Parametrised moduli spaces of surfaces as infinite loop spaces joint work with Florian Kranhold and Jens Reinhold

Andrea Bianchi

BIRS-CMO workshop "Cobordisms, Strings, and Thom Spectra"

10th October 2022

A formulation of the Madsen-Weiss theorem

Let $\mathfrak{M}_{g,1}$ denote the moduli space of compact Riemann surfaces of type $\Sigma_{g,1}$, i.e. of genus $g \ge 0$ with one *parametrised* boundary component. $\mathfrak{M}_{g,1}$ is a classifying space for the mapping class group $\Gamma_{g,1} = \pi_0(\text{Diff}^+(\Sigma_{g,1}, \partial \Sigma_{g,1}))$:

$$\mathfrak{M}_{g,1} \simeq B\Gamma_{g,1}$$

Gluing two Riemann surfaces of type $\Sigma_{g,1}$ and $\Sigma_{g',1}$ using a disc with two holes gives a surface of type $\Sigma_{g+g',1}$. The space

$$\mathfrak{M}_{*,1} := \coprod_{g \ge 0} \mathfrak{M}_{g,1}$$

is (up to homotopy) a topological monoid (in fact it is an E_2 -algebra).

Theorem (Madsen, Weiss)

There is an equivalence of loop spaces

 $\Omega B\mathfrak{M}_{*,1} \simeq \Omega^{\infty} \mathrm{MTSO}(2).$

What about free loop spaces of moduli spaces?

$$\mathfrak{M}_{*,1} := \coprod_{g \ge 0} \mathfrak{M}_{g,1} \qquad \Omega B \mathfrak{M}_{*,1} \simeq \Omega^{\infty} \mathrm{MTSO}(2)$$

Consider now the free loop spaces $\Lambda \mathfrak{M}_{g,1} := \max(S^1, \mathfrak{M}_{g,1})$ for $g \ge 0$. A-wise multiplication makes

$$\Lambda \mathfrak{M}_{*,1} := \prod_{g \geqslant 0} \Lambda \mathfrak{M}_{g,1}$$

also into a topological monoid (in fact an E_2 -algebra).

Question

What does $\Omega B \Lambda \mathfrak{M}_{*,1}$ look like?

- In fact, $\Lambda \mathfrak{M}_{*,1}$ is not only an E_2 -algebra, but also an algebra over Tillmann's surface operad \mathcal{M} . A result by Tillmann implies that $\Omega B \Lambda \mathfrak{M}_{*,1}$ is an Ω^{∞} -space.
- There are maps of \mathcal{M} -algebras

$$\mathfrak{M}_{*,1} \xrightarrow{\mathrm{const}} \Lambda \mathfrak{M}_{*,1} \xrightarrow{\mathrm{ev}_1} \mathfrak{M}_{*,1}$$

with composition the identity. Therefore $\Omega^{\infty} MTSO(2)$ is a factor of $\Omega B \Lambda \mathfrak{M}_{*,1}$.

Theorem (B., Kranhold, Reinhold)

For a suitable topological space \mathfrak{X} , there is an equivalence of loop spaces

```
\Omega B \Lambda \mathfrak{M}_{*,1} \simeq \Omega^{\infty} \mathrm{MTSO}(2) \times \Omega^{\infty} \Sigma^{\infty}_{+} \mathfrak{X}.
```

So far we only know $\Omega B \Lambda \mathfrak{M}_{*,1} \simeq \Omega^{\infty} \mathrm{MTSO}(2) \times \Omega^{\infty}$???.

Tillmann's result was recently improved by Basterra, Bobkova, Ponto, Tillmann and Yeakel to the setting of (monochromatic) operads \mathcal{O} with homological stability (OHS). For example, Tillmann's surface operad \mathcal{M} is an OHS.

If \mathcal{O} is an OHS, BBPTY give a quite direct way to compute ΩBY for a \mathcal{O} -algebra Y: for example, if $Y = F^{\mathcal{O}}(X)$ is the *free* \mathcal{O} -algebra over an unpointed space X, then

 $\Omega BF^{\mathcal{O}}(X) \simeq \Omega B\mathcal{O}(0) \times \Omega^{\infty} \Sigma^{\infty}_{+} X,$

where $\mathcal{O}(0)$ is the initial \mathcal{O} -algebra (in the case $\mathcal{O} = \mathcal{M}$, we have $\mathcal{O}(0) \simeq \mathfrak{M}_{*,1}$).

