Applications of Elliptic Functions in Solving the Boussinesq equation

Ying-ying Sun

University of Shanghai for Science and Technology

Joint work with F.W. Nijhoff, W.Y. Sun and D.J. Zhang

October 22 - 27, 2023, Hangzhou BIRS Workshop

Outline

- Introduction on Bäcklund transformations and lattice equations
- A potential Boussinesq system and its Bäcklund transformations
- Elliptic multi-soliton solutions of the Boussinesq system
- 6 Elliptic multi-soliton solutions of the lattice Boussinesq system

 Bäcklund transformations (BTs) are usually presented as a method for transforming one solution of a differential/ difference equation to a solution of a different equation, or to another solution of the same equation

- Bäcklund transformations (BTs) are usually presented as a method for transforming one solution of a differential/ difference equation to a solution of a different equation, or to another solution of the same equation
- Permutability property → Nonlinear superposition formula
 → A lattice form of a continous equation

- Bäcklund transformations (BTs) are usually presented as a method for transforming one solution of a differential/ difference equation to a solution of a different equation, or to another solution of the same equation
- Permutability property → Nonlinear superposition formula
 → A lattice form of a continous equation

• e.g. the KdV equation: $u_t = u_{xxx} + 6uu_x$, $u = w_x$

$$\Longrightarrow w_t = w_{xxx} + 3w_x^2 \stackrel{BT}{\Longrightarrow} (\widetilde{w} - \widehat{w})(\widetilde{\widetilde{w}} - w) = a - b$$

- Bäcklund transformations (BTs) are usually presented as a method for transforming one solution of a differential/ difference equation to a solution of a different equation, or to another solution of the same equation
- Permutability property → Nonlinear superposition formula
 → A lattice form of a continous equation

• e.g. the KdV equation: $u_t = u_{xxx} + 6uu_x$, $u = w_x$

$$\Longrightarrow w_t = w_{xxx} + 3w_x^2 \stackrel{BT}{\Longrightarrow} (\widetilde{w} - \widehat{w})(\widehat{\widetilde{w}} - w) = a - b$$

$$\stackrel{w = w_{n,m}}{\Longrightarrow} (w_{n+1,m} - w_{n,m+1})(w_{n+1,m+1} - w_{n,m}) = a - b.$$

The lattice potential Boussinesq system [Tongas, Nijhoff-2005]

$$w_{n+1,m} = u_{n,m}u_{n+1,m} - v_{n,m} , \qquad (1a)$$

$$w_{n,m+1} = u_{n,m}u_{n,m+1} - v_{n,m}$$
, (1b)

$$W_{n,m} - u_{n,m}u_{n+1,m+1} + v_{n+1,m+1} + \frac{p-q}{u_{n+1,m}-u_{n,m+1}} = 0$$
, (1c)

The lattice potential Boussinesq system [Tongas, Nijhoff-2005]

$$w_{n+1,m} = u_{n,m}u_{n+1,m} - v_{n,m} , \qquad (1a)$$

$$w_{n,m+1} = u_{n,m}u_{n,m+1} - v_{n,m} , \qquad (1b)$$

$$w_{n,m} - u_{n,m}u_{n+1,m+1} + v_{n+1,m+1} + \frac{p-q}{u_{n+1,m}-u_{n,m+1}} = 0$$
, (1c)

or 9-point equation:

$$\frac{p-q}{u_{n+1,m+1}-u_{n,m+2}} - (u_{n+1,m+2} - u_{n+2,m+1})(u_{n,m+1} - u_{n+2,m+2})$$

$$= \frac{p-q}{u_{n+2,m}-u_{n+1,m+1}} - (u_{n,m+1} - u_{n+1,m})(u_{n,m} - u_{n+2,m+1}) .$$
 (2)

