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Motivic homotopy theory is a mix of algebraic geometry and
homotopy theory. Motivic counterparts of sets are Nisnevich
sheaves of sets defined on the smooth algebraic varieties Sm/k
over a field k . Sm/k is equipped with Nisnevich topology
which is between Zariski topology and etale topology.

Motivic spaces are simplicial Nisnevich sheaves of sets on
Sm/k . They are motivic counterparts of simplicial sets.
Simplicial sets can be regarded as motivic spaces constant on
Sm/k .

The category of motivic spaces M has a motivic model
structure. It is Bousfield localization of the local model
structure on M with respect to the family

{prX : X × A1 → X | X ∈ Sm/k}.

The same applies to pointed motivic spaces M•.
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There are two circles in motivic homotopy theory. One circle is
given by the usual simplicial circle S1. The second circle,
denoted by G, is the mapping cone of the embedding
1 : pt ↪→ Gm, where Gm := Spec(k[t±]).

We then stabilise the motivic model structure on M• with
respect to S1 and G arriving at the stable motivic model
structure SpS1,G(k) of “(S1,G)-bispectra”. Its homotopy
theory is denoted by SH(k). SH(k) is called the stable motivic
homotopy category of k .

A serious advantage of SH(k) over the classical SH in
topology is that (pre)sheaves of stable homotopy groups on
motivic bispectra can have various “correspondences”. In
practice all known types of correspondences form categories
whose objects are those of Sm/k but whose morphisms are
given by tricky geometric data.
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If the base field k is C, there is a natural realization functor

Re : SH(k)→ SH

Re is an extension of the functor

An : SmC → Top

sending X to X an := X (C) with the classical topology.

By a theorem of Levine there is a canonical fully faithful
embedding

SH ↪→ SH(C).

Thus, if we are able to compute explicitly stable motivic
homotopy types in SH(k), we shall be able to get explicit
computations of important classical spectra like the complex
cobordism MU in terms of algebraic varities if k = C.

Such computations are possible due to the machinery of
framed correspondences of Voevodsky and framed motives (in
the sense of G.–Panin).
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Implicit functions vs framings

Theorem (Implicit Function Theorem)
Let F (z ,w) = (F1(z ,w), . . . ,Fm(z ,w)) be complex
polynomials in z = (z1, . . . , zn), w = (w1, . . . ,wm) and
F (z0, 0) = 0 for (z0, 0) ∈ Cn × Cm. Suppose

det

(
∂F

∂w

)
(z0, 0) 6= 0.

Then the equations F (z ,w) = 0 have a uniquely determined
holomorphic solution w = f (z) = (f1(z), . . . , fm(z)) in a
neighbourhood of z0 such that f (z0)=0.

The theorem yields a triple Φ = (Z ,U , f ), where Z := {z0},
U is a neighbourhood of Z , f = (f1, . . . , fm) : U → Cm is a
holomorphic map on U . If, moreover, Z = f −1(0) then we call
the triple a holomorphic framed correspondence.
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Implicit functions vs framings

The triple Φ gives a morphism of pointed motivic spaces

Φ : P∧n → Tm,

where P∧n = (P1
C,∞)∧ n. . . ∧(P1

C,∞), Tm = Am
C/(Am

C − 0).

The theorem yields a triple Φ = (Z ,U , f ), where Z := {z0},
U is a neighbourhood of Z , f = (f1, . . . , fm) : U → Cm are
holomorphic functions on U with f −1(0) = Z .

We likewise define triples Φ = (Z ,U , f ) with Z having finitely
many points. Φ is equivalent to Φ′ = (Z ′,U ′, f ′) if Z = Z ′

and there is a smaller neighbourhood U ′′ of Z such that
f |U = f ′|U′ . Then there is a bijective correspondence between
equivalence classes of such triples and morphisms of pointed
motivic spaces Φ : P∧n → Tm. This bijection is a version of
Voevodsky’s lemma in terms of holomorphic functions.
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If m = n the set of equivalence classes of triples Φ = (Z ,U , f )
is denoted by Frn(pt, pt). There are natural pairings

Frn(pt, pt)× Frs(pt, pt)→ Frn+s(pt, pt)

making the set Fr∗(C) :=
⊔

n≥0 Frn(pt, pt) a monoid in
pointed simplicial sets. There is a natural stabilization map
σ : Frn(pt, pt)→ Frn+1(pt, pt) sending (Z ,U , f ) to
(Z × 0,U × C, f ◦ prU). After stabilising one gets a pointed
set Fr(pt, pt) = colimn Frn(pt, pt).

