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1.2 The Boussinesq system and its BT
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@ The lattice potential Boussinesq system [Tongas, Nijhoff-2005]

Wn+lm = UnmUn+l,m — Vnm (13)
Wn,m+1 = UpmUn,m+1 — Vnm , (1b)
p—-q _
Wnm — UnmUn+1,m+1 T Vp+1 m+1 + =0, (1C)

Un+1,m—Un m+1
or 9-point equation:
p-q
Un+1,m+1—Un m+2
p-q

= m - (Un,m+1 - Un+1,m)(un,m - Un+2,m+1) . (2)

- (Un+1,m+2 - Un+2,m+1)(un,m+1 - Un+2,m+2)

@ The potential Boussinesq equation:
Ugt + 3 oo +4uyty =0 . (3)

@ The BT for the Boussinesq equation was first given by Chen
[1976] without Backlund parameter.

@ The nonlinear superposition formula contains derivatives with
respect to a continuous variable.
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e deriving the Boussinesq equation (3) by eliminating v in (4)
e presenting a BT for the system (4) :
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Here T,V are new solutions for the potential Boussinesq
system, and s is a function of x and t.

@ trying to identify the nonlinear superposition formula as (1).

e modifying this BT, we get an updated one connecting (1)
with (3).
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2.1 An updated BT

e The BT was [Rasin,Schiff-2017]
U=u+s, V=v-—uy+us. (5)
e We modify (5) and give an updated BT:
U=u+s, V=v+y+Us, (6)
where s satisfies the equations:

Sxx = =P — 355, — S5 — 3Uys + 3uty — 3vy, (7a)

St = P+ SSx + S5+ 3UyS — Uy + 3V — 3y, (7b)

p is the BT parameter.



2.2 Nonlinear superpositon formula of the updated BT

Introduce a new variable w by setting w = —v + uy + u?, from the
BT
U=u+s, V=v+10yx+1Us,
we will find
W=ul-v. (8)



2.2 Nonlinear superpositon formula of the updated BT

Introduce a new variable w by setting w = —v + uy + u?, from the

BT
U=u+s, V=vV+Uy+Us,

we will find
W=ul-v. (8)

And if we denote the solutions obtained from {u, v, w} by using
the BT with a parameter g by {7, V,w}, we get a similar relation

W=ul-v. 9)



2.2 Nonlinear superpositon formula of the updated BT

Introduce a new variable w by setting w = —v + uy + u?, from the
BT
U=u+s, V=vV+Uy+Us,

we will find
W=ul-v. (8)

And if we denote the solutions obtained from {u, v, w} by using
the BT with a parameter g by {7, V,w}, we get a similar relation

W=ul-v. 9)

Replacing s by &' — u in the equation set for s, we get another
superpositon formula

woug+v+ P9 -0 (10)

u-u
Identifying these three algebraic relations on the lattice leads to
the lattice Boussinesq system (1).
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2.3 Why do we take Vv =v + U, + Us?

e Weierstrass functions: 0(z), ((z) and g(z) functions.

=((2), p(2) = -C'(2).

@ p(z) satisfies the following differential equations:

(¢'(2)) = 4(0(2))* - g20(2) - 5.
0"(2)=6(p(2)” - 2. ¢"(2)=120(2)'(2).
@ Addition formulas:
M)
p(z1) —p(22)

(a1 +2)-C(z1) - ((22) = %%'

p(21) + p(22) + p(z1 + 22) = (



2.3 Why do we take Vv =v + U, + Us?

Recall the potential BSQ equation

1
Upt + guxxxx +4uyuy, = 0. (3)
Its stationary solution is u(t,x) = ((x) + ¢1. c1 is an arbitrary
constant.
From the potential BSQ system

ut—(UX+U2—2V)x:07 (48)
2 2 3
Vt_(guxx—vx—i-gu +2UUX)X+2UVx:07 (4b)

we obtain that v(t,x) = %(C(X) +c1)? - %p(X) + %ggt-l— 0. ¢ is
also an arbitrary constant, and g» is the invariant for p-func.
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The BT can provide the following solution:
U= ((x+0)=¢(0) +a,

and

7= (G0 0) =) + )= S(p(x+ ) - p(9) + ot + o

Then we find that V- v = T, + Us.
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2.3 Why do we take Vv =v + U, + Us?

The BT can provide the following solution:
U= ((x+0)=¢(0) +a,

and

7= (G0 0) =) + )= S(p(x+ ) - p(9) + ot + o

Then we find that V- v = T, + Us.

