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Navier-Stokes equations

The 3D incompressible Navier-Stokes equations:{
∂tu + (u · ∇)u = −∇p + ν∆u
div u = 0,

(NSE)

Here u(x, t), the velocity, and p(x, t), the pressure, are unknowns;
ν > 0 is the kinematic viscosity.

The energy balance:
d
dt
‖u(t)‖2

L2 = −2ν
ˆ t

t0

‖∇u(s)‖2
L2 .

Conservation of energy for the Euler equations (ν = 0):

d
dt
‖u(t)‖2

L2 = 0.
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Anomalous dissipation

{
∂tu + (u · ∇)u = −∇p,
div u = 0.

(Euler equation)

1994 Constantin, E, and Titi:

u ∈ L∞(0, 1; B1/3−
3,∞ ) =⇒ no Anomalous Dissipation

2008 C, Constantin, Friedlander, and Shvydkoy.

lim
q→∞

ˆ 1

0
λ

1
3
q ‖∆qu‖L3 dt = 0,

=⇒ no Anomalous Dissipation:

‖u(t)‖2
L2 = ‖u(0)‖2

L2 , t ∈ [0, 1].

Here λq = 2q.
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Convex Integration and Onsager’s Conjecture for the Euler equations

’49 Onsager: 1
3 -Hölder is the critical threshold for energy conservation for the 3D Euler

equations.

’93 Scheffer: Wild solutions in L2
t,x.

’94 Eyink: Energy conservation under a stronger assumption.

’94 Constantin, E, and Titi: Energy conservation in L3
t B1/3+

3,∞ .

’97 Shnirelman: Wild solutions in L∞t L2
x .

’01 Duchon and Robert: Refinements for the energy conservation.

’08 C, Constantin, Friedlander, and Shvydkoy: Energy conservation in L3
t B1/3

3,c0

’09 De Lellis and Sźekelyhidi: Wild solutions in L∞t,x - Convex integration I.

’13,’14 De Lellis and Sźekelyhidi: Wild solutions in L∞t C
1
10−
x - Convex integration II.

’15 Buckmaster (thesis), De Lellis, Isett (thesis), and Sźekelyhidi (independently): Wild

solutions in L∞t C
1
5−
x .

’15 Buckmaster: Wild solutions in C
1
3− for almost all t.

’16 Buckmaster, De Lellis, and Sźekelyhidi: Wild solutions in L1
t C

1
3−
x .

’18 Isett: Wild solutions in C
1
3−
t,x - resolution of Onsager’s conjecture for the Euler equations.

’19 Buckmaster and Vicol: Nonuniqueness of NSE solutions in CtL2+
x .
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C, Constantin, Friedlander, and Shvydkoy (2008): Energy balance holds for solutions of the
Euler equations such that

lim
q→∞

ˆ 1

0
λ

1
3
q ‖∆qu‖L3 dt = 0.

Isett (2022): There exists a weak solution of the Euler equation u(t) that does not satisfy the
energy balance and

|u(x−∆x, t)− u(x, t)| ≤ C|∆x|
1
3−B

√
log log |∆x|−1

log ∆|x|−1 .
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Dissipation anomally

The dissipation anomaly, predicted by Kolmogorov’s theory of turbulence, can mathematically
be stated as

lim sup
ν→0

ν〈‖∇uν‖2
L2〉 > 0, (1)

This phenomenon is related to the anomalous dissipation, the failure of solutions to the Euler
equation satisfy the energy balance.
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Reynold’s number

∂u
∂t
− ν∆u + (u · ∇)u +∇p = f.

Characteristic velocity:

U :=

(
Lim

T→∞

1
T

ˆ T

0
‖u(t)‖2

L2 dt
)1/2

.

Change variables

x1 =
x
`
, t1 =

tU
`
, u1 =

u
U
, p1 =

p
U2 , f1 =

f`
U2 .

Reynolds number:

Re =
U`
ν
.

∂u1

∂t1
− 1

Re
∆u1 + (u1 · ∇)u1 +∇p1 = f1.
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Kolmogorov’s dissipation anomaly hypothesis

ε`

U3 = O(Re0) as Re→∞
ε = total energy dissipation rate per unit mass
` = length scale in the flow
U = turbulent velocity scale
Re = U`/ν the Reynolds number

Rigorous estimates:

Square integrable force f :

ε`

U3 ≤ c1 + c2Re−1.

