Anomaly Constraints in Spontaneous Symmetry Broken Phases A Long Exact Sequence from Smith Homomorphisms

Cameron Krulewski

Mathematics PhD Student Massachusetts Institute of Technology

Joint with A. Debray, S. Devalapurkar, Y. L. Liu, N. Pacheco-Tallaj, and R. Thorngren

October 10, 2022

- Smith homomorphisms are maps between bordism groups that change dimension and tangential structure.
- They induce maps on topological field theories corresponding to spontaneous symmetry breaking processes. [HKT20]
- We study the maps of spectra inducing Smith homomorphisms and interpret the physics of the corresponding long exact sequence.

Smith Homomorphisms

2 Application to Anomaly Matching

Idea

- Fix a dimension d, a stable tangential structure η: X → BO, and twisting data ρ: X → BO(k).
 - ex. X = BSpin $\times B\mathbb{Z}/2$, $\eta: B$ Spin $\times B\mathbb{Z}/2 \rightarrow B$ Spin $\hookrightarrow BO$, $\rho = \sigma$ the sign representation

Idea

A Smith homomorphism is a map on bordism groups

$$\Omega^{\eta}_{d}(X) \xrightarrow{sm} \Omega^{\eta-\rho}_{d-k}(X).$$

• $\Omega^{\eta}_{d}(X)$ is the group of bordism classes of closed *d*-manifolds with (X, η) structure • $[M, \omega] \in \Omega^{\eta}_{d}(X)$ consists of *M* a closed *d*-manifold with a lift

$$M \xrightarrow{\omega} TM \xrightarrow{\tau} K$$

Examples

- classical ex: $\tilde{\Omega}^{\eta}_{d}(S \times B\mathbb{Z}/2) \xrightarrow{\cong} \Omega^{\eta-\sigma}_{d-1}(S \times B\mathbb{Z}/2)$, S any structure [Gil18], [CF64]
- "Z/2 ex.": $X = BSpin \times B\mathbb{Z}/2$, $\rho = \sigma$ the sign representation, k = 1• $\Omega_d^{\eta}(BSpin \times B\mathbb{Z}/2) \to \Omega_{d-1}^{\eta-\sigma}(BSpin \times B\mathbb{Z}/2)$ • $\approx \Omega_d^{\text{Spin} \times \mathbb{Z}/2} \to \Omega_{d-1}^{\text{Pin}^-}$ • iterate: $\Omega_{d-1}^{\eta-\sigma}(BSpin \times B\mathbb{Z}/2) \to \Omega_{d-2}^{\eta-2\sigma}(BSpin \times B\mathbb{Z}/2)$ • $\approx \Omega_{d-1}^{\text{Pin}^-} \to \Omega_{d-2}^{\text{Spin} \times \mathbb{Z}/2\mathbb{Z}/4}$ • periodic family: $\Omega_d^{\text{Spin} \times \mathbb{Z}/2} \to \Omega_{d-1}^{\text{Pin}^-} \to \Omega_{d-2}^{\text{Spin} \times \mathbb{Z}/2\mathbb{Z}/4} \to \Omega_{d-3}^{\text{Pin}^+} \to \Omega_{d-4}^{\text{Spin} \times \mathbb{Z}/2} \to \dots$ • [Kap+15; WWZ20; HKT20; TY19]
- "U(1) ex.": X = BSpin × BU(1), $\rho = \gamma$ tautological bundle over BU(1), k = 2
 - $\Omega^{\eta}_{d}(BSpin \times BU(1)) \rightarrow \Omega^{\eta-\gamma}_{d-2}(BSpin \times BU(1))$
 - $\approx \Omega^{\mathsf{Spin}}_d(BU(1)) o \Omega^{\mathsf{Spin}^c}_{d-2}$
 - periodic family $\Omega_d^{\text{Spin}}(BU(1)) \rightarrow \Omega_{d-2}^{\text{Spin}^c} \rightarrow \Omega_{d-4}^{\text{Spin}}(BU(1)) \rightarrow \dots$