Recall the equation set for s and s = U'— u, we obtain p = —%@’(5).

Similarly we can use the BT with the parameter g = —%p’(s).
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2.4 Elliptic seed solution for the lattice BSQ equation

If we identify these seed solutions on the lattice, we could derive
the elliptic seed solution for the lattice BSQ equation

o = C(6) - nG(6) - m(€) ~ (&)
o = 308 = 56(6) + 3 (19(0) + () + p1(50)),

2
w0 = 208 = 26(6) = 3 (n9(6) + mo(2) + p(£0)).

1
2

where £ =&, m = nd + me + &, and & is an arbitrary constant.
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2.5 What do we have now?

@ BT: U=u+s, V=v+U,+Us, where s satisfies:
Syx = —p — 355y — s3 - 3uys + 3uuy — 3vy,

St = P+ SS¢ + 3+ 3uys — 2uy + 3vy — 3uuy.

@ Seed solution:
1 , 1 1
u=C((x)+c, v==(Xx)+a) -Zp(x)+-—gmt+c.
2 2 12
c1, ¢ are arbitrary constants. g» is the invariant for p-func.
@ Seed solution for the lattice Boussinesq system: (p = —%@’(5))

uo = ¢(&) = n¢(d) = m¢(e) - (&),
1

0= 318 - 30(6) + 2 (n0(8) + mo(e) + p(60)).

wo = 508~ 0(6) - S(1(0) + mp(<) +p(&0)).

where £ =&, m = nd + me + &, and & is an arbitrary constant.
12 /27



2.6 What can we do next?

gDT
7
’contlnuous BSQ‘ ‘Lax palr‘ M — |elliptic NSS

| BT
’ IpBSQ‘ ‘elllptlc cube root of unity ‘ elliptic DL

IpBSQ: lattice potential Boussinesq system

gDT: generalised Darboux transformation
NSS: N soliton solutions
CAC: consistency around the cube

DL: direct linearisation scheme

13 /27



3.1 Lax pair for the Boussinesq system

Setting s = % in the equation set for s, we obtain the Lax pair for

the Boussinesq system

oo = (3qu_3VX_p)¢_3UX¢X7 (11a)
e = —thxx — 2ux). (11b)
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e = —thxx — 2ux). (11b)

The system (11) is covariant with respect to the transformation

Y[1] =y - %1/}, i.e., ¥[1] satisfies

V[0 = Bu[1]u[1]x = 3v[1]x = p)¥[1] = Bu[1]x[1]x ,
Y[1]e = —¢[1] - 2u[1]xp[1],  (u[1] =T, v[1]=V) .

This is known as the one-step DT. N-step DT is given as follows.
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3.2 DT for the Boussinesq system

Theorem
Denote v; (j =1,2,---,N) are fixed solutions of (11) at p = p;.
N-times repeated DT of the Boussinesq system is given by

u[N]=u+ (In W[wl,wz,. S UN]Dx,
‘V+Z Z U1(uli] - uli-11), (u[0] = u,v[0] = v),

[wlad@v . ﬂﬁNﬂ/’]
N =
vAN] W1, 2, s on]
where {u[j], v[j]} satisfies the Boussinesq system and [ N]
satisfies

V[Nl = (=p = 3V[N]x + 3u[N]u[N])Y[N] = 3u[N]xp[N]x,
PY[NTe = ~[N]xx = 2u[ N]xyp[N].

15 /27



3.3 Elliptic soliton solutions for the Boussinesq system

Theorem

Through N-times repeated DT, elliptic N-soliton solutions of the
Boussinesq equation are given by

U[N] = C(X) + (ln W[wpnwpz: '-~5¢PN])X7

where p; (I=1,2,...,N) corresponds to the I-th spectral parameter
of Lax pair, ajj (j =1,2,3) are the elliptic cube roots satisfying

1
pi = —Ep’(a/j) and

3
lbp/ = Z C[jq)a,j(x)e_c(alj)x_p(a/j)t.
j=1

. _o(x+y)
Px(¥) = 50950

16 /27



4.1 Elliptic seed solution of the IpBSQ system

Now we come to the lattice potential Boussinesq system

Ww—uti+v =0, (12a)

W— ul+v =0, (12b)

w-ui+v-2-9 -, (12¢)
u-—u

with p— g =-3p"(5) + 2p’(¢) and the seed solution

o = C(€) - nG(6) = m() ~ (&)
o= 308~ 30(€) + 3 (1p(5) + mp(e) + p(6o)),
w0 = 208 = 56(6) = 3 (n9(6) + () + 5(60)).

