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Navier-Stokes equations

The 3D incompressible Navier-Stokes equations:

{8,14 + (u-Vu=—-Vp+vAu (NSE)

divu =0,

Here u(x, t), the velocity, and p(x, ), the pressure, are unknowns;
v > 0 is the kinematic viscosity.

The energy balance:

d
ol =20 [ 19l

Conservation of energy for the Euler equations (v = 0):
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Anomalous dissipation

{&u + (u-V)u=—-Vp, (Euler equation)

divu = 0.
1994 Constantin, E, and Titi:

u € L™(0,1; Bé/ 0307) = no Anomalous Dissipation

2008 C, Constantin, Friedlander, and Shvydkoy.

L
1im/ A Al di = 0,
q—ro0 0
= no Anomalous Dissipation:

()22 = lu(O)[l2, ¢ € [0,1].

Here \, = 29.
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Convex Integration and Onsager’s Conjecture for the Euler equations
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Onsager: _%—Ht')lder is the critical threshold for energy conservation for the 3D Euler
equations.

Scheffer: Wild solutions in L,z’x.

Eyink: Energy conservation under a stronger assumption.

Constantin, E, and Titi: Energy conservation in L?B;{ 3:.

Shnirelman: Wild solutions in L°L2.

Duchon and Robert: Refinements for the energy conservation.

C, Constantin, Friedlander, and Shvydkoy: Energy conservation in LfB;{fo
De Lellis and Szekelyhidi: Wild solutions in L;7 - Convex integration I.

De Lellis and SZekelyhidi: Wild solutions in L C}% " - Convex integration II.
Buckmaster (thesis), De Lellis, Isett (thesis), and SZekelyhidi (independently): Wild
solutions in L Cx% .

Buckmaster: Wild solutions in €3~ for almost all 7.

1_
Buckmaster, De Lellis, and Szekelyhidi: Wild solutions in L' C; .

1
Isett: Wild solutions in C;, - resolution of Onsager’s conjecture for the Euler equations.

Buckmaster and Vicol: Nonuniqueness of NSE solutions in C,L2*.
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C, Constantin, Friedlander, and Shvydkoy (2008): Energy balance holds for solutions of the
Euler equations such that

Loy
tim [ A] Al di =0,
q~>oo O

Isett (2022): There exists a weak solution of the Euler equation «() that does not satisfy the
energy balance and

l_B\/W
lu(x — Ax,t) — u(x,t)| < C|Ax|* log Alx[—T
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Dissipation anomally

The dissipation anomaly, predicted by Kolmogorov’s theory of turbulence, can mathematically
be stated as

lim sup v(||Vu” |[32) > 0, @)
v—0

This phenomenon is related to the anomalous dissipation, the failure of solutions to the Euler
equation satisfy the energy balance.
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Reynold’s number

Characteristic velocity:

Change variables

X
Xlzz,

Reynolds number:

%—I/AU-F( u-Vju+Vp=Hf

(le /||u(t ||det> "

u p 114
= — = — = fi=—
1 [7 u; U7 P1 U27 1 U2
Re:U—e.
14
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Kolmogorov’s dissipation anomaly hypothesis

el 0 € = total energy dissipation rate per unit mass
= = O(Re ) as Re — oo £ = length scale in the flow
U U = turbulent velocity scale
Re = UZ /v the Reynolds number
Rigorous estimates:
Square integrable force f: Fractal force f € H™%, a € [0, 1]:

el _ el _a_ _
7 < c) + c2Re L 7 < ciRe?2—= 4 cRe '

C. Foias (97), C. Doering and C. Foias (02) A. C., C. Doering, N. Petrov (06)

17 >
€:= TL—1>r<£1<>T/0 v||Vu(r)||; dr.
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CD = drag coefficient

Force is proportional to velocity squared for
large Reynolds numbers.

1 L L 1 1
102 108 100 105 105 107

Frisch, Turbulence.
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Fractal forced turbulence
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Particle image velocimetry study of
fractal-generated turbulence

R. Gomes-Fernandes'{, B. Ganapathisubramani’ and J. C. Vassilicos'

) Department of Aeronautics, Imperial College London, London SW7 2AZ, UK

2 Aerodynamics & Flight Mechanics Research Group, University of Southampton,
Southampton SO17 1BJ, UK

(Received 18 April 2012; revised 31 July 2012; accepted 1 August 2012;
first published online 12 September 2012)

An experimental investigation involving space-filling fractal square grids is presented.
The flow is documented using particle image velocimetry (PIV) in a water tunnel as
opposed to previous experiments which mostly used hot-wire anemometry in wind
tunnels. The experimental facility has non-negligible incoming free-stream turbulence
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Upper bounds on the energy dissipation

flx) = Fo" (7 'x),

F > 0 is the amplitude, $*° is the dimensionless shape.