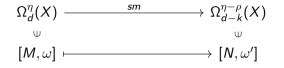
Identifying Tangential Structures

- " $\mathbb{Z}/2$ ex.": $\Omega_d^{\text{Spin} \times \mathbb{Z}/2} \to \Omega_{d-1}^{\text{Pin}^-} \to \Omega_{d-2}^{\text{Spin}^c} \to \Omega_{d-3}^{\text{Pin}^+}$ [BC18; Sto88; KT90; Pet68]
 - \bullet shearing: Pin^\pm and $\mathsf{Spin}\times_{\mathbb{Z}/2}\mathbb{Z}/4$ can be realized as twisted spin structures
 - e.g. pin⁺-structure $\leftrightarrow (B\mathbb{Z}/2, 3\sigma)$ -twisted spin structure:
 - a pin⁺ structure on E is a trivialization $w_2(E) = 0$
 - equivalently, it is a spin structure on E ⊕ 3Det(E)
 (i.e., w₂(E ⊕ 3Det(E)) = 0 = w₁(E ⊕ 3Det(E)))
 - a (BZ/2, 3σ)-twisted spin structure on E → M is a a map f: M → BZ/2 and a spin structure on E ⊕ 3f*(σ)

• "
$$U(1)$$
 ex.": $\Omega_d^{\text{Spin}} \to \Omega_{d-2}^{\text{Spin}^c}$
• shearing: a (Spin, γ) structure is equivalent to a Spin^c structure

- What's the general construction for these maps?
- When are Smith homomorphisms isomorphisms? When are they injective/surjective?
- Why do they often form periodic families?

Construction for Fixed $(d, \eta: X \to BO, \rho: X \to BO(k))$



[M, ω] ∈ Ω^η_d(X) is a closed manifold with a lift ω of its stable tangential structure

- $\rho \rightsquigarrow k$ -dimensional vector bundle $V \rightarrow X$
- generic section $s \colon M \to V$ is transverse to s_0

• define submanifold *N* by pullback

$$\begin{array}{ccc} N & \longrightarrow & M \\ \downarrow & {}^{-} & \downarrow_{s_0} & \text{ i.e. } N = M_s \cap M_{s_0} \\ M & \stackrel{s}{\longrightarrow} & V \end{array}$$

• tangential structure on N?

Tangential Structure on Submanifold N

Claim

Stably,
$$TN \cong TM|_N - V|_N$$
. Therefore, $[N, \omega'] \in \Omega^{\eta-\rho}_{d-k}(X)$.

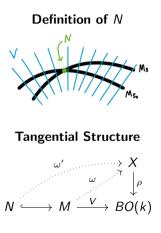
Proof.

- By transversality, $TM_{s_0}|_N \oplus TM_s|_N \twoheadrightarrow V$.
- By construction, there is exact sequence of vector bundles

$$0
ightarrow TM_{s_0}
ightarrow TV|_{M_{s_0}}
ightarrow V
ightarrow 0.$$

• Take $\cap TM_s$ to get

$$0 \rightarrow TN \rightarrow TM_s|_N \rightarrow V \rightarrow 0$$



Map of Spectra

Theorem (Pontryagin-Thom)

Let $\eta: X \to BO$ be a tangential structure and let $-\eta$ be its inverse. There is an isomorphism of groups $\Omega^{\eta}_d(X) \cong \pi_d(X^{-\eta})$.

Proposition

The Smith homomorphism $\Omega^\eta_d(X) o \Omega^{\etaho}_{d-k}(X)$ is induced by a map of spectra

 $X^{-\eta} \xrightarrow{sm} X^{-\eta+\rho}.$

- $\bullet\,$ take $-\eta$ to be an actual bundle μ for convenience
- $\bullet\,$ define a map of vector bundles $\mu \rightarrow \mu + \rho$ by taking the zero section of $\rho\,$
- \rightsquigarrow a map $S(\mu) \rightarrow S(\mu + \rho)$ of sphere bundles over X
- \rightsquigarrow a map on Thom spaces $\mathsf{Th}(X;\mu) \to \mathsf{Th}(X;\mu+
 ho)$