Naive conjecture

There is a space \mathfrak{X} such that $\Lambda \mathfrak{M}_{*,1} \simeq F^{\mathcal{M}}(\mathfrak{X})$.

The previous conjecture turns out to be wrong, but not completely wrong.

Andrea Bianchi (Copenhagen)

Parametrised moduli spaces of surfaces

Generic moduli spaces $\mathfrak{M}_{g,n}$

In order to understand the structure of $\Lambda \mathfrak{M}_{*,1}$ as a \mathcal{M} -algebra, we need to consider all surfaces of type $\Sigma_{g,n}$, for all $g \ge 0$ and $n \ge 1$. The moduli space $\mathfrak{M}_{g,n}$ contains equivalence classes of Riemann surfaces S of type $\sum_{g,n}$ with ordered and *parametrised* boundary components, i.e. S is endowed with a diffeomorphism

 $\partial S \cong \{1,\ldots,n\} \times S^1$

compatible with boundary orientation.

 $\mathfrak{M}_{g,n}$ is a classifying space for the mapping class group $\Gamma_{g,n} = \pi_0(\text{Diff}^+(\Sigma_{g,n},\partial\Sigma_{g,n}))$. For $g \ge 0$ and $n \ge 1$ we homotopy equivalences

$$\Lambda\mathfrak{M}_{g,n} \simeq \Lambda B\Gamma_{g,n} \simeq \prod_{[\varphi] \in \operatorname{Conj}(\Gamma_{g,n})} BZ(\varphi, \Gamma_{g,n})$$

- $\operatorname{Conj}(\Gamma_{\mathfrak{g},n})$ is the set of conjugacy classes of $\Gamma_{\mathfrak{g},n}$;
- $Z(\varphi, \Gamma_{g,n})$ is the centraliser of φ in $\Gamma_{g,n}$.

The homotopy type of $\Lambda \mathfrak{M}_{*,1}$ depends on the groups $Z(\varphi, \Gamma_{g,1})$ for $\varphi \in \Gamma_{g,1}$; to describe these centralisers we will need all groups $\Gamma_{\sigma,n}$, also for n > 1.

Cut locus of a mapping class

Let $\varphi \in \Gamma_{g,n}$ Then there is a unique isotopy class of an *oriented*, *unordered* multicurve c_1, \ldots, c_h in S satisfying the following:

- c₁,..., c_h are disjoint simple closed curves, dividing Σ_{g,n} into two regions W and Y, and are oriented as boundary curves of Y;
- each connected component of W touches $\partial \Sigma_{g,n}$;
- no connected component of Y is a disc;
- φ can be represented by a diffeomorphism $\Phi \colon \Sigma_{g,n} \to \Sigma_{g,n}$ fixing W pointwise;
- the isotopy class of $W \subset \Sigma_{g,n}$ is maximal among all isotopy classes of subsurfaces satisfying all the above conditions.

Definition

The isotopy class of multicurve $[c_1, \ldots, c_h]$ is called the *cut locus* of φ . A mapping class $\varphi \in \Gamma_{g,n}$ is ∂ -*irreducible* if its cut locus is $[\partial \Sigma_{g,n}]$.

In fact, for a generic $\varphi \in \Gamma_{g,n}$ as above, the restriction of Φ to any component $P \subset Y$ gives a ∂ -irreducible mapping class $\varphi_P \in \Gamma(P, \partial P)$. Assume now $\varphi \in \Gamma_{g,1}$: then W is connected; instead Y may be disconnected, and connected components of Y may have more than 1 boundary curve!

Structure result for $Z(\varphi, \Gamma_{g,1})$, first part

Let $\varphi \in \Gamma_{g,1}$, and decompose $\Sigma_{g,1} = W \cup Y$ along the cut locus c_1, \ldots, c_h . Fix parametrisations $c_i \cong S^1$ which are compatible with orientation as ∂Y . Represent φ by a diffeomorphism Φ fixing W pointwise, and let $\varphi_Y := [\Phi|_Y] \in \Gamma(Y, \partial Y)$.

The extended mapping class group $\Gamma(Y)$ is the group of isotopy classes of orientation-preserving diffeomorphisms of Y that may permute the *h* components of ∂Y , but are compatible with their parametrisation.

