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Compressible Euler Equations in Fluid Mechanics{
ρt +∇x · (ρv) = 0,

(ρv)t +∇x · (ρv⊗ v) +∇xP = 0
U = (ρ, ρv)⊤ ρ — Density, v = (v1, . . . , vd) ∈ Rd — Velocity
P = P(ρ) = ρ2e′(ρ) — Pressure with internal energy e(ρ)
x = (x1, · · · , xd) ∈ Rd , ∇x = (∂x1 , · · · , ∂xd )

For a polytropic perfect gas: P(ρ) = a ργ , e(ρ) = a
γ−1ρ

γ−1, γ > 1

Paradigm: Nonlinear Hyperbolic Conservation Laws

∂tU +∇x · F(U) = 0, U = (u1, · · · , um)⊤

F = (F1, · · · ,Fd) : Rm → (Rm)d is a nonlinear mapping.

Hyperbolicity in D: For any ω ∈ Sd−1, u ∈ D,

(∇UF(U) · ω)m×m rj(U,ω) = λj(U,ω) rj(U,ω), 1 ≤ j ≤ m

λj(U,ω) are real
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Challenges and Entropy Solutions: Euler Equations

∂t U +∇x · F(U) = 0
Challenges: Singularities −→ Discontinuous/Wild/Singular Solutions

Shock Waves, Vortex Sheets, Vorticity Waves, Entropy Waves, ...
Compactness & Oscillation ⇐⇒ Weak Continuity & Uniqueness ??

*Cavitation/Decavitation =⇒ Degeneracy, · · ·
*Concentration/Deconcentration =⇒ ∞–Propagation Speed,· · ·
. . . . . .

Analysis of Entropy Solutions:

(i) U(t, x) ∈ BV , L∞, Lp,M, · · · .
(ii) For any convex entropy pair (η,q), ∂tη(U) +∇x · q(U) ≤ 0 D′

as long as (η(U(t, x)),q(U(t, x))) ∈ D′, for (η,q) := (η, q1, . . . , qd) that

satisfies ∇2η(U) ≥ 0 and is a solution of

∇qk(U) = ∇η(U)∇Fk(U) for k = 1, . . . , d

.Posed Classes of Entropy Solutions in BV , L∞, Lp,M, · · ·??
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Nonlinear Hyperbolic Conservation Laws

Scalar Conservation Laws: L∞ initial data

Maximum principle ⇒ Uniform bounded in L∞ ⇒ Deconcentration

1-D Strictly Hyperbolic Systems: BV initial data of small oscillation

BV-estimates (Glimm 1965): Decavitation & Deconcentration

Glimm Scheme, Wave-Front Tracking Methods, · · ·
Artificial Viscosity Methods, · · ·

See recent books: D. Serre: Cambridge University Press, 1999-2000
A. Bressan: Oxford University Press, 2000
C. M. Dafermos: Springer-Verlag, 2016 (4th Edition)
· · · · · ·

Further Fundamental Issues:

Large initial data without total variation ??

Nonstrictly hyperbolic cases ??

Multidimensional cases ??

· · · · · ·
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1-D Isentropic Euler Equations: Cavitation/Concentration{
ρt +mx = 0, (m = ρv)

mt + (m
2

ρ + P(ρ))x = 0.

ρ — density, m — momentum, v = m
ρ — velocity when ρ > 0

Eigenvalues: λ1(ρ,m) = v −
√
P ′(ρ), λ2(ρ,m) = v +

√
P ′(ρ)

Cavitation V ≡ {ρ(t, x) = 0}: (λ2 − λ1)(ρ(t, x),m(t, x)) = 0 for (t, x) ∈ V

=⇒ strict hyperbolicity fails.

Concentration S ≡ {ρ(t, x) ∼
∑
αjδSj + ρnonatomic(t, x)}

=⇒ Infinite/ill-defined pressure, if it would occur

=⇒ ∞–propagation speed, if it would occur

Gui-Qiang G. Chen (Oxford) Cavitation and Concentration August 7–11, 2023 5 / 44



Cavitation & Concentration: Pressure P(ρ) = a ργ, γ > 1

∂tρ+ ∂x(ρv) = 0, ∂t(ρv) + ∂x(ρv
2 + P(ρ)) = 0

t

x

(t, x) → (t, y) : yt = ρ(t, x), yx = −(ρv)(t, x); τ(t, y) = 1/ρ(t, x)

t

y

∂tτ − ∂yv = 0, ∂tv + ∂yP(1/τ) = 0
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Cavitation & Concentration: Pressure P(ρ) = a ργ, γ > 1

∂tρ+ ∂x(ρv) = 0, ∂t(ρv) + ∂x(ρv
2 + P(ρ)) = 0

Theorem (Global Existence Theory of Entropy Solutions)

Let the Cauchy initial data satisfy

0 ≤ ρ0(x) ≤ C0, |m0(x)| ≤ C0ρ0(x)

for some C0 > 0. Then there exists a global entropy solution
(ρ,m)(t, x) = (ρ, ρv)(t, x) of the Cauchy problem such that

0 ≤ ρ(t, x) ≤ C , |m(t, x)| ≤ Cρ(t, x),

where C > 0 is a constant depending only on γ > 1, a > 0, and C0 > 0.

