2-2 a}, \quad a \in\left[0, \frac{1}{2}\right)
$$

We are devoted to showing

$$
\mathcal{E}_{N}(t)+\frac{1}{2} \int_{0}^{t} \mathcal{D}_{N}(s) d s \leq \frac{1}{2} \varepsilon^{2-2 a}
$$

Indeed, one can prove

$$
\begin{aligned}
\mathcal{E}_{N}(t)+\int_{0}^{t} \mathcal{D}_{N}(s) d s \leq & C_{1}\left(\eta_{0}+\varepsilon^{\frac{1}{2}-a}\right) \int_{0}^{t} \mathcal{D}_{N}(s) d s \\
& +C_{1}\left[\eta_{0}+\varepsilon^{\frac{1}{2}}+\left(\eta_{0} \varepsilon^{a}+\varepsilon^{\frac{1}{2}-a}\right) t\right] \varepsilon^{2-2 a}
\end{aligned}
$$

We therefore require that

$$
C_{1}\left(\eta_{0}+\varepsilon^{\frac{1}{2}-a}\right) \leq \frac{1}{2}, \quad C_{1}\left[\eta_{0}+\varepsilon^{\frac{1}{2}}+\left(\eta_{0} \varepsilon^{a}+\varepsilon^{\frac{1}{2}-a}\right) t\right] \leq \frac{1}{2},
$$

yielding

$$
a \in\left[0, \frac{1}{2}\right), \quad \text { and } \quad t \leq T_{\max }=\frac{1}{4 C_{1}} \frac{1}{\eta_{0} \varepsilon^{a}+\varepsilon^{\frac{1}{2}-a}} .
$$

The key is obtain the estimate

$$
\begin{aligned}
& \varepsilon^{2} \times \sum_{|\alpha|=N}\left\{\left\|\partial^{\alpha}(\widetilde{\rho}, \widetilde{u}, \widetilde{\theta}, \widetilde{E}, \widetilde{B})(t)\right\|^{2}+\left\|\partial^{\alpha} f(t)\right\|^{2}+\frac{1}{\varepsilon} \int_{0}^{t}\left\|\partial^{\alpha} f(s)\right\|_{\nu}^{2} d s\right\} \\
& \leq C\left(\eta_{0}+\varepsilon^{\frac{1}{2}-a}\right) \int_{0}^{t} \mathcal{D}_{N}(s) d s+C\left[\eta_{0}+\varepsilon^{\frac{1}{2}}+\left(\eta_{0} \varepsilon^{2 a}+\varepsilon^{\frac{1}{2}-a}\right) t\right] \varepsilon^{2-2 a}
\end{aligned}
$$

from

$$
\begin{aligned}
& \frac{\partial_{t} F}{\sqrt{\mu}}+\frac{v \cdot \nabla_{x} F}{\sqrt{\mu}}-\frac{(E+v \times B) \cdot \nabla_{\imath} F}{\sqrt{\mu}}=\frac{1}{\varepsilon} \mathcal{L} f+\frac{1}{\varepsilon} \Gamma\left(\frac{M-\mu}{\sqrt{\mu}}, f\right) \\
&+\frac{1}{\varepsilon} \Gamma\left(f, \frac{M-\mu}{\sqrt{\mu}}\right)+\frac{1}{\varepsilon} \Gamma\left(\frac{G}{\sqrt{\mu}}, \frac{G}{\sqrt{\mu}}\right)+\frac{1}{\varepsilon} \frac{L_{M} \bar{G}}{\sqrt{\mu}} .
\end{aligned}
$$

Thank you!