¢" — $in L as Re — O: " — pin H ™ as Re — 0 (a € [0, 1]):
et < R et < ¢iRe™= R
ﬁ_cl—i—cze . ﬁ_cle + c2Re ™
C. Foias (97), C. Doering and C. Foias (02) A. C., C. Doering, N. Petrov (06)

1 >
€:= TIJl}rglo?/ v||Vul|;2 dt,

(le /||u||det) , Re:%g
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Dissipation anomally
We consider the vanishing viscosity limit of solutions to the Navier-Stokes equations

O’ — vAu” +div(u” @ u”) + Vp” =f7,
divu” =0, 2)
u” (0) = tin,

posed on T or R?. Here v > 0 is the viscosity coefficient, the initial data u;, € L*, and we
consider weak solutions on [0, 2] satisfying the energy equality

1 (1 = [l — 20 / IVa (7% dr +2 / . u)dr,

forall ¢ € [0, 2]

E(r) := i infla (1) Cnergy lonet (3)
D(t) := 211msup1// |V (7)72 dr @mmn Lo (4)
[O] Coergy o e i (5)
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Dissipation anomally and Anomalous dissipation

E(t) := limiélf | (1)||2-, D(t) :== 211msup1// Vi (7)|7 dr.
v—

If f¥ — fin L'(0,2; L*) and u” — uin C,,([0, 2]; L*), then

1
—2hm/(f T=2/(f,u)d7'
v—=0 0

0 < u()llf> < E(r) = |lunllj> — D(t) + W(t), (6)

Hence

and, in particular,

0 < D(t) < [luwll7> + W(2). )
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Dissipation anomally and Anomalous dissipation

E(t) := limiélf | (1)||2-, D(t) :== 211msup1// Vi (7)|7 dr.
v—

If f¥ — fin L'(0,2; L*) and u” — uin C,,([0, 2]; L*), then

1
—2hm/(f T=2/(f,u)d7'
v—=0 0

0 < u()llf> < E(r) = |lunllj> — D(t) + W(t), (6)

Hence

and, in particular,
0 < D(t) < |luwll}2 + W(2). @)

Definition

@ The family of solutions to (2) u#” exhibits dissipation anomaly on [0, 7] if D(¢) > 0.

o The limiting solution u exhibits anomalous dissipation on [0, 7] if
llnl72 + W(2) = llu(®)]lz > 0.
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Dissipation Anomaly = Anomalous Dissipation is the converse true?. .

1 t
[l ()22 = [lu” (0)]I72 —21//0 IV (7)I72 dT+2/O (", u”) dr,

and

1
lim I// ||VMV (T)Hiz dr > 0 along some subsequence,
v—0 0

implies

() 1z2 < [l (0)I72 +2/0t(f, u) dr.
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E(t) := limionf llu” (1) 132, D(t) :== 2hmsupl// V" (7)|I72 dr.
v—

0 < [lu(@)lz2 < E(1) = lluwllz2 — D(r) + W(), ®)
and, in particular,
0 < D(r) < [Jui[;2 + W(0)- ©)
Questions:
@ Can D(t) achieve all the possible values allowed by inequalities in (9)?
@ Can |lu(1)||?> achieve all the possible values allowed by inequalities in (8)?
@ Can E(t) and D(t) be continuous with nontrivial D(t)?
Q Can ||u(1)||;2 be continuous with nontrivial D(t)?

@ Does Anomalous Dissipation imply Dissipation Anomaly?

Q@ Can there be infinitely many limiting solutions of the Euler equations in the limit of
vanishing viscosity?
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Previous results on Dissipation Anomaly

Theodore D. Drivas, Tarek M. Elgindi, Gautam Iyer, In-Jee Jeong (2022): Dissipation
anomaly for the advection-diffusion equation 9,0 + v - VO = kA6.

Scott Armstrong and Vlad Vicol (2023): Dissipation anomaly for the advection-diffusion
equation for arbitrary H' initial data.

Elia Brue¢ and Camillo De Lellis (2022):
There is a family of smooth solutions to the 3D NSE {u" () }., on time interval [0, 1] with the
force f¥ — f in C([0,2]; C) for all 0 < o < 1, initial data u” (0) = un, such that

D(l)_thsupV/ |Vu” ()32 d7 > 0.

Based on a construction by Alberti, Crippa, and Mazzucato (2019) of a smooth solution to
the transport equation were the density is getting efficiently mixed by a 2D velocity v:

00 +v-VH=0, 0(t) ~0ast— 1—, veLrTC”.