DiPerna: γ = N+2
N ,N ≥ 5 odd, Ding-Luo & Chen: γ ∈ (1, 53 ],

Lions-Perthame-Tadmor: γ ≥ 3, Lions-Perthame-Souganidis: γ ∈ ( 53 , 3),

Chen-LeFloch: General pressure laws

*Entropy Analysis for the measure-valued solution (Young measure)
with compact support

Gui-Qiang G. Chen (Oxford) Cavitation and Concentration August 7–11, 2023 7 / 44



Cavitation and Entropy Analysis

∂tρ+ ∂xm = 0, ∂tm + ∂x(m
2/ρ+ P(ρ)) = 0

Theorem (Global Existence Theory of Entropy Solutions)

Let the Cauchy initial data satisfy

0 ≤ ρ0(x) ≤ C0, |m0(x)| ≤ C0 ρ0(x)

for some C0 > 0. Then there exists a global entropy solution
(ρ,m)(t, x) = (ρ, ρv)(t, x) of the Cauchy problem such that

0 ≤ ρ(t, x) ≤ C , |m(t, x)| ≤ C ρ(t, x),

for some constant C > 0 depending only on γ > 1, and C0, and

∂tη(ρ,m) + ∂xq(ρ,m) ≤ 0

in the sense of distributions for any convex weak entropy pair (η, q).

γ-pressure laws (γ > 1): DiPerna, Ding-Luo & Chen, Lions-Perthame-Tadmor,
Lions-Perthame-Souganidis, · · ·

General pressure laws: Chen-LeFloch, · · ·
Uniqueness in this class of entropy solutions: Open problem!!
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Stability of Vacuum States and Plane Rarefaction Waves even

for the M-D Euler Equations via a Single Entropy Inequality

ρt +∇x · (ρv) = 0, (ρv)t +∇x · (ρv⊗ v) +∇xP(ρ) = 0.

Theorem (Chen: MAA 2000, Chen & Jun Chen: JHDE 2007)

R( x1t ) is a plane Riemann solution consisting of vacuum states,
rarefaction waves, and constant states.
U is an weak solution satisfying the local mechanical energy
inequality for η∗(U) = 1

2ρ|v|
2 + ρe(ρ).

=⇒
∫
|x|≤L

η̃∗(U,R)(t, x)dx ≤
∫
|x|≤L+Mt

η̃∗(U0,R0)(x)dx,

for any L > 0, where M > 0 depends only on the bounds of (U,R) and

η̃∗(U,R) = (U − R)⊤
(∫ 1

0
∇2

Uη∗(R + r(U − R)) dr
)
(U − R).

*Riemann solutions with shocks/vortex sheets =⇒ ∞-many wild solutions.
Chiodaroli-De Lellis-Kreml 2015, Klingenberg-Kreml-Mách-Markfelder 2020,· · ·

based on Convex Integration: De Lellis & Székelyhidi Jr., · · ·
*Uniqueness and weak-BV stability for 2× 2 conservation laws:

Geng Chen-Krupa-Vasseur 2022, · · · .
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Isentropic Euler Equations: Vanishing Pressure Limit

∂tρ+ ∂x(ρv) = 0, ∂t(ρv) + ∂x(ρv
2 + εP(ρ)) = 0.

Riemann Problem: ρ± > 0

(ρ, v)|t=0 =

{
(ρ−, v−) for x < 0,

(ρ+, v+) for x > 0.

Consider the following two distinguished cases:
Two-rarefaction wave Riemann solution with v− < v+ and ρ± > 0:

(ρ, v)(
x

t
) =



(ρ−, v−) for x < v−t,

1-rarefaction wave for v−t < x < vε∗ t,

(ρε∗, v
ε
∗ ) for v−t < x < vε∗ t,

2-rarefaction wave for vε∗ t < x < v+t,

(ρ+, v+) for x > v+t.

Two-shock Riemann solution with v− > v+ and ρ± > 0:

(ρ, v)(
x

t
) =


(ρ−, v−) for x < σε1t,

(ρε∗, v
ε
∗ ) for σε1t < x < σε2t,

(ρ+, v+) for x > σε2t.
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Vanishing Pressure Limit: Cavitation

∂tρ+ ∂x(ρv) = 0, ∂t(ρv) + ∂x(ρv
2 + εP(ρ)) = 0

When ε→ 0, the two-rarefaction wave Riemann solution with
v− < v+ and ρ± > 0:

(ρ, v)(
x

t
) =



(ρ−, v−) for x < v−t,

1-rarefaction wave for v−t < x < v ε∗ t,

(ρε∗, v
ε
∗ ) for v−t < x < v ε∗ t,

2-rarefaction wave for v ε∗ t < x < v+t,

(ρ+, v+) for x > v+t

converges to a solution of the pressureless Euler equations
containing a vacuum state that fills up the region formed by the
two contact discontinuities x = v±t:

(ρ, v)(
x

t
) =


(ρ−, v−) for x < v−t,

(0, xt ) for v−t < x < v+,

(ρ+, v+) for x > v+t.