• note that
$$X^{-\eta+
ho}\simeq \Sigma^k X^{-\eta+
ho-k}$$

Example Maps of Spectra

Proposition

The Smith homomorphism $\Omega^\eta_d(X) o \Omega^{\etaho}_{d-k}(X)$ is induced by a map of spectra

 $X^{-\eta} \xrightarrow{sm} X^{-\eta+\rho}.$

• "
$$\mathbb{Z}/2$$
": $\Omega^{\mathsf{Spin} \times \mathbb{Z}/2}_d \to \Omega^{\mathsf{Pin}^-}_{d-1}$ is induced by

• MTSpin $\otimes B\mathbb{Z}/2 \xrightarrow{sm} MT$ Spin $\otimes (B\mathbb{Z}/2)^{\sigma} \simeq \Sigma MT$ Spin $\otimes (B\mathbb{Z}/2)^{\sigma-1} \simeq \Sigma MT$ Pin⁻

• "
$$U(1)$$
": $\Omega_d^{\text{Spin}} \to \Omega_{d-2}^{\text{Spin}^c}$ is induced by
• MT Spin $\otimes BU(1) \xrightarrow{sm} MT$ Spin $\otimes BU(1)^{\gamma} \simeq \Sigma^2 MT$ (Spin $\times_{\mathbb{Z}/2} U(1)) \simeq \Sigma^2 MT$ Spin^c

- \bullet What's the general construction for these maps? \checkmark
- When are Smith homomorphisms isomorphisms? When are they injective/surjective?
- Why do they often form periodic families?

Proposition

Let $p \colon S(\rho) \to X$ be the projection. There is a cofiber sequence of pointed spaces

$$\mathsf{Th}(X;\mu) \xrightarrow{sm} \mathsf{Th}(X;\mu+
ho) \longrightarrow \Sigma\mathsf{Th}(S(
ho);p^*(\mu)).$$

Proof.

• There's a pushout square

so the cofibers of each row are the same.

• identify
$$\mathcal{S}(\mu) imes_X \mathcal{S}(\rho) \simeq \mathcal{S}(p^*(\mu))$$

•
$$\implies$$
 cofib $(S(p^*(\mu)) \rightarrow S(\rho)) \simeq \operatorname{Th}(S(\rho); p^*(\mu))$

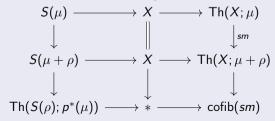
Proposition

Let $p: S(\rho) \to X$ be the projection. There is a cofiber sequence of pointed spaces

$$\mathsf{Th}(X;\mu) \stackrel{sm}{\longrightarrow} \mathsf{Th}(X;\mu+
ho) \longrightarrow \Sigma\mathsf{Th}(\mathcal{S}(
ho);p^*(\mu)).$$

Proof (cont'd).

There's a commutative diagram



- each row and column is a cofiber sequence
- from the last row, see cofib(sm) ≃ ΣTh(S(ρ); p*(μ))

Proposition

Let $p: S(\rho) \to X$ be the projection. There is a cofiber sequence of pointed spaces

$$\mathsf{Th}(X;\mu) \xrightarrow{sm} \mathsf{Th}(X;\mu+
ho) \longrightarrow \Sigma\mathsf{Th}(S(
ho);p^*(\mu)).$$

Corollary

There is a cofiber sequence of spectra

$$S(\rho)^{p^*(\mu)} \to X^{\mu} \xrightarrow{sm} X^{\mu+\rho}.$$

- MTSpin $\rightarrow MT$ Spin $\otimes B\mathbb{Z}/2 \xrightarrow{sm} \Sigma MT$ Pin⁻
- MTSpin $\rightarrow MT$ Pin⁻ $\xrightarrow{sm} \Sigma MT$ Spin $\times_{\mathbb{Z}/2} \mathbb{Z}/4$
- MTSpin $\rightarrow MT$ Spin $\times_{\mathbb{Z}/2} \mathbb{Z}/4 \xrightarrow{sm} \Sigma MT$ Pin⁺
- MTSpin $\rightarrow MT$ Pin⁺ $\xrightarrow{sm} \Sigma MT$ Spin $\otimes B\mathbb{Z}/2$