The lattice potential Boussinesq system [Tongas, Nijhoff-2005]

$$w_{n+1,m} = u_{n,m}u_{n+1,m} - v_{n,m} , \qquad (1a)$$

$$w_{n,m+1} = u_{n,m}u_{n,m+1} - v_{n,m} , \qquad (1b)$$

$$w_{n,m} - u_{n,m}u_{n+1,m+1} + v_{n+1,m+1} + \frac{p-q}{u_{n+1,m}-u_{n,m+1}} = 0$$
, (1c)

or 9-point equation:

$$\begin{split} &\frac{p-q}{u_{n+1,m+1}-u_{n,m+2}}-\left(u_{n+1,m+2}-u_{n+2,m+1}\right)\left(u_{n,m+1}-u_{n+2,m+2}\right)\\ &=\frac{p-q}{u_{n+2,m}-u_{n+1,m+1}}-\left(u_{n,m+1}-u_{n+1,m}\right)\left(u_{n,m}-u_{n+2,m+1}\right)\;. \end{aligned} \tag{2}$$

The potential Boussinesq equation:

$$u_{tt} + \frac{1}{3}u_{xxxx} + 4u_x u_{xx} = 0. (3)$$

The lattice potential Boussinesq system [Tongas, Nijhoff-2005]

$$w_{n+1,m} = u_{n,m}u_{n+1,m} - v_{n,m} , \qquad (1a)$$

$$w_{n,m+1} = u_{n,m}u_{n,m+1} - v_{n,m} , \qquad (1b)$$

$$W_{n,m} - U_{n,m}U_{n+1,m+1} + V_{n+1,m+1} + \frac{p-q}{u_{n+1,m}-u_{n,m+1}} = 0$$
, (1c)

or 9-point equation:

$$\begin{split} &\frac{p-q}{u_{n+1,m+1}-u_{n,m+2}}-\left(u_{n+1,m+2}-u_{n+2,m+1}\right)\left(u_{n,m+1}-u_{n+2,m+2}\right)\\ &=\frac{p-q}{u_{n+2,m}-u_{n+1,m+1}}-\left(u_{n,m+1}-u_{n+1,m}\right)\left(u_{n,m}-u_{n+2,m+1}\right)\;. \end{split} \tag{2}$$

The potential Boussinesq equation:

$$u_{tt} + \frac{1}{3}u_{xxxx} + 4u_x u_{xx} = 0. (3)$$

- The BT for the Boussinesq equation was first given by Chen [1976] without Bäcklund parameter.
- The nonlinear superposition formula contains derivatives with respect to a continuous variable.

The potential Boussinesq system [Rasin, Schiff-2017]:

$$u_t - (u_x + u^2 - 2v)_x = 0$$
, (4a)

$$v_t - (\frac{2}{3}u_{xx} - v_x + \frac{2}{3}u^3 + 2uu_x)_x + 2uv_x = 0$$
 (4b)

The potential Boussinesq system [Rasin, Schiff-2017]:

$$u_t - (u_x + u^2 - 2v)_x = 0$$
, (4a)

$$v_t - (\frac{2}{3}u_{xx} - v_x + \frac{2}{3}u^3 + 2uu_x)_x + 2uv_x = 0$$
 (4b)

• deriving the Boussinesq equation (3) by eliminating v in (4)

The potential Boussinesq system [Rasin, Schiff-2017]:

$$u_t - (u_x + u^2 - 2v)_x = 0$$
, (4a)

$$v_t - (\frac{2}{3}u_{xx} - v_x + \frac{2}{3}u^3 + 2uu_x)_x + 2uv_x = 0$$
 (4b)

- deriving the Boussinesq equation (3) by eliminating v in (4)
- presenting a BT for the system (4) :

$$\widetilde{u} = u + s$$
, $\widetilde{v} = v - u_x + us$.

Here $\widetilde{u},\widetilde{v}$ are new solutions for the potential Boussinesq system, and s is a function of x and t.

The potential Boussinesq system [Rasin, Schiff-2017]:

$$u_t - (u_x + u^2 - 2v)_x = 0$$
, (4a)

$$v_t - (\frac{2}{3}u_{xx} - v_x + \frac{2}{3}u^3 + 2uu_x)_x + 2uv_x = 0$$
 (4b)

- deriving the Boussinesq equation (3) by eliminating v in (4)
- presenting a BT for the system (4) :

$$\widetilde{u} = u + s, \quad \widetilde{v} = v - u_{\times} + us.$$

Here $\widetilde{u}, \widetilde{v}$ are new solutions for the potential Boussinesq system, and s is a function of x and t.

trying to identify the nonlinear superposition formula as (1).