17/27



4.2 Consistensy around the cube

The property of consistensy around the cube <= auto-BT.

5 5

“nl)
!

—_

S s

Here S stands for the three components (u,v,w). k is a lattice
paremeter of the new lattice direction.
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4.3 Elliptic one soliton solution of the [pBSQ system

The BT with k as the BT parameter related to the bar direction

reads

wW=uu-v,
together with

= _vV-v = _ V-V
U= U=
~ ~ 1(8) ' —~ —~
V:UU—W—lM v

2 u ’

where we have used the equations

w-—uu+v=0,

w—-uu+v=0.

19/27



4.3 Elliptic one soliton solution of the [pBSQ system

Consider (u, v, w) = (ug, vo, wp).The elliptic one soliton solution is
(u,v,w) = (uo +x,vo+y,wo + z),

where

up = ¢(&) = n¢(6) — m¢(e) - h((r) = C(&0), &= nd +me+ hr +&,

o = 58 - 20(6) + 5(n9(8) + mo(e) + hp() + p(&0)),

1

wo = 508 = 56(6) = 2 (n9(8) + mp(2) + hp() + p(60)).

and (o, Vo, Wo) is the bar-shifted of (up, vo, wo), i.e.,
vo—uo+n£, [notation: nﬁ C(&+ k) = (&) - ((R)]
Vo=wv+ = (77) +uOm——(@(€+n) p(r) —p(£)),
Wo = wO+5<nn> +uonﬁ—5(p<f+m)+@<m>—@(£>>-
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4.3 Elliptic one soliton solution of the [pBSQ system

With these definitions we find that z = ugx. Thus we only need to
solve equations for x, y

—(Vo+wp) x+ug y

~ —TJQ X+y ~

X = x—h(£+0,-6,K)’ y x=h({+0,-6,k)

T = —Up X+y —~ _ —(Vot+twp) x+upy
T x—h(&+e,—e,k)? y = x—h(&+e,—e,k)

Notation: h(a,B,7) = ((a) +((B) +((7) - ¢(a+B+7)

Next we will present how we solve the equations for x, y.

21/27



4.3 Elliptic one soliton solution of the [pBSQ system

Setting (x,y) = %, %) and ¥ =

into equations for V:

where _
Ug -1 0
N = ’ﬁo + Wy —Up 0 s
-1 0 h(§+0,-0,K)

and M is the {",e} counterpart of N.

The matrices N, M satisfy the integrability condition NM = MN.

turns the equations for x, y

22/27



4.3 Elliptic one soliton solution of the [pBSQ system

Solving the equation set for W, namely, {F, G, H}, we obtain their
explicit expressions

F = Fo + Fl + F2
G=-h({+k,—Rk,wi(k))F1 = h(§+ Rk, —k,wa(K))Fa,
H=uG + (p(wi(k)) —p(r))F1+ (p(w2(k)) —p(K)) F2,

where pg,p(l),pg are arbitrary constants and

Fo = O1(=0) @ (=€) @, (€) o,
Fi= w1(n)( 5)¢w1(n)( 5)¢w1(n) (f)ﬂg,
Fa = (Dnz(li)( 5)q)m(/-c)( €)¢OJ2(H) (5)/78
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4.3 Elliptic one soliton solution of the [pBSQ system

Then we obtain the elliptic one soliton solution for the lattice BSQ

system
Lss NaP () + nﬁl(ﬁ)q)wl(n) (§)p1+ Usz(ﬁ)¢wz(n)(€)02
Uy m = U+ s
7 qDR(‘g) + q)wl(ﬁ) (&)pl + (Dwz(n) (5)/02
V,}f;,SZVo-i-g, W,}fnS:WO"‘UOF;
where
q)w-(n)(_(s))n(q)w-(n)(_g))m PO .
p,-(n,m;/-;):( : ’ Sk i=1,2.
¢H(_5) (DH(—E) P8

k, wi(k), wa(k) are solutions (elliptic cube roots of unity)
of p'(x)-p'(k) =0.

24 /27



4 4 Elliptic direct linearisation scheme

’ Elliptic DL scheme for the lattice KP equation ‘

| elliptic cube roots of unity

’ Elliptic DL scheme for the IpBSQ equation ‘

d
’Elliptic multi-soliton solution for the IpBSQ equation‘

25 /27
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Thank you!