G.-Q. Chen & H. Liu: SIAM J. Math. Anal. 34 (2003), 925–938
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Formation Process of Cavitation as ε → 0

{
∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + εP(ρ)) = 0.

t

x
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Vanishing Pressure Limit: Concentration

∂tρ+ ∂x(ρv) = 0, ∂t(ρv) + ∂x(ρv
2 + εP(ρ)) = 0.

When ε→ 0, the two-shock Riemann solution with v− > v+ and ρ± > 0:

(ρ, v)(
x

t
) =


(ρ−, v−) for x < σε1t,

(ρε∗, v
ε
∗ ) for σε1t < x < σε2t,

(ρ+, v+) for x > σε2t

converges to a δ-shock solution of the pressureless Euler equations:
t

x

α =
1√

1 + σ2
(σ[ρ]− [ρv ]) > 0, σ =

√
ρ+v+ +

√
ρ−v−√

ρ+ +
√
ρ−

∈ (v+, v−)

G.-Q. Chen & H. Liu: SIAM J. Math. Anal. 34 (2003), 925–938
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Formation Process of Concentration : δ–Shocks

G.-Q. Chen & H. Liu: SIAM J. Math. Anal. 34 (2003), 925–938
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Isothermal Limit: Process of Decavitation as γ → 1{
∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + Pγ(ρ)) = 0, Pγ(ρ) = aργ.

t

x

*G.-Q. Chen, F. Huang & T.-Y. Wang: Isothermal Limit of Entropy Solutions of

the Euler Equations for Isentropic Gas Dynamics, arXiv:2202.02235, 2023.
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Spherically Symmetric Solutions

The study of spherically symmetric solutions can date
back to the 1950s and has been motivated by many
important physical problems such as stellar dynamics
including gaseous stars and supernova formation.

Open Question: Could concentration (or cavitation)
be formed at the origin, i.e., the density becomes
a Dirac Measure (or zero) at the origin, especially when
a focusing (defocusing) spherical shock is moving inward
(outward) the origin?
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Multidimensional Isentropic Euler Equations{
ρt +∇x · (ρv) = 0,

(ρv)t +∇x · (ρv⊗ v) +∇xP = 0.

x = (x1, . . . , xd) ∈ Rd , ∇x — Gradient w.r.t. x ∈ Rd

ρ — Density, v = (v1, . . . , vd) ∈ Rd — Velocity,
P = P(ρ) = ρ2e ′(ρ) — Pressure with internal energy e(ρ)

For a polytropic perfect gas: P(ρ) = a ργ , e(ρ) = a
γ−1ρ

γ−1, γ > 1

Spherically Symmetric Solutions:

ρ(t, x) = ρ(t, r), v(t, x) = v(t, r)
x

r
, r = |x|.

Then the functions (ρ,m) = (ρ, ρv) are governed by{
ρt +mr +

d−1
r
m = 0,

mt + (m
2

ρ
+ P(ρ))r +

d−1
r

m2

ρ
= 0.
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Defocusing: Expanding Spherically Symmetric Solutions

G.-Q. Chen: Proc. Royal Soc. Edinburgh, 127A (1997), 243–259.

0 ≤
∫ ρ0(r)

0

√
P ′(s)

s
ds ≤ v0(r) ≤ C <∞

=⇒ Formation of Cavitation near the origin
via Finite Difference Scheme....

* M. Slemrod: PRSE, 1996: Spherical Self-Similar Piston Problem

* F. Huang, T.-H. Li & D. Yuan 2019, · · · · · ·
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Focusing: Imploding Spherically Symmetric Solutions

Guderley 1942, Courant-Friedrichs 1945, ...

Merle-Raphaël-Ronianski-Szeftel 2022: Singularity of Self-Similar Solutions

Rauch 1986: No BV or L∞ Bounds

Longstanding Problem: Does the concentration occur generically?
⇐⇒ Does the density develop into a measure at the origin generically?
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Spherically Symmetric Solutions for the Euler
Equations via Navier-Stokes Viscosity Limits

Theorem (Chen-Wang: ARMA 2022, Chen-Schrecker: ARMA 2018
Chen-Perepelitsa: CMP 2015)

Let the initial functions (ρ0,m0) satisfy the relative finite-energy
conditions with ρ̄ := limr→∞ ρ0(r) ≥ 0.
=⇒ There exists a sequence of Navier-Stokes-type approximate

solutions (ρε,mε),mε = ρεv ε, for ε > 0 such that, when ε→ 0,
there exists a subsequence of (ρε,mε) that converges
strongly almost everywhere to a finite-energy spherically
symmetric entropy solution (ρ,m) with
ρ(t, x) = ρ(t, |x|), (ρv)(t, x) = m(t, |x|) x|x| for all γ > 1.