The potential Boussinesq system [Rasin, Schiff-2017]:

$$u_t - (u_x + u^2 - 2v)_x = 0$$
, (4a)

$$v_t - (\frac{2}{3}u_{xx} - v_x + \frac{2}{3}u^3 + 2uu_x)_x + 2uv_x = 0$$
 (4b)

- deriving the Boussinesq equation (3) by eliminating v in (4)
- presenting a BT for the system (4) :

$$\widetilde{u} = u + s, \quad \widetilde{v} = v - u_{\times} + us.$$

Here \widetilde{u} , \widetilde{v} are new solutions for the potential Boussinesq system, and s is a function of x and t.

- trying to identify the nonlinear superposition formula as (1).
- modifying this BT, we get an updated one connecting (1) with (3).

2.1 An updated BT

• The BT was [Rasin, Schiff-2017]

$$\widetilde{u} = u + s, \quad \widetilde{v} = v - u_{x} + us.$$
 (5)

• We modify (5) and give an updated BT:

$$\widetilde{u} = u + s, \quad \widetilde{v} = v + \widetilde{u}_{x} + \widetilde{u}s,$$
 (6)

2.1 An updated BT

The BT was [Rasin,Schiff-2017]

$$\widetilde{u} = u + s, \quad \widetilde{v} = v - u_{x} + us.$$
 (5)

• We modify (5) and give an updated BT:

$$\widetilde{u} = u + s, \quad \widetilde{v} = v + \widetilde{u}_{x} + \widetilde{u}s,$$
 (6)

where s satisfies the equations:

$$s_{xx} = -p - 3ss_x - s^3 - 3u_x s + 3uu_x - 3v_x,$$
 (7a)

$$s_t = p + ss_x + s^3 + 3u_x s - 2u_{xx} + 3v_x - 3uu_x,$$
 (7b)

p is the BT parameter.

2.2 Nonlinear superpositon formula of the updated BT

Introduce a new variable w by setting $w = -v + u_x + u^2$, from the BT

$$\widetilde{u} = u + s, \quad \widetilde{v} = v + \widetilde{u}_X + \widetilde{u}s,$$

we will find

$$\widetilde{\mathbf{w}} = u\widetilde{\mathbf{u}} - \mathbf{v}. \tag{8}$$

2.2 Nonlinear superpositon formula of the updated BT

Introduce a new variable w by setting $w = -v + u_x + u^2$, from the BT

$$\widetilde{u} = u + s, \quad \widetilde{v} = v + \widetilde{u}_{x} + \widetilde{u}s,$$

we will find

$$\widetilde{\mathbf{w}} = u\widetilde{\mathbf{u}} - \mathbf{v}. \tag{8}$$

And if we denote the solutions obtained from $\{u, v, w\}$ by using the BT with a parameter q by $\{\widehat{u}, \widehat{v}, \widehat{w}\}$, we get a similar relation

$$\widehat{\mathbf{w}} = u\widehat{\mathbf{u}} - \mathbf{v}. \tag{9}$$

2.2 Nonlinear superpositon formula of the updated BT

Introduce a new variable w by setting $w = -v + u_x + u^2$, from the BT

$$\widetilde{u} = u + s$$
, $\widetilde{v} = v + \widetilde{u}_x + \widetilde{u}s$,

we will find

$$\widetilde{\mathbf{w}} = \mathbf{u}\widetilde{\mathbf{u}} - \mathbf{v}. \tag{8}$$

And if we denote the solutions obtained from $\{u, v, w\}$ by using the BT with a parameter q by $\{\widehat{u}, \widehat{v}, \widehat{w}\}$, we get a similar relation

$$\widehat{\mathbf{w}} = u\widehat{\mathbf{u}} - \mathbf{v}. \tag{9}$$

Replacing s by $\widetilde{u}-u$ in the equation set for s, we get another superpositon formula

$$w - u\widehat{\widetilde{u}} + \widehat{\widetilde{v}} + \frac{p - q}{\widetilde{u} - \widehat{u}} = 0.$$
 (10)

Identifying these three algebraic relations on the lattice leads to the lattice Boussinesq system (1).

• Weierstrass functions: $\sigma(z)$, $\zeta(z)$ and $\wp(z)$ functions.

Their relations are
$$\frac{\sigma'(z)}{\sigma(z)} = \zeta(z), \ \wp(z) = -\zeta'(z).$$

• Weierstrass functions: $\sigma(z)$, $\zeta(z)$ and $\wp(z)$ functions.