The limiting solution: 2 + % D solution of the forced Euler equation

u(x,t) = (v(x1,x2,1),0(x1,x2, 1)),
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Theorem (Discontinuity of ||u(z)||;2)

Let u;" (1) be a sequence of weak solutions to (2) satisfying the energy equality with viscosity
U — 0 and force f*» — f in L'(0, 1; L*), converging weakly in L* to u € L™ (0, 1; L*)

W —u in Cu([0,1];L%),
converging strongly att = 0
u”(0) — u(0) in L

and exhibiting the dissipation anomaly, i.e.,

1
limsupl/m/ VU7, dt > 0. (10)
0

m— 00

Assume also that there are constants ¢ > 0, o > 1 such that for everym € Nand t € [0, 1]
there exists g(m, t) with the following localization property:

g™ () ll2 < Xy g0m0)- (11)

Then u(t) is discontinuous in L* at some t € [0, 1].
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Lemma

Dissipation Anomaly on [t1, 1], i.e.,

o)
lim sup zlm/ V™ |22 dt > 0, (12)

m— o0 1
and the localization condition imply that there exists T € [t1, 2] with

u(T) = 0.

Lemma
If uy" (t) converges weakly in L? to u(t) satisfying the localization condition, such that
lim sup [lu™ (#) ||z > lu(®)ll.2, (13)
m— oo

then
u(t) = 0.
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Theorem

There is a countable family of smooth solutions to the 3D NSE (2) {u” (t)}, on [0, 2] with force
f¥ = finC([0,2]; C¥),Y0 < « < 1, initial data u” (0) = win satisfying

3 a solution of Euler eq. u € C,,([0,2]; L*), smooth on [0, 1) U (1, 2], with force f, u(0) = ttin:
1
/ (Fowdi=0,  Ju()llp2 = lunllzz =1, w(t) =0 for re[1,2], (14
0

and as v — 0, the family of the NSE solutions u” converges weakly in L* to u,
w’ —u in Cu([0,2];L%),
converges strongly on [0, 1):

W’ —u in C([0,4;L%), Vre[o,1).
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Theorem (part 2)

Moreover, the family {u” (t)}, contains the following sequences.
First subfamily with total dissipation anomaly on [0, 1+]: For any energy level e € [0, 1]

there exists a subsequence v; — 0 as j — oo such that u’i dissipates this amount of energy on
[0, 1] in the limit of vanishing viscosity:

1
2 lim y;/ IV adr = . Dotiad tetall ov o syt 4 (15)
j—o0 0

On the other hand, u"n dissipates the total energy on any larger interval:

t
2 lim Vf/ |Vu |5 dr = 1, Ve e (1,2]. Tl dspiantsc 2ty (16)
j—o0 0

In particular, the limiting energy is discontinuous:

e L L 1)
E( = Tim a0 = 4 1Ol 1€100,1),
(1) = Jim [Ju ) {07 re1,2].
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Theorem (part 3)

Second subfamily with partial dissipation anomaly on [0, 2] and continuous limiting
energy E(r): For any energy level e € [0, 1) there exists a subsequence v; — 0 as j — oo such

that u” dissipates this amount of energy on [0, 2] in the limit of vanishing viscosity:

2
2 lim u;/ IVu |2 dt = e. Dstiir vv vz et ty (17)
Jj—roo 0

Moreover, the limiting energy E(t) is positive and continuous on [0, 2]:

||Lt(l‘)“iz, e [Oa 1)7

. lim ||u(7)|? = 1, t=1,

E(r) := lim | ()| = ¢ 7=1=" F

J7reo continuous, decreasing, t € [1,2],

1—e, t=2.

In particular,
lim ' ()2 21— e>0=[u(®)ll,  r€]1,2],
Jj—oo

and hence u" (£) does not converge strongly in L* to u(t) for every t € [1,2].
Also, when e = 0, there is no dissipation anomaly by (17), while the limiting solution of the
Euler equation looses all of its energy exhibiting anomalous dissipation (14).
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Forward energy cascade

v 2 2
HLZ’ H“HLz Frequency A

[l

1 Time ¢ 1 Time ¢

(a) Energy profiles Ve; € [0, 1]. (b) Frequency.
Figure: Convergence of the solutions to the NSE (red) to a solution of the Euler equation (blue).
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Forward energy cascade

N
V)2

2
120 llully2

[[u Frequency A

1 Time ¢ 1 Time ¢

(a) Energy profiles Ve; € [0, 1]. (b) Frequency.

Figure: Convergence of the solutions to the NSE (red) to a solution of the Euler equation (blue).

E(r) E(1)

E(r)
l— 1
1
1
1
1
73] iy
1
1 Time ¢ 1 2 Timer 1 2 Timer
(a) A > ky. (b) A ~ Kq,e2 € (0,1]. © A <L Kq.