*There EXIST entropy solutions (as zero viscosity limits) even ρ̄ > 0
with ∞–propagation speed,
but without concentration at the origin!!
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Entropy Analysis I

∂tU + ∂rF (U) = G (U , r), U ∈ R2

Entropy-Entropy Flux Pair (η, q) if they satisfy the 2× 2 hyperbolic
system:

∇q(U) = ∇η(U)∇F (U).

For smooth solution U, ∂tη(U) + ∂rq(U) = ∇η(U)G (U, r).

If the system is endowed with globally defined Riemann invariants

wi (U), 1 ≤ i ≤ 2, satisfying ∇wi (U) · ∇F (U) = λi (U)∇wi (U) so that

qwi = λiηwi , i = 1, 2.

That is, the entropy function η is determined by

ηw1w2 +
λ2w1

λ2 − λ1
ηw2 −

λ1w2

λ2 − λ1
ηw1 = 0.

For the Euler system, η is determined by the Euler-Poisson-Darboux equation:

ηw1w2 +
α

w2 − w1
(ηw2 − ηw1) = 0, α =

3− γ

2(γ − 1)
.
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Entropy Analysis - II{
ρt +mr = −d−1

r m, (m = ρv)

mt + (m
2

ρ + P(ρ))r = −d−1
r

m2

ρ .

Strict Hyperbolicity – fails: λ2 − λ1 = 2
√
P ′(ρ) → 0 when ρ→ 0 (vacuum)

Entropy Pair (η, q): ∇q(U) = ∇η(U)∇F (U) for U = (ρ,m)⊤

Convex Entropy: ∇2η(U) > 0 Weak Entropy: η(ρ, ρv)|ρ=0 = 0

Weak entropy pairs are represented as

ηψ(ρ, ρv) =

∫
R
χ(s)ψ(s)ds, qψ(ρ, ρv) =

∫
R
(θs + (1− θ)v)χ(s)ψ(s)ds

by C 2-functions ψ(s), where χ(s) is the weak entropy kernel:

χ(s) := [ρ2θ − (v − s)2
]α
+
, θ =

γ − 1

2
, α =

3− γ

2(γ − 1)

Physical Convex Entropy: Mechanical energy-energy flux pair (η∗, q∗):

η∗(ρ,m) =
1

2

m2

ρ
+ ρe(ρ), q∗(ρ,m) =

1

2

m3

ρ2
+m(e(ρ) +

P

ρ
)
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Entropy Analysis - III: Lp–Compactness Framework

Theorem (Lp-Compensated Compactness Framework)

Let a function sequence (ρε,mε)(t, r) defined on a compact domain
Ω ⋐ R+ × R+ satisfy

There exists a constant C > 0, independent of ε > 0, such that

∥ρε∥Lmax{γ+1,γ+θ}(Ω) +
∥∥(mε)3

(ρε)2
∥∥
L1(Ω)

≤ C for θ = γ−1
2 .

For any weak entropy pair generated by compactly supported test
function ψ ∈ C 2

c (R) such that the corresponding sequence of entropy
dissipation measures

∂tη
ψ(ρε,mε) + ∂rq

ψ(ρε,mε) is compact in H−1(Ω).

Then there exist both a subsequence (still denoted) (ρε,mε)(t, r) and a
measurable vector function (ρ,m)(t, r) such that

(ρε,mε)(t, r) → (ρ,m)(t, r) a.e. as ε→ 0.

Lp–Framework for General γ > 1: Chen-Perepelitsa, CPAM 2010
* DiPerna, Ding-Luo-Chen, Lions-Perthame-Souganidis-Tadmor,
Chen-LeFloch, LeFloch-Westdickenberg, · · ·
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Multidimensional Euler-Poisson Equations
ρt +∇ ·M = 0,

Mt +∇ ·
(M⊗M

ρ

)
+∇P + ρ∇Φ = 0,

∆Φ = κρ, x = (x1, . . . , xd) ∈ Rd .
ρ – Density, v = (v1, . . . , vd) ∈ Rd – Velocity, ∇x – Gradient w.r.t. x ∈ Rd

Φ – Gravitational potential of gaseous stars if κ = 4πg > 0 when d = 3
& plasma electric field potential if κ < 0

Spherically Symmetric Solutions:

ρ(t, x) = ρ(t, r), v(t, x) = v(t, r)
x

r
, Φ(t, x) = Φ(t, r), r = |x|.

Then the functions (ρ,m) = (ρ, ρv) are governed by
ρt +mr = −d−1

r
m,

mt + (m
2

ρ
+ P(ρ))r = −ρΦr − d−1

r
m2

ρ
,

Φrr +
d−1
r
Φr = κρ.
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The Compressible Euler-Poisson Equations
for Self-Gravitating Newtonian Gaseous Stars

A gaseous star is modeled as a compactly supported gaseous
fluid surrounded by vacuum, subject to self-gravitation.
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Euler-Poisson Equations with κ > 0
Self-Gravitational Gaseous Stars: Smooth Solutions

Chandrasekhar 1938:

γ > 2d
d+2 (e.g. γ > 6

5 for d = 3) is necessary to ensure the global
existence of finite-energy solutions with finite mass, which
corresponding to the one for the Lane-Emden solutions.