Their relations are
$$\frac{\sigma'(z)}{\sigma(z)} = \zeta(z), \ \wp(z) = -\zeta'(z).$$

• $\wp(z)$ satisfies the following differential equations:

$$(\wp'(z))^2 = 4(\wp(z))^3 - g_2\wp(z) - g_3,$$

 $\wp''(z) = 6(\wp(z))^2 - \frac{g_2}{2}, \quad \wp'''(z) = 12\wp(z)\wp'(z),$

Addition formulas:

$$\wp(z_1) + \wp(z_2) + \wp(z_1 + z_2) = \frac{1}{4} \left(\frac{\wp'(z_1) - \wp'(z_2)}{\wp(z_1) - \wp(z_2)} \right)^2,$$

$$\zeta(z_1 + z_2) - \zeta(z_1) - \zeta(z_2) = \frac{1}{2} \frac{\wp'(z_1) - \wp'(z_2)}{\wp(z_1) - \wp(z_2)}.$$

Recall the potential BSQ equation

$$u_{tt} + \frac{1}{3}u_{xxxx} + 4u_x u_{xx} = 0. (3)$$

Its stationary solution is $u(t,x) = \zeta(x) + c_1$. c_1 is an arbitrary constant.

From the potential BSQ system

$$u_t - (u_x + u^2 - 2v)_x = 0,$$
 (4a)

$$v_t - (\frac{2}{3}u_{xx} - v_x + \frac{2}{3}u^3 + 2uu_x)_x + 2uv_x = 0,$$
 (4b)

we obtain that $v(t,x) = \frac{1}{2}(\zeta(x) + c_1)^2 - \frac{1}{2}\wp(x) + \frac{1}{12}g_2t + c_2$. c_2 is also an arbitrary constant, and g_2 is the invariant for \wp -func.

The BT can provide the following solution:

$$\widetilde{\boldsymbol{u}} = \zeta(\boldsymbol{x} + \boldsymbol{\delta}) - \zeta(\boldsymbol{\delta}) + c_1,$$

and

$$\widetilde{\mathbf{v}} = \frac{1}{2} (\zeta(x+\delta) - \zeta(\delta) + c_1)^2 - \frac{1}{2} (\wp(x+\delta) - \wp(\delta)) + \frac{1}{12} g_2 t + c_2.$$

Then we find that $\widetilde{v} - v = \widetilde{u}_X + \widetilde{u}s$.

The BT can provide the following solution:

$$\widetilde{\boldsymbol{u}} = \zeta(\boldsymbol{x} + \boldsymbol{\delta}) - \zeta(\boldsymbol{\delta}) + \boldsymbol{c}_1,$$

and

$$\widetilde{\mathbf{v}} = \frac{1}{2} (\zeta(x+\delta) - \zeta(\delta) + c_1)^2 - \frac{1}{2} (\wp(x+\delta) - \wp(\delta)) + \frac{1}{12} g_2 t + c_2.$$

Then we find that $\widetilde{v} - v = \widetilde{u}_X + \widetilde{u}s$.

Recall the equation set for s and $s = \widetilde{u} - u$, we obtain $p = -\frac{1}{2}\wp'(\delta)$. Similarly we can use the BT with the parameter $q = -\frac{1}{2}\wp'(\varepsilon)$.

2.4 Elliptic seed solution for the lattice BSQ equation

If we identify these seed solutions on the lattice, we could derive the elliptic seed solution for the lattice BSQ equation

$$\begin{split} u_0 &= \zeta(\xi) - n\zeta(\delta) - m\zeta(\varepsilon) - \zeta(\xi_0), \\ v_0 &= \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) + \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + \wp(\xi_0)), \\ w_0 &= \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) - \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + \wp(\xi_0)), \end{split}$$

where $\xi = \xi_{n,m} = n\delta + m\varepsilon + \xi_0$, and ξ_0 is an arbitrary constant.