Proposition

Let $p: S(\rho) \to X$ be the projection. There is a cofiber sequence of pointed spaces

$$\mathsf{Th}(X;\mu) \stackrel{sm}{\longrightarrow} \mathsf{Th}(X;\mu+
ho) \longrightarrow \Sigma\mathsf{Th}(\mathcal{S}(
ho);p^*(\mu)).$$

Corollary

There is a cofiber sequence of spectra

$$S(\rho)^{p^*(\mu)} \to X^{\mu} \xrightarrow{sm} X^{\mu+\rho}.$$

- MTSpin $\rightarrow MT$ Spin $\otimes BU(1) \xrightarrow{sm} \Sigma^2 MT$ Spin^c
- MTSpin $\rightarrow MT$ Spin^c $\xrightarrow{sm} \Sigma^2 MT$ Spin $\otimes BU(1)$

Proposition

Let $p: S(\rho) \to X$ be the projection. There is a cofiber sequence of pointed spaces

$$\mathsf{Th}(X;\mu) \stackrel{sm}{\longrightarrow} \mathsf{Th}(X;\mu+
ho) \longrightarrow \Sigma\mathsf{Th}(\mathcal{S}(
ho);p^*(\mu)).$$

Corollary

There is a cofiber sequence of spectra

$$S(\rho)^{p^*(\mu)} \to X^{\mu} \xrightarrow{sm} X^{\mu+\rho}.$$

- consider subfamilies of the $\mathbb{Z}/2$ family with $\rho=2\sigma$
- $MTSpin \otimes \Sigma^{\infty-1}_{+} \mathbb{R}P^2 \to MTPin^- \xrightarrow{sm} \Sigma^2 MTPin^+$ [KT90]

- \bullet What's the general construction for these maps? \checkmark
- When are Smith homomorphisms isomorphisms? When are they injective/surjective? ✓
- Why do they often form periodic families?

Periodic Families

- periodic Smith families occur when $X^{-\eta+n\rho} \simeq \Sigma^{kn} X^{-\eta}$ for some n
- take X = BSpin $\times X_0$, $\eta: X = B$ Spin $\times X_0 \rightarrow B$ Spin $\hookrightarrow BO$, ρ nontrivial on X_0

Fact

Consider twisting data $\rho: X_0 \rightarrow BO(k)$. There is an isomorphism (over MSpin)

 $X_0^{n
ho}\otimes M$ Spin $\simeq \Sigma^{nk}X_0\otimes M$ Spin

if and only if $n\rho$ has a spin structure.

- " $\mathbb{Z}/2 \text{ ex.}$ ": Spin $\times \mathbb{Z}/2 \rightsquigarrow \text{Pin}^- \rightsquigarrow \text{Spin} \times_{\mathbb{Z}/2} \mathbb{Z}/4 \rightsquigarrow \text{Pin}^+ \rightsquigarrow \text{Spin} \times \mathbb{Z}/2 \rightsquigarrow \dots$
 - for any real vector bundle E, 2E is always oriented and 4E is always spin
 - $4\sigma \text{ spin} \implies M \text{Spin} \otimes (B\mathbb{Z}/2)^{4\sigma} \simeq \Sigma^4 M \text{Spin} \otimes B\mathbb{Z}/2$
- "U(1) ex.": Spin \rightsquigarrow Spin^c \rightsquigarrow Spin \rightsquigarrow ...
 - for any complex vector bundle E, E is always oriented and 2E is always spin

- \bullet What's the general construction for these maps? \checkmark
- When are Smith homomorphisms isomorphisms? When are they injective/surjective? ✓
- \bullet Why do they often form periodic families? \checkmark

Induced Map of Invertible Topological Field Theories

• a *d*-dimensional TFT is a symmetric monoidal functor F: Bord^(X,\eta)_{*d*} $\rightarrow C = I\mathbb{Z}$