There no exist steady white dwarf star with total mass larger than the
Chandrasekhar limit Mch when γ ∈ ( 65 ,

4
3 ] for d = 3.

Goldreich-Webber 1980 (see also Deng-Xiang-Yang 2003, Fu-Lin 1998,
Makino 1992): There exist homologous self-similar collapsing solutions

when γ = 4
3 for d = 3.

Guo-Hadzic-Jang (ARMA 2021): ∃ ∞–D family of collapsing solutions.

γ ∈ (1, 43 ) (mass supercritical) & Mach number ≫ 1 =⇒ Concentration

Lei-Gu 2016, Luo-Xin-Zeng 2014, Makino 1986, · · · · · · .

Open Problem: ?∃ Global Weak Entropy Solutions including the Origin?

Even under Self-Gravitation?
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Stationary Self-Gravitating Gaseous Stars Ω: κ > 0{
∇P(ρ) = −ρ∇Φ, ∆Φ = κρ in Ω

ρ|∂Ω = 0.

Then Q(ρ) = ργ−1 is determined by the elliptic problem:{
∆Q = −AQ

1
γ−1 ,

Q|∂Ω = 0,
A = (γ−1)κ

γa > 0, γ > 1.

Theorem (Deng-Liu-Yang-Yao: ARMA 2002)

6
5 < γ < 2: There is a positive solution on Ω

1 < γ ≤ 6
5 and Ω is a ball: There is no positive solution

The total energy: E = 4−3γ
γ−1

∫
Ω P(ρ)dx (ligher & heavier particles)

γ > 4
3 : the gas may expand to infinity and become a gas cloud.

γ ≤ 4
3 : the gas may collapse into a single point in finite time and

may eventually become a black hole.
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Finite Initial Total-Energy and Total-Mass

Initial Condition:

(ρ,M)|t=0 = (ρ0(x),M0(x)) = (ρ0(|x|),m0(|x|)
x

|x|
) −→ (0, 0) as |x| → ∞.

Asymptotic Condition:

Φ(t, x) = Φ(t, |x|) −→ 0 as |x| → ∞.

Finite initial total-energy:

E0 :=

∫
Rd

(1
2

∣∣M0√
ρ0

∣∣2 + ρ0e(ρ0)
)
(x)dx <∞ for κ > 0.

Finite initial total-mass:

M :=

∫
Rd

ρ0(x)dx = ωd

∫ ∞

0

ρ0(r) r
d−1dr <∞.

e(ρ) := a
γ−1ρ

γ−1 — internal energy

ωd := 2π
d
2

Γ( d
2 )

— surface area of the unit sphere in Rd
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Spherically Symmetric Solutions for the Euler-Poisson
Equations via inviscid Navier-Stokes-Poisson-type Limits

Theorem (Chen-He-Wang-Yuan: CPAM 2023)

Let (ρ0,m0)(|x|) satisfy the finite-energy and finite-mass conditions.
=⇒ There exist Navier-Stokes-Poisson-type viscosity solutions

(ρε,mε,Φε) for ε > 0 such that, when ε→ 0, there exists
a subsequence of (ρε,mε,Φε) that converges strongly a.e.
to a finite-energy spherically symmetric entropy solution

(ρ,m,Φ)(t, r) with

ρ(t, x) = ρ(t, |x|), M(t, x) = m(t, |x|) x|x| , Φ(t, x) = Φ(t, |x|)

for κ > 0 when γ > 2(d−1)
d

or γ ∈ ( 2d
d+2 ,

2(d−1)
d ] with the critical mass Mc(γ)

*There exist entropy solutions (as inviscid Navier-Stokes limits)
with ∞–propagation speed, but without concentration, at the origin
even under self-gravitation!!
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Main Strategies

Design an appropriate free boundary problem with
appropriate approximate initial data
stress-free boundary condition

to construct the approximate solutions (involving the initial location
b > 0 of the free boundary – a large parameter, besides the small
parameter ε > 0) for CNSPEs.

Obtain the trace estimates in the energy estimates
& adopt the Bresch-Desjardins entropy
to make uniform estimates of the approximate solutions,
independent of ε > 0 and b > 0.

Prove that the Navier-Stokes-Poisson viscosity solutions satisfy
the Lp–compensated compactness framework after first taking
b → ∞, which then ensures the strong convergence of the viscosity
solutions as ε→ 0.