2.5 What do we have now?

• BT:
$$\widetilde{u} = u + s$$
, $\widetilde{v} = v + \widetilde{u}_x + \widetilde{u}s$, where s satisfies:

$$s_{xx} = -p - 3ss_x - s^3 - 3u_x s + 3uu_x - 3v_x,$$

$$s_t = p + ss_x + s^3 + 3u_x s - 2u_{xx} + 3v_x - 3uu_x.$$

2.5 What do we have now?

• BT: $\widetilde{u} = u + s$, $\widetilde{v} = v + \widetilde{u}_x + \widetilde{u}s$, where s satisfies:

$$s_{xx} = -p - 3ss_x - s^3 - 3u_x s + 3uu_x - 3v_x,$$

$$s_t = p + ss_x + s^3 + 3u_x s - 2u_{xx} + 3v_x - 3uu_x.$$

Seed solution:

$$u = \zeta(x) + c_1, \quad v = \frac{1}{2}(\zeta(x) + c_1)^2 - \frac{1}{2}\wp(x) + \frac{1}{12}g_2t + c_2.$$

 c_1, c_2 are arbitrary constants. g_2 is the invariant for \wp -func.

2.5 What do we have now?

• BT: $\widetilde{u} = u + s$, $\widetilde{v} = v + \widetilde{u}_X + \widetilde{u}s$, where s satisfies:

$$s_{xx} = -p - 3ss_x - s^3 - 3u_x s + 3uu_x - 3v_x,$$

$$s_t = p + ss_x + s^3 + 3u_x s - 2u_{xx} + 3v_x - 3uu_x.$$

Seed solution:

$$u = \zeta(x) + c_1, \quad v = \frac{1}{2}(\zeta(x) + c_1)^2 - \frac{1}{2}\wp(x) + \frac{1}{12}g_2t + c_2.$$

 c_1, c_2 are arbitrary constants. g_2 is the invariant for \wp -func.

• Seed solution for the lattice Boussinesq system: $(p = -\frac{1}{2}\wp'(\delta))$

$$u_0 = \zeta(\xi) - n\zeta(\delta) - m\zeta(\varepsilon) - \zeta(\xi_0),$$

$$v_0 = \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) + \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + \wp(\xi_0)),$$

$$w_0 = \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) - \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + \wp(\xi_0)),$$

where $\xi = \xi_{n,m} = n\delta + m\varepsilon + \xi_0$, and ξ_0 is an arbitrary constant.

2.6 What can we do next?

IpBSQ: lattice potential Boussinesq system

 $gDT:\ generalised\ Darboux\ transformation$

NSS: N soliton solutions

CAC: consistency around the cube

DL: direct linearisation scheme

3.1 Lax pair for the Boussinesq system

Setting $s=\frac{\psi_x}{\psi}$ in the equation set for s, we obtain the Lax pair for the Boussinesq system

$$\psi_{xxx} = (3uu_x - 3v_x - p)\psi - 3u_x\psi_x, \tag{11a}$$

$$\psi_t = -\psi_{xx} - 2u_x\psi. \tag{11b}$$

3.1 Lax pair for the Boussinesq system

Setting $s=\frac{\psi_x}{\psi}$ in the equation set for s, we obtain the Lax pair for the Boussinesq system

$$\psi_{xxx} = (3uu_x - 3v_x - p)\psi - 3u_x\psi_x, \tag{11a}$$

$$\psi_t = -\psi_{xx} - 2u_x\psi. \tag{11b}$$

The system (11) is covariant with respect to the transformation $\psi[1] = \psi_{\mathsf{X}} - \frac{\psi_{1\mathsf{X}}}{\psi_1} \psi$, i.e., $\psi[1]$ satisfies

$$\begin{split} \psi[1]_{xxx} &= (3u[1]u[1]_x - 3v[1]_x - p)\psi[1] - 3u[1]_x\psi[1]_x \ , \\ \psi[1]_t &= -\psi[1]_{xx} - 2u[1]_x\psi[1], \quad (u[1] = \widetilde{u}, \, v[1] = \widetilde{v}) \ . \end{split}$$

This is known as the one-step DT.