C. Foias (97), C. Doering and C. Foias (02)

Fractal force f ∈ H−α, α ∈ [0, 1]:

ε`

U3 ≤ c1Re
α

2−α + c2Re−1.

A. C., C. Doering, N. Petrov (06)

ε := Lim
T→∞

1
T

ˆ T

0
ν‖∇u(t)‖2

L dt.
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U

CD :=
ε`

U3 drag coefficient

Force is proportional to velocity squared for
large Reynolds numbers.

Frisch, Turbulence.
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Fractal forced turbulence
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Upper bounds on the energy dissipation

f (x) = FφRe(`−1x),

F ≥ 0 is the amplitude, φRe is the dimensionless shape.

φRe → φ in L2 as Re→ 0:

ε`

U3 ≤ c1 + c2Re−1.

C. Foias (97), C. Doering and C. Foias (02)

φRe → φ in H−α as Re→ 0 (α ∈ [0, 1]):

ε`

U3 ≤ c1Re
α

2−α + c2Re−1.

A. C., C. Doering, N. Petrov (06)

ε := Lim
T→∞

1
T

ˆ T

0
ν‖∇u‖2

L2 dt,

U :=

(
Lim

T→∞

1
T

ˆ T

0
‖u‖2

L2 dt
)1/2

, Re =
U`
ν
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Dissipation anomally
We consider the vanishing viscosity limit of solutions to the Navier-Stokes equations

∂tuν − ν∆uν + div(uν ⊗ uν) +∇pν = f ν ,
div uν = 0,
uν(0) = uin,

(2)

posed on Td or Rd. Here ν > 0 is the viscosity coefficient, the initial data uin ∈ L2, and we
consider weak solutions on [0, 2] satisfying the energy equality

‖uν(t)‖2
L2 = ‖uin‖2

L2 − 2ν
ˆ t

0
‖∇uν(τ)‖2

L2 dτ + 2
ˆ t

0
(f ν , uν) dτ,

for all t ∈ [0, 2]

E(t) := lim inf
ν→0

‖uν(t)‖2
L2 Energy limit (3)

D(t) := 2 lim sup
ν→0

ν

ˆ t

0
‖∇uν(τ)‖2

L2 dτ Dissipation limit (4)

‖u(t)‖2
L2 Energy of the limit (5)
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Dissipation anomally and Anomalous dissipation

E(t) := lim inf
ν→0

‖uν(t)‖2
L2 , D(t) := 2 lim sup

ν→0
ν

ˆ t

0
‖∇uν(τ)‖2

L2 dτ.

If f ν → f in L1(0, 2; L2) and uν → u in Cw([0, 2]; L2), then

W(t) := 2 lim
ν→0

ˆ t

0
(f ν , uν) dτ = 2

ˆ t

0
(f , u) dτ.

Hence
0 ≤ ‖u(t)‖2

L2 ≤ E(t) = ‖uin‖2
L2 − D(t) + W(t), (6)

and, in particular,
0 ≤ D(t) ≤ ‖uin‖2

L2 + W(t). (7)

Definition
The family of solutions to (2) uν exhibits dissipation anomaly on [0, t] if D(t) > 0.

The limiting solution u exhibits anomalous dissipation on [0, t] if
‖uin‖2

L2 + W(t)− ‖u(t)‖2
L2 > 0.
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Dissipation Anomaly =⇒ Anomalous Dissipation is the converse true?. . .

‖uν(t)‖2
L2 = ‖uν(0)‖2

L2 − 2ν
ˆ t

0
‖∇uν(τ)‖2

L2 dτ + 2
ˆ t

0
(f ν , uν) dτ,

and

lim
ν→0

ν

ˆ t

0
‖∇uν(τ)‖2

L2 dτ > 0 along some subsequence,

implies

‖u(t)‖2
L2 < ‖u(0)‖2

L2 + 2
ˆ t

0
(f , u) dτ.
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E(t) := lim inf
ν→0

‖uν(t)‖2
L2 , D(t) := 2 lim sup

ν→0
ν

ˆ t

0
‖∇uν(τ)‖2

L2 dτ.