Similarly, the extended mapping class group $\Gamma^{\mathfrak{S}_h}(W)$ is the group of isotopy classes of orientation-preserving diffeomorphisms of W that fix $\partial \Sigma_{g,1}$ pointwise, and may permute the other h components of ∂W , but are compatible with their parametrisation.

Both groups map to \mathfrak{S}_h . We have a gluing map

$$\hat{\varepsilon} \colon \Gamma^{\mathfrak{S}_h}(W) \times^{\mathfrak{S}_h} \Gamma(Y) \to \Gamma_{g,1}.$$

Note that $\hat{\varepsilon}(\mathsf{Id}_W, \varphi_Y) = \varphi$. In fact $\hat{\varepsilon}$ restricts to

$$\varepsilon \colon \Gamma^{\mathfrak{S}_h}(W) \times^{\mathfrak{S}_h} Z(\varphi_Y, \Gamma(Y)) \to Z(\varphi, \Gamma_{g,1}).$$

Proposition

The map ε is surjective and has kernel isomorphic to \mathbb{Z}^h , generated by the pairs $(D_{c_i}, D_{c_i}^{-1})$ for $1 \le i \le h$.

Andrea Bianchi (Copenhagen)

Structure result for $Z(\varphi, \Gamma_{g,1})$, second part

Recall that we have a central extension

$$\mathbb{Z}^h \longrightarrow \Gamma^{\mathfrak{S}_h}(W) \times^{\mathfrak{S}_h} Z(\varphi_Y, \Gamma(Y)) \stackrel{\varepsilon}{\longrightarrow} Z(\varphi, \Gamma_{g,1})$$

Recall that Y may be disconnected! Each component $P \subset Y$ is equipped with a mapping class $\varphi_P = [\Phi|_P] \in \Gamma(P, \partial P)$. Two components $P, P' \subset Y$ are *similar* if there is $\Xi \colon P \to P'$ such that $(-)^{\Xi} \colon \Gamma(P, \partial P) \to \Gamma(P', \partial P')$ sends $\varphi_P \mapsto \varphi_{P'}$.

Decompose $Y = \prod_{i=1}^{r} \prod_{j=1}^{s_i} Y_{i,j}$, with $Y_{i,j}$ similar to $Y_{i',j'}$ iff i = i'. Let $Y_{i,j}$ be of type Σ_{g_i,n_i} , and let $\overline{\varphi}_i \in \Gamma_{g_i,n_i}$ correspond to $\varphi_{Y_{i,j}}$ for all j. We can further decompose

$$Z(\varphi_{\mathbf{Y}}, \Gamma(\mathbf{Y})) \cong \prod_{i=1}^{r} \left(\left(Z(\bar{\varphi}_{i}, \Gamma(\Sigma_{g_{i}, n_{i}}))\right)^{s_{i}} \rtimes \mathfrak{S}_{s_{i}} \right).$$

Let $\mathfrak{H}_i \subset \mathfrak{S}_{n_i}$ be the image of $Z(\bar{\varphi}, \Gamma(\Sigma_{g_i, n_i}))$ along the natural map to \mathfrak{S}_{n_i} . Then $\mathfrak{H} := \prod_{i=1}^r (\mathfrak{H}_i)^{s_i} \rtimes \mathfrak{S}_{s_i}$ is the subgroup of \mathfrak{S}_h really used in the fibre product, and

$$\Gamma^{\mathfrak{S}_{h}}(W) \times^{\mathfrak{S}_{h}} Z(\varphi_{Y}, \Gamma(Y)) \cong \Gamma^{\mathfrak{H}}(W) \times^{\mathfrak{H}} \prod_{i=1}^{r} \Big((Z(\bar{\varphi}_{i}, \Gamma(\Sigma_{g_{i}, n_{i}})))^{s_{i}} \rtimes \mathfrak{S}_{s_{i}} \Big).$$