3.1 Lax pair for the Boussinesq system

Setting $s=\frac{\psi_x}{\psi}$ in the equation set for s, we obtain the Lax pair for the Boussinesq system

$$\psi_{xxx} = (3uu_x - 3v_x - p)\psi - 3u_x\psi_x, \tag{11a}$$

$$\psi_t = -\psi_{xx} - 2u_x\psi. \tag{11b}$$

The system (11) is covariant with respect to the transformation $\psi[1] = \psi_{\mathsf{X}} - \frac{\psi_{1\mathsf{X}}}{\psi_1} \psi$, i.e., $\psi[1]$ satisfies

$$\begin{split} \psi[1]_{xxx} &= (3u[1]u[1]_x - 3v[1]_x - p)\psi[1] - 3u[1]_x\psi[1]_x \ , \\ \psi[1]_t &= -\psi[1]_{xx} - 2u[1]_x\psi[1], \quad (u[1] = \widetilde{u}, \, v[1] = \widetilde{v}) \ . \end{split}$$

This is known as the one-step DT. N-step DT is given as follows.

3.2 DT for the Boussinesq system

$\mathsf{Theorem}$

Denote ψ_j $(j = 1, 2, \dots, N)$ are fixed solutions of (11) at $p = p_j$. N-times repeated DT of the Boussinesq system is given by

$$\begin{split} &u[N] = u + (\ln W[\psi_1, \psi_2, ..., \psi_N])_x, \\ &v[N] = v + \sum_{j=1}^N u[j]_x + \sum_{j=1}^N u[j] \big(u[j] - u[j-1] \big), \ (u[0] = u, v[0] = v), \\ &\psi[N] = \frac{W[\psi_1, \psi_2, ..., \psi_N, \psi]}{W[\psi_1, \psi_2, ..., \psi_N]}, \end{split}$$

where $\{u[j], v[j]\}$ satisfies the Boussinesq system and $\psi[N]$ satisfies

$$\psi[N]_{xxx} = (-p - 3v[N]_x + 3u[N]u[N]_x)\psi[N] - 3u[N]_x\psi[N]_x, \psi[N]_t = -\psi[N]_{xx} - 2u[N]_x\psi[N].$$

3.3 Elliptic soliton solutions for the Boussinesq system

Theorem

Through N-times repeated DT, elliptic N-soliton solutions of the Boussinesq equation are given by

$$u[N] = \zeta(x) + (\ln W[\psi_{p_1}, \psi_{p_2}, ..., \psi_{p_N}])_x,$$

where p_l (l=1,2,...,N) corresponds to the l-th spectral parameter of Lax pair, α_{lj} (j=1,2,3) are the elliptic cube roots satisfying $p_l = -\frac{1}{2}\wp'(\alpha_{lj})$ and

$$\psi_{p_l} = \sum_{i=1}^3 C_{lj} \Phi_{\alpha_{lj}}(x) e^{-\zeta(\alpha_{lj})x - \wp(\alpha_{lj})t}.$$

$$\Phi_{x}(y) := \frac{\sigma(x+y)}{\sigma(x)\sigma(y)}$$

4.1 Elliptic seed solution of the lpBSQ system

Now we come to the lattice potential Boussinesq system

$$\widetilde{w} - u\widetilde{u} + v = 0, \tag{12a}$$

$$\widehat{w} - u\widehat{u} + v = 0, \tag{12b}$$

$$w - u\widehat{\widetilde{u}} + \widehat{\widetilde{v}} - \frac{p - q}{\widehat{u} - \widetilde{u}} = 0, \qquad (12c)$$

with
$$p-q=-\frac{1}{2}\wp'(\delta)+\frac{1}{2}\wp'(\varepsilon)$$
 and the seed solution

$$\begin{split} u_0 &= \zeta(\xi) - n\zeta(\delta) - m\zeta(\varepsilon) - \zeta(\xi_0), \\ v_0 &= \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) + \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + \wp(\xi_0)), \\ w_0 &= \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) - \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + \wp(\xi_0)). \end{split}$$

4.2 Consistensy around the cube

The property of consistensy around the cube \iff auto-BT.

Here S stands for the three components (u, v, w). κ is a lattice paremeter of the new lattice direction.