Ansatz [FH21], [Gal+10], [Ngu17] There is a bijection $\begin{cases} \text{iso classes of cts reflection positive} \\ \text{invertible } d\text{-dim'l extended TFTs} \\ \text{with symmetry type } (X, \eta) \end{cases} \simeq [X^{-\eta}, \Sigma^{d+1}I\mathbb{Z}] \simeq I\mathbb{Z}^{d+1}(X^{-\eta})$

- let $sm \colon X^{-\eta} o X^{-\eta+
 ho}$ be a Smith map
- \rightsquigarrow induced map sm: $|\mathsf{Bord}_d^{(X,\eta)}| \xrightarrow{sm} |\mathsf{Bord}_{d-k}^{(X,\eta-\rho)}|$
- fix a *defect theory* associated to an iTFT $F \colon \mathsf{Bord}_{d-k}^{(X,\eta-\rho)} \to I\mathbb{Z}$
- compose $|\operatorname{Bord}_d^{(X,\eta)}| \xrightarrow{sm} |\operatorname{Bord}_{d-k}^{(X,\eta-\rho)}| \xrightarrow{F} I\mathbb{Z}$ to get an iTFT for the *bulk theory*

Anomalies of Field Theories

Ansatz [FH21], [Gal+10], [Ngu17]

There is a bijection

 $\begin{cases} \text{iso classes of cts reflection positive} \\ \text{invertible } d\text{-dim'l extended TFTs} \\ \text{with symmetry type } (X, \eta) \end{cases} \cong [X^{-\eta}, \Sigma^{d+1} I\mathbb{Z}] \simeq I\mathbb{Z}^{d+1}(X^{-\eta}) \end{cases}$

- an *anomaly* of a *d*-dimensional anomalous field theory is a *d* + 1-dimensional invertible topological* field theory
- anomalies are useful invariants of field theories (e.g. invariant under RG flow)
- sm induces a map $I\mathbb{Z}^{d+1}(X^{\eta})
 ightarrow I\mathbb{Z}^{d+1-k}(X^{-\eta+
 ho})$
- we perform 't Hooft anomaly matching under spontaneous symmetry breaking

Anomaly Matching Hypothesis

Fix

- tangential structure $\eta \colon X \to BO$
- a *d*-dim'l *bulk field theory* with (X, η) structure and anomaly class $\alpha \in I\mathbb{Z}^{d+1}(X^{-\eta})$
- a k-dimensional symmetry-breaking order parameter ϕ transforming in the representation $\rho: X \to BO(k)$
- and assume the IR limit of the theory is gapped.

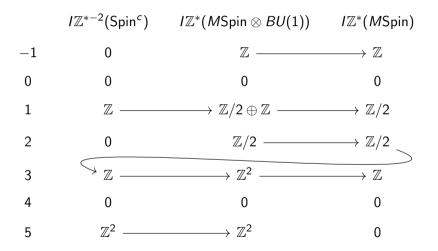
Then,

- a twisted boundary condition construction can produce a defect with excitations localized at $\langle \phi \rangle = 0$ (corresponding to $M_s \cap M_{s_0}$)
- the defect field theory has anomaly class $\beta \in I\mathbb{Z}^{d+1-k}(X^{-\eta+\rho})$
- such that if sm^* is the induced map, $\alpha = sm^*(\beta)$.

Application: Anomaly Matching in Symmetry Broken Phase with U(1) Symmetry

- consider the Smith map $sm \colon MSpin \otimes BU(1) \to \Sigma^2 MSpin^c$
- \rightsquigarrow map of field theories $I\mathbb{Z}^{d+1-2}(MSpin^{c}) \rightarrow I\mathbb{Z}^{d+1}(MSpin \otimes BU(1))$
- $\operatorname{cofib}(MSpin \otimes BU(1) \rightarrow \Sigma^2 MSpin^c) \simeq MSpin$
- \rightsquigarrow LES of field theories