0 ≤ ‖u(t)‖2
L2 ≤ E(t) = ‖uin‖2

L2 − D(t) + W(t), (8)

and, in particular,
0 ≤ D(t) ≤ ‖uin‖2

L2 + W(t). (9)

Questions:
1 Can D(t) achieve all the possible values allowed by inequalities in (9)?
2 Can ‖u(t)‖2

L2 achieve all the possible values allowed by inequalities in (8)?
3 Can E(t) and D(t) be continuous with nontrivial D(t)?
4 Can ‖u(t)‖L2 be continuous with nontrivial D(t)?
5 Does Anomalous Dissipation imply Dissipation Anomaly?
6 Can there be infinitely many limiting solutions of the Euler equations in the limit of

vanishing viscosity?
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Previous results on Dissipation Anomaly

Theodore D. Drivas, Tarek M. Elgindi, Gautam Iyer, In-Jee Jeong (2022): Dissipation
anomaly for the advection-diffusion equation ∂tθ + v · ∇θ = κ∆θ.

Scott Armstrong and Vlad Vicol (2023): Dissipation anomaly for the advection-diffusion
equation for arbitrary H1 initial data.

Elia Bruè and Camillo De Lellis (2022):
There is a family of smooth solutions to the 3D NSE {uν(t)}ν on time interval [0, 1] with the
force f ν → f in C([0, 2]; Cα) for all 0 < α < 1, initial data uν(0) = uin, such that

D(1) = 2 lim sup
ν→0

ν

ˆ 1

0
‖∇uν(τ)‖2

L2 dτ > 0.

Based on a construction by Alberti, Crippa, and Mazzucato (2019) of a smooth solution to
the transport equation were the density is getting efficiently mixed by a 2D velocity v:

∂tθ + v · ∇θ = 0, θ(t) ⇀ 0 as t→ 1−, v ∈ L∞t Cα.

The limiting solution: 2 + 1
2 D solution of the forced Euler equation

u(x, t) = (v(x1, x2, t), θ(x1, x2, t)),
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Theorem (Discontinuity of ‖u(t)‖L2 )

Let uνm
q (t) be a sequence of weak solutions to (2) satisfying the energy equality with viscosity

νm → 0 and force f νm → f in L1(0, 1; L2), converging weakly in L2 to u ∈ L∞(0, 1; L2)

uνm → u in Cw([0, 1]; L2),

converging strongly at t = 0

uνm (0)→ u(0) in L2,

and exhibiting the dissipation anomaly, i.e.,

lim sup
m→∞

νm

ˆ 1

0
‖∇uνm‖2

L2 dt > 0. (10)

Assume also that there are constants c > 0, α > 1 such that for every m ∈ N and t ∈ [0, 1]
there exists q̃(m, t) with the following localization property:

‖uνm
q (t)‖L2 ≤ cλ−α|q−q̃(m,t)|. (11)

Then u(t) is discontinuous in L2 at some t ∈ [0, 1].
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Lemma

Dissipation Anomaly on [t1, t2], i.e.,

lim sup
m→∞

νm

ˆ t2

t1

‖∇uνm‖2
L2 dt > 0, (12)

and the localization condition imply that there exists T ∈ [t1, t2] with

u(T) = 0.

Lemma

If uνm
q (t) converges weakly in L2 to u(t) satisfying the localization condition, such that

lim sup
m→∞

‖uνm (t)‖L2 > ‖u(t)‖L2 , (13)

then
u(t) = 0.
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Theorem

There is a countable family of smooth solutions to the 3D NSE (2) {uν(t)}ν on [0, 2] with force
f ν → f in C([0, 2]; Cα),∀0 < α < 1, initial data uν(0) = uin satisfying

∃ a solution of Euler eq. u ∈ Cw([0, 2]; L2), smooth on [0, 1) ∪ (1, 2], with force f , u(0) = uin:
ˆ 1

0
(f , u) dt = 0, ‖u(1)‖2

L2 = ‖uin‖2
L2 = 1, u(t) = 0 for t ∈ [1, 2], (14)

and as ν → 0, the family of the NSE solutions uν converges weakly in L2 to u,

uν → u in Cw([0, 2]; L2),

converges strongly on [0, 1):

uν → u in C([0, t]; L2), ∀t ∈ [0, 1).
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Theorem (part 2)

Moreover, the family {uν(t)}ν contains the following sequences.
First subfamily with total dissipation anomaly on [0, 1+]: For any energy level e ∈ [0, 1]
there exists a subsequence νe

j → 0 as j→∞ such that uν
e
j dissipates this amount of energy on

[0, 1] in the limit of vanishing viscosity:

2 lim
j→∞

νe
j

ˆ 1

0
‖∇uν

e
j ‖2

L2 dτ = e. Partial, total, or no dissipation anomaly (15)

On the other hand, uν
e
m dissipates the total energy on any larger interval:

2 lim
j→∞

νe
j

ˆ t

0
‖∇uν

e
j ‖2

L2 dτ = 1, ∀t ∈ (1, 2]. Total dissipation anomaly (16)

In particular, the limiting energy is discontinuous:

E(t) = lim
j→∞
‖uν

e
j (t)‖2

L2 =

{
‖u(t)‖2

L2 , t ∈ [0, 1),

0, t ∈ [1, 2].
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Theorem (part 3)

Second subfamily with partial dissipation anomaly on [0, 2] and continuous limiting
energy E(t): For any energy level e ∈ [0, 1) there exists a subsequence νe

j → 0 as j→∞ such
that uν

e
j dissipates this amount of energy on [0, 2] in the limit of vanishing viscosity:

2 lim
j→∞

νe
j

ˆ 2

0
‖∇uν

e
j ‖2

L2 dt = e. Partial or no dissipation anomaly (17)

Moreover, the limiting energy E(t) is positive and continuous on [0, 2]:

E(t) := lim
j→∞
‖uν

e
j (t)‖2

L2 =


‖u(t)‖2

L2 , t ∈ [0, 1),

lim
τ→1−

‖u(τ)‖2
L2 = 1, t = 1,

continuous, decreasing, t ∈ [1, 2],

1− e, t = 2.

In particular,
lim

j→∞
‖uν

e
j (t)‖2

L2 ≥ 1− e > 0 = ‖u(t)‖2
L2 , t ∈ [1, 2],

and hence uν
e
j (t) does not converge strongly in L2 to u(t) for every t ∈ [1, 2].

Also, when e = 0, there is no dissipation anomaly by (17), while the limiting solution of the
Euler equation looses all of its energy exhibiting anomalous dissipation (14).
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Forward energy cascade

Time t

‖uν‖2
L2 , ‖u‖2

L2

1

1

e1

(a) Energy profiles ∀e1 ∈ [0, 1].

Time t

Frequency λ

1

Λ

(b) Frequency.

Figure: Convergence of the solutions to the NSE (red) to a solution of the Euler equation (blue).

Time t

E(t)

1

1

e1

(a) Λ� κd .

Time t

E(t)

1

1 2

e2

(b) Λ ∼ κd , e2 ∈ (0, 1].

Time t

E(t)

1

1 2

(c) Λ� κd .

Figure: Energy profiles E(t) for various subsequences of solutions to the NSE.
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Anomalous Dissipation 6=⇒ Dissipation Anomaly

0 = ‖u(2)‖2
L2 < ‖uin‖2

L2 = 1,
ˆ 2

0
(f , u) dt = 0.

lim
ν→0

ν

ˆ 2

0
‖∇uν‖2

L2 dt = 0.
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Theorem

There is a (countable) family of smooth solutions to the 3D NSE {uν(t)}ν on time interval [0, 2]
with viscosity ν > 0, the force f ν → f in C([0, 2]; Cα),0 < α < 1, uν(0) = uin, and satisfying:

There exist two weak solutions of the Euler equation u1, u2 ∈ Cw([0, 2]; L2) smooth on [0, 1)
and (1, 2] with force f , initial data u1(0) = u2(0) = uin, such that

u1(t) = u2(t), ∀t ∈ [0, 1], ‖u1(t)‖L2 > ‖u2(t)‖L2 , ∀t ∈ (1, 2].