The BT with κ as the BT parameter related to the bar direction reads

$$\overline{w} = u\overline{u} - v$$
,

together with

$$\left\{ \begin{array}{l} \widetilde{\overline{u}} = \frac{\widetilde{v} - \overline{v}}{\widetilde{u} - \overline{u}}, \\ \widetilde{\overline{v}} = u\widetilde{\overline{u}} - w - \frac{1}{2} \frac{\wp'(\delta) - \wp'(\kappa)}{\widetilde{u} - \overline{u}}, \end{array} \right. \left\{ \begin{array}{l} \widehat{\overline{u}} = \frac{\overline{v} - \widehat{v}}{\overline{u} - \widehat{u}}, \\ \widehat{\overline{v}} = u\widehat{\overline{u}} - w - \frac{1}{2} \frac{\wp'(\kappa) - \wp'(\varepsilon)}{\widehat{u} - \overline{u}}, \end{array} \right.$$

where we have used the equations

$$\widetilde{w}-u\widetilde{u}+v=0,$$

$$\widehat{w}-u\widehat{u}+v=0.$$

Consider $(u, v, w) = (u_0, v_0, w_0)$. The elliptic one soliton solution is

$$(\overline{u}, \overline{v}, \overline{w}) = (\overline{u}_0 + x, \overline{v}_0 + y, \overline{w}_0 + z),$$

where

$$\begin{split} u_0 &= \zeta(\xi) - n\zeta(\delta) - m\zeta(\varepsilon) - h\zeta(\kappa) - \zeta(\xi_0), \quad \xi = n\delta + m\varepsilon + h\kappa + \xi_0, \\ v_0 &= \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) + \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + h\wp(\kappa) + \wp(\xi_0)), \\ w_0 &= \frac{1}{2}u_0^2 - \frac{1}{2}\wp(\xi) - \frac{1}{2}(n\wp(\delta) + m\wp(\varepsilon) + h\wp(\kappa) + \wp(\xi_0)), \\ \text{and } (\overline{u}_0, \overline{v}_0, \overline{w}_0) \text{ is the bar-shifted of } (u_0, v_0, w_0), \text{ i.e.,} \\ \overline{u}_0 &= u_0 + \eta_\kappa^\xi, \quad \left[\text{notation: } \eta_\kappa^\xi = \zeta(\xi + \kappa) - \zeta(\xi) - \zeta(\kappa) \right] \\ \overline{v}_0 &= v_0 + \frac{1}{2}(\eta_\kappa^\xi)^2 + u_0\eta_\kappa^\xi - \frac{1}{2}(\wp(\xi + \kappa) - \wp(\kappa) - \wp(\xi)), \\ \overline{w}_0 &= w_0 + \frac{1}{2}(\eta_\kappa^\xi)^2 + u_0\eta_\kappa^\xi - \frac{1}{2}(\wp(\xi + \kappa) + \wp(\kappa) - \wp(\xi)). \end{split}$$

With these definitions we find that $z = u_0x$. Thus we only need to solve equations for x, y

$$\left\{ \begin{array}{lll} \widetilde{\chi} & = & \frac{-\overline{u}_0 \, x + y}{x - h(\underline{\xi} + \delta, -\delta, \kappa)} \,, \\ \widehat{\chi} & = & \frac{-\overline{u}_0 \, x + y}{x - h(\xi + \varepsilon, -\varepsilon, \kappa)} \,, \end{array} \right. \quad \left\{ \begin{array}{ll} \widetilde{y} & = & \frac{-(\overline{v}_0 + w_0) \, x + u_0 \, y}{x - h(\xi + \delta, -\delta, \kappa)} \,, \\ \widehat{y} & = & \frac{-(\overline{v}_0 + w_0) \, x + u_0 \, y}{x - h(\xi + \varepsilon, -\varepsilon, \kappa)} \,. \end{array} \right.$$

Notation:
$$h(\alpha, \beta, \gamma) = \zeta(\alpha) + \zeta(\beta) + \zeta(\gamma) - \zeta(\alpha + \beta + \gamma)$$

Next we will present how we solve the equations for x, y.

Setting
$$(x,y) = (\frac{G}{F}, \frac{H}{F})$$
 and $\Psi = \begin{bmatrix} G \\ H \\ F \end{bmatrix}$ turns the equations for x,y into equations for Ψ :

$$\widetilde{\Psi} = N\Psi, \quad \widehat{\Psi} = M\Psi,$$

where

$$N = \left[\begin{array}{ccc} \widetilde{\overline{u}}_0 & -1 & 0 \\ \widetilde{\overline{v}}_0 + w_0 & -u_0 & 0 \\ -1 & 0 & h(\xi+\delta,-\delta,\kappa) \end{array} \right],$$

and M is the $\{ \widehat{\ }, \varepsilon \}$ counterpart of N.