Figure: Energy profiles E(¢) for various subsequences of solutions to the NSE.
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Anomalous Dissipation =% Dissipation Anomaly

2
0= [u(2)[12 < lunl% =1, / (. u) di = 0.

2
lim ,,/ |Vu"||72 dt = 0.
v—0 0
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Theorem

There is a (countable) family of smooth solutions to the 3D NSE {u” (t)}. on time interval [0, 2]
with viscosity v > 0, the force f* — f in C([0,2]; C*),0 < a < 1, u”(0) = uin, and satisfying:

There exist two weak solutions of the Euler equation uy,us € C,,([0, 2]; L*) smooth on [0, 1)
and (1, 2] with force f, initial data u, (0) = u>(0) = uin, such that

w(t) =w(t),  Vee[01],  Ju@)lp > lw@)lez, Ve (1,2].
Two extreme limiting solutions of the Euler equation: There exist two subsequences
1 2

usi = u, ui = up in Cu([0,2]; L),

1 2
u”i does not exhibit the dissipation anomaly while u"i does:

2
2 lim y;/ IVu | dr = 0, N dispats 4 (18)
Jj—o0o 0

2
2 im of [ 1907 e = ol = 1. Tetud disatin ancmady (19
J—>c0 0
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Theorem (part 2)

Arbitrary dissipation anomaly on [0, 2] and infinitely many limiting solutions of the Euler
equation: For any e € [0, 1] there exists a subsequence vi — 0 as j — oo with

2
2 lim uf/ | Vu’ ||} dt = e. Gstirll totol v ro oot wty (20)
J—oo 0

Moreover, there exist infinitely many solutions of the Euler equation u,(t), n = 3,4, ... with
un(0) = uin coinciding with ui (t) and u>(t) on [0, 1] and satisfying
HM"(Z)”iZ < ”ui“Hi2 = 17 n:3747"'7

and
9 2
Tim ()] = 1.

Finally, each u,(t) is attained in the limit of vanishing viscosity, i.e., for everyn € N,

u = Uy, in Cu ([0, 2];L2),

as j — oo, for some subsequence v’ — 0.
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Forward - backward energy cascades

N
V)2

2
[Ju 12° H“HLZ Frequency A

14

€

1 Time ¢ 1 Time ¢

(a) Energy. e € [0, 1]. (b) Frequency.
Figure: Convergence of the solutions to the NSE (red) to a solution of the Euler equation (blue).

Energy [|u]|,

1 2 Time t

Figure: Countably many limiting solutions of the Euler equation (blue).
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Cantor staircase

Energy [|ul|?,

‘Wavenumber A
1

1 Timer O

2 7 8 1 Timet
3 39 9
(a) The energy.

(b) The wavenumber.
Figure: Cantor staircase example.




Upper bound on the energy dissipation for time-periodic forces f*

¥ — fin L°L* as v — O: 1T ia
e:= Lim— [ v|Vu"|2dt,
o 0

el _
7 < ¢+ c2Re ' .
2 .1 Vil 94
U = Lim — |lu”|l;2 dt, Re= —
C. Foias (97), C. Doering and C. Foias (02) 70T [y v

There exist f¥ — f in L® L? and initial data u;,, such that

0 > cs, Yv > 0,

for some absolute constant ¢3 > 0.
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Anomalous Dissipation revisited

2008 C, Constantin, Friedlander, and Shvydkoy.

Lo
tim [ A 1Al e =0,
q—r0o0 0

= no Anomalous Dissipation:

()| = (@) +2 / (Fyd,  1€(0,1]

For any {a,} such that

> a, < oo,
q

there exists u not satisfying the energy equality such that

Loy
/Aq3||Aqu||Loodt=a;1‘
0
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Dissipation anomally

Theorem

There is a constant ¢ > 0 and a family of smooth solutions to the 3D NSE {u” (t)}. on time
interval [Ty, T>] = [1/2, 1] with viscosity v > 0, the force f* — f in C([Ty, T»]; C*) for all
0 < a < 1, and initial data u” (Tl) = upn € L, and satisfying the following.

For any level of anomalous dissipation € € [0, Eo) there exists a sequence v,, — 0 such that
u“m converges weakly in L* to some weak solution of the Euler equation ug € L (Ty, T»; L2)

W —ug in G([Th, To); L),
converges strongly on the complement of the Cantor set:
u’n(t) = ug(t) in L, Ve[, T]\C,

and exhibits the dissipation anomaly (when € > 0):
m—r oo

T,
D(T,) = ZIimsume/ Vu" |22 di = €, (21)
T

Moreover, the limiting energy E(t) and anomalous dissipation D(t) of ug (t) are continuous on
[Tl, Tz], and

E(t) = lim |lu""|2%, Vt€ [T, T:]\C,
e (1) = { st

Vt € [T17Tz] NncC.
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