Verify that the strong limit functions are finite-energy global solutions
of the compressible Euler-Poisson equations with large initial data of
spherical symmetry.
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Navier-Stokes-Poisson Approximate Solutions
Consider the following approximate free boundary problem for CNSPEs:

ρt + (ρv)r +
d−1
r ρv = 0,

(ρv)t +
(
ρv2 + P

)
r
+ d−1

r ρv2 + κρ
rd−1

∫ r

b−1 ρ(t, y) y
d−1dy

= ε
(
ρ(vr +

d−1
r v)

)
r
− ε d−1

r vρr ,

for (t, r) ∈ ΩT := {(t, r) : b−1 ≤ r ≤ b(t), 0 ≤ t ≤ T} (moving domain),
with b ≫ 1 and {r = b(t) : 0 < t ≤ T} as a free boundary:

b′(t) = v(t, b(t)) for t > 0, b(0) = b ≫ 1.

On the free boundary r = b(t), the stress-free boundary condition:(
P(ρ)− ϵρ(vr +

d − 1

r
v)
)
(t, b(t)) = 0 for t > 0.

On the fixed boundary r = b−1, the Dirichlet boundary condition:

v |r=b−1 = 0 for t > 0.

The initial condition: (ρ, ρv)|t=0 = (ρϵ,b0 , ρϵ,b0 v ϵ,b0 )(r) for r ∈ [b−1, b].

(ρϵ,b0 , v ϵ,b0 )(r) are smooth/compatible and 0 < C−1
ϵ,b ≤ ρϵ,b0 (r) ≤ Cϵ,b <∞.

*Duan-Li, JDE 2015: κ > 0 with γ ∈ ( 6
5
, 4
3
] =⇒ General as needed for d ≥ 2.
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Basic Energy Estimates for the Approximate Solutions: κ > 0

The approximate solution (ρ, v)(t, r) := (ρϵ,b, v ϵ,b)(t, r) satisfies
the following energy identity:∫ b(t)

b−1

(1
2
ρv2 + ρe(ρ)

)
(t, r) rd−1dr − κ

2

∫ b(t)

b−1

1

rd−1

( ∫ r

b−1

ρ(t, y) yd−1dy
)2
dr

+ ϵ

∫ t

0

∫ b(s)

b−1

(
ρv2r + (d − 1)ρ

v2

r2
)
(t, r) rd−1drds

+ (d − 1)ϵ

∫ t

0
(ρv2)(s, b(s))b(s)d−2 ds

=

∫ b

b−1

((1
2
ρ0v

2
0 + ρ0e(ρ0)

)
(r)− κ

2

1

r2(d−1)

( ∫ r

b−1

ρ0(t, y)y
d−1dy

)2)
rd−1dr ,

where ρ(t, r) is understood to be 0 for r ∈ [0, b−1] ∪ (b,∞) in the 2nd

term of the right-hand side and the 2nd term of the left-hand side.

There are the two cases: (i) γ > 2(d−1)
d ; (ii) γ ∈ ( 2d

d+2 ,
2(d−1)

d ].
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BD-Type Entropy Estimate

Given any fixed T > 0, then, for all t ∈ [0,T ],

ϵ2
∫ b(t)

b−1

|ρ(t, r)r |2

ρ(t, r)
rd−1dr + ϵ

∫ t

0

∫ b(s)

b−1

|(ρ
γ
2 )r |2 rd−1drds

+ P(ρ(t, b(t))) bd(t) +
1

ϵ

∫ t

0
P(ρ(s, b(s)))P ′(ρ(s, b(s))) bd(s) ds

≤ C (E0,M,T ).

To obtain the derivative estimate of the density, we use the entropy
identified by D. Bresch and B. Desjardins (2007).

To close the bound, we need to control the boundary term P(ρ0(b))b
d

for the approximate initial data.

To resolve this issue, we construct the approximate initial data (ρϵ,b0 , uϵ,b0 )

so that P(ρϵ,b0 (b))bd are uniformly bounded.
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Expanding of Domain ΩT with Free Boundary

Given T > 0 and ϵ ∈ (0, ϵ0], there exists a positive constant

B(M ,E0,T , ϵ) > 0 such that, if b ≥ B(M ,E0,T , ϵ),

b(t) ≥ b

2
for t ∈ [0,T ]. (**)

* For the free boundary problem, a follow-up point is whether the free
boundary domain ΩT will expand to the whole space as b → ∞; otherwise,
it would not be a good approximation to the original Cauchy problem.

* We solve this difficulty by proving (**), provided b ≫ 1.

*Uniform higher integrability: For any K ⋐ [b−1, b(t)] and t ∈ [0,T ],

∥ρb,ε∥Lmax{γ+1,γ+θ}([0,T ]×K) + ∥ρb,ε(vb,ε)3∥L1([0,T ]×K) ≤ C (K ,M ,E0,T ).
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Existence of Global Weak Solutions of CNSPEs
Similar to the compactness arguments of Mellet-Vasseur (CPDE, 2007),
based on these uniform estimates just presented, we take the limit, b → ∞,
to obtain the global weak viscosity solutions of CNSPEs.