The matrices N, M satisfy the integrability condition $\widehat{N}M = \widetilde{M}N$.

Solving the equation set for Ψ , namely, $\{F,G,H\}$, we obtain their explicit expressions

$$\begin{split} F &= F_0 + F_1 + F_2 \\ G &= -h(\xi + \kappa, -\kappa, \omega_1(\kappa)) F_1 - h(\xi + \kappa, -\kappa, \omega_2(\kappa)) F_2, \\ H &= u_0 G + (\wp(\omega_1(\kappa)) - \wp(\kappa)) F_1 + (\wp(\omega_2(\kappa)) - \wp(\kappa)) F_2, \end{split}$$

where $\rho_0^0, \rho_1^0, \rho_2^0$ are arbitrary constants and

$$\begin{split} F_0 &= \Phi_\kappa^n(-\delta) \Phi_\kappa^m(-\varepsilon) \Phi_\kappa(\xi) \rho_0^0, \\ F_1 &= \Phi_{\omega_1(\kappa)}^n(-\delta) \Phi_{\omega_1(\kappa)}^m(-\varepsilon) \Phi_{\omega_1(\kappa)}(\xi) \rho_1^0, \\ F_2 &= \Phi_{\omega_2(\kappa)}^n(-\delta) \Phi_{\omega_2(\kappa)}^m(-\varepsilon) \Phi_{\omega_2(\kappa)}(\xi) \rho_2^0. \end{split}$$

Then we obtain the elliptic one soliton solution for the lattice BSQ system

$$\begin{split} u_{n,m}^{1SS} &= u_0 + \frac{\eta_\kappa^\xi \Phi_\kappa(\xi) + \eta_{\omega_1(\kappa)}^\xi \Phi_{\omega_1(\kappa)}(\xi) \rho_1 + \eta_{\omega_2(\kappa)}^\xi \Phi_{\omega_2(\kappa)}(\xi) \rho_2}{\Phi_\kappa(\xi) + \Phi_{\omega_1(\kappa)}(\xi) \rho_1 + \Phi_{\omega_2(\kappa)}(\xi) \rho_2}, \\ v_{n,m}^{1SS} &= \overline{v}_0 + \frac{H}{F}, \qquad w_{n,m}^{1SS} &= \overline{w}_0 + u_0 \frac{G}{F}, \end{split}$$

where

$$\rho_i(n,m;\kappa) = \left(\frac{\Phi_{\omega_i(\kappa)}(-\delta)}{\Phi_{\kappa}(-\delta)}\right)^n \left(\frac{\Phi_{\omega_i(\kappa)}(-\varepsilon)}{\Phi_{\kappa}(-\varepsilon)}\right)^m \cdot \frac{\rho_i^0}{\rho_0^0}, \quad i=1,2.$$

 κ , $\omega_1(\kappa)$, $\omega_2(\kappa)$ are solutions (elliptic cube roots of unity) of $\wp'(x) - \wp'(\kappa) = 0$.

4.4 Elliptic direct linearisation scheme

```
Elliptic DL scheme for the lattice KP equation

↓ elliptic cube roots of unity

Elliptic DL scheme for the lpBSQ equation

↓

Elliptic multi-soliton solution for the lpBSQ equation
```

Main references

- [1] J. Hietarinta, N. Joshi and F.W. Nijhoff, Discrete systems and integrability, Cambridge University Press, 2016.
- [2] A.G. Rasin, J. Schiff, Bäcklund transformations for the Boussinesq equation and merging solitons, J. Phys. A: Math. Theor., 50 (2017) 325202 (21pp).
- [3] Y.Y. Sun, W.Y. Sun, An update of a Bäcklund transformation and its applications to the Boussinesq system, Appl. Math. Comput., 421 (2022) 126964 (14pp).
- [4] W.Y. Sun, Y.Y. Sun, The degenerate breather solutions for the Boussinesq equation, Appl. Math. Lett., 128 (2022) 107884 (7pp).
- [5] F. Nijhoff, Y.Y. Sun, D.J. Zhang, Elliptic solutions of Boussinesq type lattice equations and the elliptic Nth root of unity, Commun. Math. Phys., 399 (2023) 599-650.

Thank you!