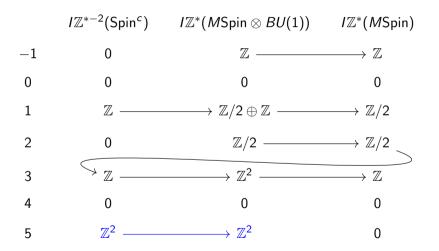
Long Exact Sequence for "U(1) Example"



Application: Anomaly Matching in Symmetry Broken Phase with U(1) Symmetry

- consider the Smith map $sm \colon MSpin \otimes BU(1) \to \Sigma^2 MSpin^c$
- \rightsquigarrow map of field theories $I\mathbb{Z}^{d+1-2}(MSpin^{c}) \rightarrow I\mathbb{Z}^{d+1}(MSpin \otimes BU(1))$
- $\operatorname{cofib}(MSpin \otimes BU(1) \rightarrow \Sigma^2 MSpin^c) \simeq MSpin$
- \rightsquigarrow LES of field theories
- focus on $I\mathbb{Z}^3(MSpin^c) \xrightarrow{\cong} I\mathbb{Z}^5(MSpin \otimes BU(1))$
- hypothesis: the bulk and defect anomalies match

Long Exact Sequence for "U(1) Example"



Application: Anomaly Matching in Symmetry Broken Phase with U(1)Symmetry

- 3 + 1*d* bulk theory Dirac Lagrangian: $\mathcal{L} = \bar{\psi} \partial \!\!\!/ \psi$ with chiral $U(1)_L$ symmetry taking $\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \mapsto \begin{pmatrix} \epsilon^{i\theta} \psi_L \\ \psi_R \end{pmatrix}$
- add a "mass term" with ϕ transforming in the charge 1 representation of U(1): $\mathcal{L}' = \bar{\psi}\partial \!\!\!/ \psi + \phi \bar{\psi} \psi + \partial_{\mu} \phi \partial^{\mu} \phi$
- choose a U(1)-symmetric potential V: $V(\phi) = -m^2 |\phi|^2 + \lambda^4 |\phi|^4$
- impose twisted boundary conditions on ϕ : $\phi(r, \theta) = \phi_0(r)e^{i\theta}$, $(r, \theta) \leftrightarrow (x^2, x^3)$
- solve Dirac equation to find the theory on the defect, which is localized to $(x^2, x^3) = 0$ and is thus a 1 + 1d theory
- we compute the anomalies and the induced Smith map rationally and observe that they match

Application: Obstruction to Electroweak Symmetry Breaking

Smith map:

- take X = BSpin $\times BSU(N-1)$ and ρ the tautological bundle over BSU(N-1)
- \rightsquigarrow *sm*: *M*Spin \otimes *BSU*(*N* 1) \rightarrow *M*Spin \otimes *BSU*(*N*)
- $cofib(sm) \simeq MSpin \otimes BSU(N-1)$

physical implications:

- consider a theory with SU(N) symmetry
- \bullet can you produce a gapped theory by breaking this symmetry with ρ the tautological bundle?
- no, not in general, since $I\mathbb{Z}(MSpin \otimes BSU(N-1))$ is nontrivial

Long Exact Sequence in Symmetry Breaking

- Joint with Arun Debray, Sanath Devalapurkar, Yu Leon Liu, Natalia Pacheco-Tallaj, and Ryan Thorngren
- See forthcoming work for interpretation of not only the Smith map and its cofiber but also the connecting map in the LES:

$$\cdots \to \Omega^{D}_{G,s}(S(\rho)) \xrightarrow{\text{connecting}} \Omega^{D+1-k}_{G,s} \xrightarrow{\text{Smith}} \Omega^{D+1}_{G,s} \xrightarrow{\text{cofiber}} \Omega^{D+1}_{G,s}(S(\rho)) \to \cdots$$

$$\xrightarrow{\text{Thom}} \searrow \xrightarrow{\delta} \Omega^{D+1}_{G,s}(D(\rho), S(\rho))$$

