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@ K C R" is called a convex body if it is convex, compact and has
non-empty interior.
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K is isotropic if all the (X, #) are centered and have the same variance.
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Isotropic bodies
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Hyperplane conjecture (Bourgain, 80's)

There exists an absolute constant C such that for every K C R”

Ly < C

Lk < Cn# log n (Bourgain 1990)
Lk < Cn# (Klartag 2005, Lee-Vempala 2016)
Lk < Cie®2VioBnToglogn < Cp o > 0 (Chen, 2021)

@ True for 1-unconditional bodies, zonoids, unit balls of finite
dimensional Schatten classes...
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Bf,(nR) . . )
—M__ s isotropic and Lgn < C.
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Orlicz balls

Given an Orlicz function M: R — R and R > 0,
e py(a):= Iog/ eMXgx, o <0
R
@ «, denotes the unique a, < 0 such that

e M(x) g
/ Ja M
Pmla) = f ea* (<) dx

@ py : R — [0, 00) denotes the density
e0xM(x) oy

pM(X) f ea* X)dX

@ Z denotes a centered random variable with density py, with respect
to the Lebesgue measure.

E[M(Z)] = py(ax) = R Var[M(Z)] = gjy(e)
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Theorem (Kabluchko, Prochno, 2021)
Let M be an Orlicz function and R > 0. Then

1
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i n — e¥m(as)—a.R
Jim By (nR)[7 = e .

Furthermore,

) en(om(as)—a*R)
|Bm(nR)| =

= 2wn¢x4(a*)(1+°(1))'

e Barthe and Wolff (2021) computed the asymptotic volume of Bf;(R;,)

@ The proofs rely on probabilistic estimates by Petrov (1975).
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Isotropic constant of Orlicz balls

Theorem (Alonso, Prochno, 2021)

Let M be an Orlicz function and R > 0. Then

) exR
n||—>n;o LB,’\'J(nR) = W v VarZ

The result is obtained from the concentration of a random vector X
uniformly distributed on Bj,(nR) on a thin shell of radius v'nVarZ.
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If K is an isotropic convex body and X is uniformly distributed on K then
| X||2 concentrates around \/nLg.

e Kilartag (2006)

P ( \“/);F - 1’ > t) < Cem T w0 <t <1
K

e Guédon, Milman (2011)

]P) HXH2 — 1l > t S efcmin{t,t3}ﬁ’ vt > 0
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o Lee, Vempala (2018)
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Thin-shell concentration on Bg
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Large Deviation Principles

o (X,)22; a sequence of random vectors in RY

o Z:R? — [0,00] lower semi-continuous with compact level sets
{xeRY : I(x) < a}
e 5s:N—[0,00)

Definition

(Xn)o2, satisfies a Large Deviation Principle (LDP) with speed s(n) and
rate function Z if for every A measurable

_inf Z(x) < liminf EEREA)
x€EA° n—00 s(n)
log P(X, € A)

IA

limsu < — inf Z(x).
n—><>op 5(”) T xcA ( )




Large Deviation Principles

Theorem (Cramér)

Let (Y,)52,; be a sequence of independent copies of a centered random
variable Y such that

A(u) = log E[e"Y] < oo
on a neighborhood of 0. Then, for every t > 0

ogP (LY Vil 2 1) _

n—o0 n N [s|>t

where A* is the Legendre transform of A.
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on a neighborhood of 0. Then, if 1 <'s, < v/n, the sequence of random
vectors
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Large Deviation Principles

Given a speed s(n), two sequences (X,)0° 1, (Y5)32; of random vectors in
RY are called exponentially equivalent if

lim sup —— log(P(||Xn — Yall2 > 6)) = —o0

n—00 5( )

forany § > 0

Let X, and Y, be two sequence of R9-valued random vectors and assume
that X, satisfies an LDP with speed s(n) and rate function Zx and that
Xpn and Y, are exponentially equivalent. Then Y/, satisfies an LDP with
the same speed and the same rate function.
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on a neighborhood of 0.
Thus, if % < tp < 1, taking 1 < s, = tyy/n < /n, by Petrov’s theorem
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Proofs (Upper bound)

Equivalently,

1 n
p<
n

i=1

(2)

2 2
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Equivalently,

15~y
- . >
IP’(nEY, >t

i=1
In conclusion,

52 2
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Equivalently,

1 n
p<
n

i=1

In conclusion,
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Equivalently,
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Proofs (Upper bound)

Remark: If M € Q(x*) it is possible pass from

"

to

(Varz)2¢2n

_ 1‘ > tn> < |Oé*| 277”80,/\//](04*)6_ 2Var[Z2] (1+0(1))(1 + 0(1))

1 Xn13
nVarZ

(VarZ)2 t,%n

Xal13
]P’( Hy X||22 _ 1' > tn) < |ow|y/2mngl (a.)e” e (1+o(1))(1 + 0o(1))
1Xall2

@) 2
for any sequence (t,)5%,, being A = inf {)\ >0 : Eexp <Y§\> < 2} )



Proofs (Lower bound)

For every t > 0
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For every t > 0
n 2
%13 P[5 Y > 1)
Pl|—= —VarZ|>t]| < 0 oW
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Proofs (Lower bound)

For every t >0
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Proofs (Lower bound)
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Proofs (Lower bound)

@ By Petrov’s theorem, if \f <t L1,
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Proofs (Lower bound)
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are exponentially equivalent with speed v2.



Proofs (Lower bound)
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Proofs (Lower bound)
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Proofs (Lower bound)

Then,
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Proofs (Lower bound)

Taking r, = t2n with # < t, < 1 we obtain

Xall3
P <‘HnH2 — Varz‘ Z tn) 2 |Oé*| 271_”()0/,\/4(0(*)604*t,z,n(l-l—o(l))(l + 0(1))



Proofs (Lower bound)
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Proofs (B;(n), 1 < p < 2)

If M(t) = |t|P with 1 < p < 2 we use the following LDP

Theorem (Eichelsbacher-Lowe)

Let (Y,)52; be a sequence of independent copies of a centered random
variable Y with positive variance and let (s,)7°; be such that
1 < s, < 4/n. Assume that

n||_>rr;o log (nP (| Y| > spv/n)) = —o0

Then, the sequence of random variables
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satisfies an LDP with speed s2 and rate function Z(x) = 5~ .




Proofs (B;(n), 1 < p < 2)

If M(t) = |t|P with 1 < p < 2 we use the following LDP

Theorem (Eichelsbacher-Lowe)

Let (Y,)52; be a sequence of independent copies of a centered random
variable Y with positive variance and let (s,)7°; be such that
1 < s, < 4/n. Assume that

n||_>rr;o log (nP (| Y| > spv/n)) = —o0

Then, the sequence of random variables
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satisfies an LDP with speed s2 and rate function Z(x) = 5~ .

The condition \f Lt gl if P\ ensures that we can use the latter LDP.
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