Two extreme limiting solutions of the Euler equation: There exist two subsequences

uν
1
j → u1, uν

2
j → u2 in Cw([0, 2]; L2),

uν
1
j does not exhibit the dissipation anomaly while uν

2
j does:

2 lim
j→∞

ν1
j

ˆ 2

0
‖∇uν

1
j ‖2

L2 dt = 0, No dissipation anomaly (18)

2 lim
j→∞

ν2
j

ˆ 2

0
‖∇uν

2
j ‖2

L2 dt = ‖uin‖2
L2 = 1. Total dissipation anomaly (19)
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Theorem (part 2)

Arbitrary dissipation anomaly on [0, 2] and infinitely many limiting solutions of the Euler
equation: For any e ∈ [0, 1] there exists a subsequence νe

j → 0 as j→∞ with

2 lim
j→∞

νe
j

ˆ 2

0
‖∇uν

e
j ‖2

L2 dt = e. Partial, total, or no dissipation anomaly (20)

Moreover, there exist infinitely many solutions of the Euler equation un(t), n = 3, 4, . . . with
un(0) = uin coinciding with u1(t) and u2(t) on [0, 1] and satisfying

‖un(2)‖2
L2 < ‖uin‖2

L2 = 1, n = 3, 4, . . . ,

and
lim

n→∞
‖un(2)‖2

L2 = 1.

Finally, each un(t) is attained in the limit of vanishing viscosity, i.e., for every n ∈ N,

uν
n
j → un, in Cw([0, 2]; L2),

as j→∞, for some subsequence νn
j → 0.
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Forward - backward energy cascades

Time t

‖uν‖2
L2 , ‖u‖2

L2

1

1

e2

(a) Energy. e ∈ [0, 1].

Time t

Frequency λ

1

1

(b) Frequency.

Figure: Convergence of the solutions to the NSE (red) to a solution of the Euler equation (blue).

Time t

Energy ‖u‖2
L2

1

1

u1

u6
u5

u4

u3

u2

Figure: Countably many limiting solutions of the Euler equation (blue).
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Cantor staircase

Time t

Energy ‖u‖2
L2

1
3

2
3

0 1
9

2
9

7
9

8
9

1

1

(a) The energy.

Time t

Wavenumber λ

1
3

2
3

0 1
9

2
9

7
9

8
9

1

1

(b) The wavenumber.

Figure: Cantor staircase example.
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Upper bound on the energy dissipation for time-periodic forces f ν

f ν → f in L∞t L2 as ν → 0:

ε`

U3 ≤ c1 + c2Re−1.

C. Foias (97), C. Doering and C. Foias (02)

ε := Lim
T→∞

1
T

ˆ T

0
ν‖∇uν‖2

L2 dt,

U2 = Lim
T→∞

1
T

ˆ T

0
‖uν‖2

L2 dt, Re =
U`
ν

There exist f ν → f in L∞t L2 and initial data uin, such that

ε`

U3 ≥ c3, ∀ν > 0,

for some absolute constant c3 > 0.
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Anomalous Dissipation revisited

2008 C, Constantin, Friedlander, and Shvydkoy.

lim
q→∞

ˆ 1

0
λ

1
3
q ‖∆qu‖L3 dt = 0,

=⇒ no Anomalous Dissipation:

‖u(t)‖2
L2 = ‖u(0)‖2

L2 + 2
ˆ 1

0
(f , u) dt, t ∈ [0, 1].

For any {aq} such that ∑
q

aq <∞,

there exists u not satisfying the energy equality such that
ˆ 1

0
λ

1
3
q ‖∆qu‖L∞ dt = a−1

q .
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Dissipation anomally

Theorem

There is a constant c > 0 and a family of smooth solutions to the 3D NSE {uν(t)}ν on time
interval [T1, T2] = [1/2, 1] with viscosity ν > 0, the force f ν → f in C([T1, T2]; Cα) for all
0 < α < 1, and initial data uν(T1) = uin ∈ L2, and satisfying the following.
For any level of anomalous dissipation E ∈ [0,E0) there exists a sequence νm → 0 such that
uνm converges weakly in L2 to some weak solution of the Euler equation uE ∈ L∞(T1, T2; L2)

uνm → uE in Cw([T1, T2]; L2),

converges strongly on the complement of the Cantor set:

uνm (t)→ uE(t) in L2, ∀t ∈ [T1, T2] \ C,

and exhibits the dissipation anomaly (when E > 0):

D(T2) = 2 lim sup
m→∞

νm

ˆ T2

T1

‖∇uνm‖2
L2 dt = E , (21)

Moreover, the limiting energy E(t) and anomalous dissipation D(t) of uE(t) are continuous on
[T1, T2], and

‖uE(t)‖2
L2 =

{
E(t) = lim

m→∞
‖uνm‖2

L2 , ∀t ∈ [T1, T2] \ C,

0, ∀t ∈ [T1, T2] ∩ C.
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