• And further applications: QCD, DQCP, spin $\mathbb{C}P^1$ model, 10-fold way

References I

- I. Hason, Z. Komargodski, and R. Thorngren, "Anomaly matching in the symmetry broken phase: Domain walls, CPT, and the Smith isomorphism," *SciPost Physics*, vol. 8, no. 4, Apr. 2020, https://arxiv.org/abs/1910.14039, ISSN: 2542-4653. DOI: 10.21468/scipostphys.8.4.062.
 [Online]. Available: http://dx.doi.org/10.21468/SciPostPhys.8.4.062.
- P. B. Gilkey, The Geometry of Spherical Space Form Groups (Series in Pure Mathematics), en, 2nd ed. World Scientific, Feb. 2018, vol. 28, ISBN: 978-981-322-078-2 978-981-322-079-9. DOI: 10.1142/10467. [Online]. Available: https://www.worldscientific.com/worldscibooks/10.1142/10467 (visited on 10/06/2022).
- [3] P. E. Conner and E. E. Floyd, *Differentiable periodic maps* (Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33). Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964, pp. vii+148.
- [4] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, "Fermionic symmetry protected topological phases and cobordisms," J. High Energy Phys., no. 12, 052, front matter+20pp, 2015, https://arxiv.org/abs/1406.7329, ISSN: 1126-6708. DOI: 10.1007/jhep12(2015)052.
- [5] Z. Wan, J. Wang, and Y. Zheng, "Higher anomalies, higher symmetries, and cobordisms ii: Lorentz symmetry extension and enriched bosonic/fermionic quantum gauge theory," *Ann. Math. Sci. Appl.*, vol. 5, no. 2, pp. 171–257, 2020, https://arxiv.org/abs/1912.13504, ISSN: 2380-288X.

References II

- [6] Y. Tachikawa and K. Yonekura, "Why are fractional charges of orientifolds compatible with Dirac quantization?" SciPost Phys., vol. 7, p. 58, 5 2019, https://arxiv.org/abs/1805.02772. DOI: 10.21468/SciPostPhys.7.5.058.
- [7] A. Beaudry and J. A. Campbell, "A guide for computing stable homotopy groups," in *Topology and quantum theory in interaction*, ser. Contemp. Math. Vol. 718, https://arxiv.org/abs/1801.07530, Amer. Math. Soc., Providence, RI, 2018, pp. 89–136. DOI: 10.1090/conm/718/14476.
- [8] S. Stolz, "Exotic structures on 4-manifolds detected by spectral invariants," *Invent. Math.*, vol. 94, no. 1, pp. 147–162, 1988, ISSN: 0020-9910. DOI: 10.1007/BF01394348. [Online]. Available: https://doi.org/10.1007/BF01394348.
- [9] R. C. Kirby and L. R. Taylor, "A calculation of Pin⁺ bordism groups," Commentarii Mathematici Helvetici, vol. 65, no. 1, pp. 434–447, Dec. 1990, ISSN: 1420-8946. DOI: 10.1007/BF02566617. [Online]. Available: https://doi.org/10.1007/BF02566617.
- [10] F. P. Peterson, Lectures on Cobordism Theory (Lectures in Mathematics). Kinokuniya Book Store Co., Ltd., 1968.
- [11] D. S. Freed and M. J. Hopkins, "Reflection positivity and invertible topological phases," Geometry & Topology, vol. 25, no. 3, pp. 1165–1330, 2021, https://arxiv.org/abs/1604.06527. DOI: 10.2140/gt.2021.25.1165. [Online]. Available: https://doi.org/10.2140%2Fgt.2021.25.1165.

References III

- [12] S. Galatius, I. Madsen, U. Tillmann, and M. Weiss, "The homotopy type of the cobordism category,", Sep. 2010, arXiv:math/0605249. [Online]. Available: http://arxiv.org/abs/math/0605249 (visited on 10/10/2022).
- [13] H. K. Nguyen, "On the infinite loop space structure of the cobordism category," Algebraic & Geometric Topology, vol. 17, no. 2, pp. 1021–1040, Mar. 2017, arXiv:1505.03490 [math], ISSN: 1472-2739, 1472-2747. DOI: 10.2140/agt.2017.17.1021. [Online]. Available: http://arxiv.org/abs/1505.03490 (visited on 10/10/2022).