Let (η, q) be a weak entropy pair for any smooth compact supported
function ψ(s) on R. Then, for ϵ ∈ (0, ϵ0], the Navier-Stokes-Poisson
viscosity solutions (ρϵ,mϵ) satisfy that

∂tη(ρ
ϵ,mϵ) + ∂rq(ρ

ϵ,mϵ) is compact in H−1
loc (R2

+).

Given any T ∈ (0,∞), the following uniform bounds hold for all t ∈ [0,T ]:∫ ∞

0

ρϵ(t, r) rd−1dr =

∫ ∞

0

ρϵ0(r) r
d−1dr = M,∫ ∞

0

η∗(ρϵ,mϵ)(t, r) rd−1dr + ϵ

∫
R2
+

(mϵ)2(t, r)

ρϵ(t, r)
rd−3drdt + ∥Φϵ(t)∥

L
2d

d−2 (Rd )

+

∫ ∞

0

(∫ r

0

ρϵ(t, y) yd−1dz
)
ρϵ(t, r) rdr + ∥∇Φϵ(t)∥L2(Rd ) ≤ C(M,E0),

ϵ2
∫ ∞

0

∣∣(√ρϵ(t, r))r
∣∣2rd−1dr + ϵ

∫ T

0

∫ ∞

0

∣∣((ρϵ) γ
2 )r

∣∣2rd−1drdt ≤ C(M,E0,T ),

∥ρε∥Lmax{γ+1,γ+θ}([0,T ]×K) +
∥∥ (mϵ)3

(ρε)2
∥∥
L1([0,T ]×K)

≤ C(K ,M,E0,T ) for all K ⋐ (0,∞).
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Spherically Symmetric Solutions for the Euler-Poisson
Equations via inviscid Navier-Stokes-Poisson-type Limits

Theorem (Chen-He-Wang-Yuan: CPAM 2023)

Let (ρ0,m0)(|x|) satisfy the finite-energy and finite-mass conditions.
=⇒ There exist Navier-Stokes-Poisson-type viscosity solutions

(ρε,mε,Φε) for ε > 0 such that, when ε→ 0, there exists
a subsequence of (ρε,mε,Φε) that converges strongly a.e.
to a finite-energy spherically symmetric entropy solution

(ρ,m,Φ)(t, r) with

ρ(t, x) = ρ(t, |x|), M(t, x) = m(t, |x|) x|x| , Φ(t, x) = Φ(t, |x|)

for κ > 0 when γ > 2(d−1)
d

or γ ∈ ( 2d
d+2 ,

2(d−1)
d ] with the critical mass Mc(γ)

*There exist entropy solutions (as inviscid Navier-Stokes limits)
with ∞–propagation speed, but without concentration, at the origin
even under self-gravitation!!
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M-D Euler-Poisson Equations for White Dwarf Stars
ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv⊗ v) +∇P + ρ∇Φ = 0,

∆Φ = κρ.

ρ – Density, v = (v1, . . . , vd) ∈ Rd – Velocity

Φ – Self-consistent electric field potential, κ > 0.

P = P(ρ) = ρ2e′(ρ) – General pressure with internal energy e(ρ)

For a white dwarf star (Chandrasekhar 1938),

P(ρ) = A

∫ Bρ
1
3

0

σ4

√
D + σ2

dσ for ρ > 0,

where A,B and D are positive constants.

=⇒ P(ρ) ∼= ρ
5
3 as ρ→ 0, P(ρ) ∼= ρ

4
3 as ρ→ ∞.

*G.-Q. Chen, F. Huang, T.-H. Li, W. Wang, and Y. Wang:

Global Finite-Energy Solutions of the Compressible Euler-Poisson Equations
with Spherical Symmetry for White Dwarf Stars, Preprint 2023.
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Lp–Compactness Framework
for General Pressure Laws I: P(ρ)

(i) P(ρ) ∈ C 1([0,∞)) ∩ C 4(R+) and satisfies the hyperbolic and
genuinely nonlinear conditions:

P ′(ρ) > 0, 2P ′(ρ) + ρP ′′(ρ) > 0 for ρ > 0.

(ii) There exist constants γ1 ∈ (1, 3) and κ1 > 0 such that

P(ρ)∼ κ1ρ
γ1 as ρ∼ 0.

(iii) There exist constants γ2 ∈ (65 , γ1] and κ2 > 0 such that

P(ρ)∼ κ2ρ
γ2 as ρ∼∞.

*Examples: White dwarf stars, · · · .
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Lp–Compactness Framework
for General Pressure Laws II: P(ρ)

Theorem (Lp-Compensated Compactness Framework)

Let a function sequence (ρε,mε)(t, r) defined on a compact domain
Ω ⋐ R+ × R+ satisfy

There exists a constant C > 0, independent of ε > 0, such that

∥ρε∥Lγ2+1(Ω) +
∥∥ (mε)3

(ρε)2
∥∥
L1(Ω)

≤ C for θ = γ−1
2 .

For any weak entropy pair generated by compactly supported test function
ψ ∈ C 2

c (R) such that the corresponding sequence of entropy dissipation
measures

∂tη
ψ(ρε,mε) + ∂rq

ψ(ρε,mε) is compact in W−1,1(Ω).