So far we have dealt with classical complex analysis in several
variables. The monoid Fr∗(C) can be recovered from
Voevodsky’s framed correspondences defined for smooth
k-schemes. The implicit functions f = (f1, . . . , fm) : U → Cm

play the role of “framings” in the sense of Voevodsky.
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Voevodsky’s framed correspondences

Definition (Voevodsky (2001))
For k-smooth schemes X ,Y ∈ Sm/k and n ≥ 0 an explicit
framed correspondence Φ of level n consists of the following
data:

(1) a closed subset Z in An × X which is finite over X ;

(2) an etale neighborhood p : U → An × X of Z ;

(3) a collection φ1, · · · , φn of regular functions on U such that
Z = {φ1 = · · · = φn = 0};

(4) a morphism g : U → Y .

The subset Z will be referred to as the support of the
correspondence. We shall also write triples Φ = (U , φ, g) or
quadruples Φ = (Z ,U , φ, g) to denote explicit framed
correspondences.
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Voevodsky’s framed correspondences

A framed correspondence can be depicted as follows:

U
p
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nnn

n
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g

��=
==

==
==

=

(φ1,...,φn) // An

An × X Z
?�

OO

finite
��

? _

closed subset
oo // 0

?�

OO

X Y
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Two explicit framed correspondences Φ and Φ′ of level n are
said to be equivalent if they have the same support and there
exists an etale neighborhood V of Z in U ×An

X
U ′ such that on

V , the morphism g ◦ pr agrees with g ′ ◦ pr ′ and φ ◦ pr agrees
with φ′ ◦ pr ′. A framed correspondence of level n is an
equivalence class of explicit framed correspondences of level n.

Denote the set of framed correspondences of level n by
Frn(X ,Y ).

Voevodsky computed framed correspondence as follows.

Lemma (Voevodsky)
For any X ,Y ∈ Sm/k and any n ≥ 0 there are natural
isomorphisms

Frn(X ,Y ) = HomShvnis
• (Sm/k)(X+ ∧ (P1,∞)n,Y+ ∧ (A1/(A1 − 0))n)

= HomShvnis
• (Sm/k)(X+ ∧ (P1,∞)n,Y+ ∧ T n).
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We can compose framed correspondences:

Frn(X ,Y )× Frm(Y ,W )→ Frn+m(X ,W ).

The composition is encoded by the following diagram:

Z ×Y Z ′

&&LL
LLL

LLL
LL

��

// Z ′

��
U ×Y U ′ //

��

U ′

��

// W

Z // U //

��

Y

X

With this composition we form a category Fr∗(k) whose
objects are those of Sm/k and morphisms are given by

Fr∗(X ,Y ) = tn≥0Frn(X ,Y ).

Voevodsky calls it the category of framed correspondences.
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An important level 1 framed endomorphism σX ∈ Fr1(X ,X ) is
given by (X × 0,X × A1, prA1 , prX ). Using Voevodsky’s
lemma, σX corresponds to the canonical motivic equivalence
X+ ∧ (P1,∞)→ X+ ∧ T .

We can stabilise in σ to get the set of stable framed
correspondences Fr(X ,Y ). The standard cosimplicial affine
scheme is defined by

n 7→ ∆n
k := Spec(k[x0, . . . , xn]/(x0 + · · ·+ xn − 1)).

We then can form simplicial sets like Fr(∆n
k × X , S) with S a

pointed simplicial set regarded as a simplicial smooth scheme.

Theorem (G.–Panin (2010-2018))
Ω∞Σ∞Sn

top ∼ Fr(∆n
C, S

n) for any n > 0. The topological
sphere spectrum is equivalent to

Mfr (pt)(pt) := (Fr(∆n
C, S

0),Fr(∆n
C, S

1),Fr(∆n
C, S

2), . . .).
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Mfr (pt)(pt) := (Fr(∆n
C, S

0),Fr(∆n
C, S

1),Fr(∆n
C, S

2), . . .).
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Motivic Thom spectra

By definition, a motivic T -spectrum E is called a Thom
spectrum if every space En has the form

En = colimi En,i , En,i = Vn,i/(Vn,i − Zn,i ),

where Vn,i → Vn,i+1 is a directed sequence of smooth varieties,
Zn,i → Zn,i+1 is a directed system of smooth closed
subschemes in Vn,i .

The most interesting examples like MGL, MSL or MSp are
given by means of motivic Thom spaces Th(E ) = E/E − s(X )
of vector bundles (s : X → E is the zero section here).