Then there exist both a subsequence (still denoted) (ρε,mε)(t, r) and a
measurable vector function (ρ,m)(t, r) such that

(ρε,mε)(t, r) → (ρ,m)(t, r) a.e. as ε→ 0.

*G.-Q. Chen, F. Huang, T.-H. Li, W. Wang, and Y. Wang:
Global Finite-Energy Solutions of the Compressible Euler-Poisson Equations
with Spherical Symmetry for White Dwarf Stars, Preprint 2023.
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Multidimensional Euler-Poisson Equations
with Doping Profile for Plasma

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv⊗ v) +∇P + ρ∇Φ = 0,

∆Φ = κ(ρ− b(x)).

∇ = (∂x1 , . . . , ∂xd ) — Gradient with respect to x = (x1, . . . , xd) ∈ Rd

∆ = ∂2x1 + · · ·+ ∂2xd – Laplace operator with respect to x ∈ Rd

ρ — Density, v = (v1, . . . , vd) ∈ Rd — Velocity

P = P(ρ) = ρ2e′(ρ) — Pressure with internal energy e(ρ)

Φ — Self-consistent electric field potential

b(x) — Doping profile with lim|x|→∞ b(x) = ρ∗ > 0.

*G.-Q. Chen, L. He, Y. Wang, and D. Yuan: Global Solutions of the Compressible
Euler-Poisson Equations with Doping Profile and Large Data of Spherical

Symmetry for Plasma Dynamics, Preprint 2023.
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Shock Reflection-Diffraction: Mach Reflection

? Does cavitation/concentration form at the center of vorticity wave?
? Right space for vorticity ω?

? Chord-arc z(s) = z0 +
∫ s

0
e ib(s)ds, b ∈ BMO?

*Chen-Feldman 2018 (Research Monograph): The Mathematics of Shock
Reflection-Diffraction and von Neumann’s Conjectures, 832 pages,

Annals of Mathematics Studies, 197, Princeton University Press, 2018
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Classification of 2-D Riemann Problems for the Euler Eqs.

Classification: Zhang-Zheng 1990, Chang-Chen-Yang 1995,2000, Lax-Liu 1998.

Rigorous Analysis for Solvability: Wide Open!

*G.-Q. Chen: Two-Dimensional Riemann Problems: Transonic Shock Waves and Free
Boundary Problems, Communications on Applied Mathematics & Computation, 2023.
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Challenges and Entropy Solutions: Euler Equations

∂t U +∇x · F(U) = 0
Challenges: Singularities −→ Discontinuous/Wild/Singular Solutions

Shock Waves, Vortex Sheets, Vorticity Waves, Entropy Waves, ...
Compactness & Oscillation ⇐⇒ Weak Continuity & Uniqueness ??

*Cavitation/Decavitation =⇒ Degeneracy, · · ·
*Concentration/Deconcentration =⇒ ∞–Propagation Speed,· · ·
. . . . . .

Analysis of Entropy Solutions:

(i) U(t, x) ∈ L∞, Lp,M, · · · .
(ii) For any convex entropy pair (η,q), ∂tη(U) +∇x · q(U) ≤ 0 D′

as long as (η(U(t, x)),q(U(t, x))) ∈ D′, for (η,q) := (η, q1, . . . , qd) that

satisfies ∇2η(U) ≥ 0 and is a solution of

∇qk(U) = ∇η(U)∇Fk(U) for k = 1, . . . , d

.Posed Classes of Entropy Solutions in L∞, Lp,M, · · ·??
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Entropy Methods for the Analysis of Entropy
Solutions of Multidimensional Conservation Laws?

A general mathematical framework may be derived from the theory of
divergence-measure fields via the entropy methods, which are based on the
Entropy Solutions:

(i) U(t, x) ∈ M, L∞, Lp, plus additional features when available;
(ii) For any convex entropy pair (η,q), ∂tη(U) +∇x · q(U) ≤ 0 in D′

as long as (η(U(t, x)),q(U(t, x))) ∈ D′.

=⇒ div(t,x)(η(U(t, x)),q(U(t, x))) ∈ M
=⇒ (η(U(t, x)),q(U(t, x))) ∈ DM(R+ × Rd) (divergence-measure field)

=⇒ Integration by parts, normal traces, .....
=⇒ Properties of entropy solutions, ....,

via Entropy Methods and Theory of Divergence-Measure Fields

*Chen-Frid: ARMA 147 (1999), 308–357; CMP 236 (2003), 251–280

*Chen-Torres-Ziemer, Frid, Chen-Comi-Torres, · · · · · ·
*Chen-Torres: Notices Amer. Math. Soc. 171(2) (2021), 1282–1290

* Compensated Integrability: Serre (CRMAS 2022, JMPA 2019, AIHP 2018, · · · ), · · ·
* Strong Traces &Kinetic Formulations: Vasseur, De Lellis-Otto-Westdickenberg, C-Perthame...
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