Voevodsky defined the algebraic cobordism spectrum MGL by
MGL(n) := colimN Th(En,N), where En,N is the universal
bundle over the Grassmannian G (n,N). If k = C then its
realisation Re(MGL) in SH is isomorphic to the complex
cobordism spectrum MU .
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Definition
For any reasonable symmetric motivic Thom spectrum E one
can define E -framed correspondences FrE

∗ (k). It has the same
objects as Sm/k . Its morphisms are sets tn≥0Fr

E
n (X ,Y ),

where

FrE
n (X ,Y ) := HomM•(P

∧n ∧ X+,En ∧ Y+).

The sets have a similar geometric description as Voevodsky’s
framed correspondences.

As above,

FrE (X ,Y ) := colim(FrE
0 (X ,Y )

σY−→ FrE
1 (X ,Y )→ · · · ).

The E -framed motive of Y ∈ Sm/k is defined by

ME (Y ) = (FrE (∆•k ×−,Y ),FrE (∆•k ×−,Y ⊗ S1), . . .).
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For E ∈ SH(k) (respectively E ∈ SH) and a positive integer
N , we let E/N denote an object of SH(k) (respectively

E/N ∈ SH) that fits into a triangle E
N·id−−→ E → E/N → E [1].

Theorem
Let k = C. Suppose E is a symmetric Thom T -spectrum with
the bounding constant d 6 1 and contractible alternating
group action (e.g. E = MGL). Then for all integers N > 1 the
realization functor Re : SH(C)→ SH induces an isomorphism
in SH

ME (pt)(pt)/N ∼= Re(E )/N ,

where pt = SpecC and ME (pt) is the E -framed motive of pt.
In particular, MMGL(pt)(pt)/N ∼= MU/N and

Ω∞−1(MU/N) ∼ FrMGL(∆•C, S
1)/N .
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As the realization of MGL is isomorphic to MU in SH , the
complex cobordism S2-spectrum, and, by Quillen’s Theorem,
π∗(MU) is isomorphic to the Lazard ring Laz = Z[x1, x2, . . .],
deg(xi ) = 2i , the preceding theorem implies the following

Corollary
Let k = C. For all n > 1 and i ∈ Z, there is an isomorphism
πi (MMGL(pt)(pt);Z/n) ∼= Lazi/nLazi , where MMGL(pt) is the
MGL-motive of the point pt = Spec(C).

Without changing stable homotopy type the MGL-framed
motives, and hence the S2-spectrum MMGL(pt)(pt), can
considerably be simplified. It is based on l.c.i. subschemes.
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Definition
For X ,Y ∈ Smk denote by Embn(X ,Y ) the set of couples
(Z , f ), where Z is a closed l.c.i. subscheme in An

X , finite and
flat over X , and f is a regular map f : Z → Y . Note that
Embn(X ,Y ) is pointed at the couple (∅, ∅ → Y ).

The natural inclusions of affine spaces An → An+1 induce
stabilization maps of pointed sheaves
Embn(−,Y )→ Embn+1(−,Y ). Denote by Emb(−,Y ) the
pointed sheaf Emb(−,Y ) = colimn Embn(−,Y ). The forgetful

maps F̃r
MGL

n (−,Y )→ Embn(−,Y ) are consistent with the
stabilization maps.
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Theorem
The MGL-framed motive MMGL(Y ) of Y ∈ Sm/k is locally
equivalent to

(Emb(∆•k ×−,Y ),Emb(∆•k ×−,Y ⊗ S1), . . .).

In particular, if k = C then the S2-spectrum MU/N is
isomorphic in SH to

(Emb(∆•C, S
0),Emb(∆•C, S

1), . . .)/N , N > 1.

and
Ω∞−1(MU/N) ∼ Emb(∆•C, S

1)/N .
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We can also compute homology of E -framed motives ME (Y ).
Namely the spectrum HZ ∧ME (Y )(X ) is computed by the
complex ZF E (∆•k ×X ,Y ) whose chains in each degree are free
Abelian groups generated by stable E -framed correspondences
from FrE (∆n

k × X ,Y ) with connected support.

If E = MGL then we can considerably simplify homology of
MMGL(Y )(X ). Precisely, it is computed by the complex
ZEmb(∆•k × X ,Y ) whose chains in each degree are free
Abelian groups generated by elements of Emb(∆n

k , pt) with
stable l.c.i. Z -s.

In particular HZ ∧MU/N is computed as the complex
ZEmb(∆•C, pt)/N .
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