From groups to classifying spaces

Recall that we have a central extension, where $\mathfrak{H} := \prod_{i=1}^{r} (\mathfrak{H}_i)^{s_i} \rtimes \mathfrak{S}_{s_i} \subset \mathfrak{S}_h$:

$$\mathbb{Z}^{h} \longrightarrow \Gamma^{\mathfrak{H}}(W) \times^{\mathfrak{H}} \prod_{i=1}^{r} \left((Z(\bar{\varphi}_{i}, \Gamma(\Sigma_{g_{i}, n_{i}})))^{s_{i}} \rtimes \mathfrak{S}_{s_{i}} \right) \stackrel{\varepsilon}{\longrightarrow} Z(\varphi, \Gamma_{g, 1}).$$

Taking classifying spaces (and after some routine work) we get

$$B\Gamma(W,\partial W) \times_{T^{h} \rtimes \mathfrak{H}} \prod_{i=1}^{r} \left(\left(BZ(\bar{\varphi}_{i}, \Gamma_{g_{i}, n_{i}})\right)^{s_{i}} \right) \simeq BZ(\varphi, \Gamma_{g, 1}) \stackrel{\simeq}{\subset} \Lambda \mathfrak{M}_{g, 1}.$$

- To describe $BZ(\varphi, \Gamma_{g,1})$ for $\varphi \in \Gamma_{g,1}$, we use as "bulding blocks" the spaces $BZ(\bar{\varphi}_i, \Gamma_{g_i, n_i}) \stackrel{\sim}{\subset} \Lambda \mathfrak{M}_{g_i, n_i}$, corresponding to the ∂-irreducible mapping classes $\bar{\varphi}_i \in \Gamma_{g_i, n_i}$.
- These building blocks are assembled together using the space $B\Gamma(W, \partial W)$.
- Furthermore, we have some balancing by the group

$$T^h \rtimes \mathfrak{H} = \prod_{i=1}^r (T^{n_i} \rtimes \mathfrak{H}_i)^{s_i} \rtimes \mathfrak{S}_{s_i}.$$

For a set N, an N-coloured operad \mathcal{O} consists of spaces of "operations" $\mathcal{O}\binom{k_1,\ldots,k_r}{n}$ for all $r \ge 0$ and $k_1,\ldots,k_r, n \in N$. We say that k_1,\ldots,k_r are the input colours, and n is the output colour. Composition of operations and permutation of inputs are only defined if they are compatible with the colours: for instance we have compositions

$$\mathcal{O}\binom{k_1,\ldots,k_r}{n} \times \prod_{i=1}^r \mathcal{O}\binom{l_{i_1},\ldots,l_{i_{s_i}}}{k_i} \to \mathcal{O}\binom{l_{1_1},\ldots,l_{r_{s_r}}}{n}$$

An \mathcal{O} -algebra is a sequence of spaces $\mathbf{X} = (X_n)_{n \in N}$ with compatible multiplication maps

$$\mathcal{O}\binom{k_1,\ldots,k_r}{n} \times \prod_{i=1}^r X_{k_i} \to X_n.$$

If $\mathcal{O}' \subset \mathcal{O}$ is a sub-*N*-coloured operad, every \mathcal{O} -algebra is a \mathcal{O}' -algebra. Viceversa, given a \mathcal{O}' -algebra $\mathbf{X} = (X_n)_n$, we can construct the relatively free \mathcal{O} -algebra $F_{\mathcal{O}'}^{\mathcal{O}}(\mathbf{X})$.

The coloured surface operad \mathcal{M}

For $N = \{1, 2, 3, ...\}$ there is an *N*-coloured operad \mathcal{M} , whose restriction to colour-1 is Tillmann's surface operad. For generic $k_1, \ldots, k_r, n \in N$, the space $\mathcal{M}\binom{k_1, \ldots, k_r}{n}$ is the moduli space of compact Riemann surfaces W with the following additional structures:

- ∂W is partitioned as $\partial^{\operatorname{in}} W \sqcup \partial^{\operatorname{out}} W$, and each component of W touches $\partial^{\operatorname{out}} W$;
- $\partial^{\mathrm{out}} W$ is equipped with a diffeomorphism to $\{1,\ldots,n\} imes S^1;$
- $\partial^{in}W$ is equipped with a diffeomorphism to $\coprod_{i=1}^{r} \{1, \ldots, k_i\} \times S^1$.

 \mathcal{M} contains an *N*-sequence of groups $\mathbf{R} = (R_n)_n$: the group $R_n := \overline{T^n} \rtimes \mathfrak{S}_n$ embeds into $\mathcal{M}\binom{n}{n}$ as moduli of Riemann surfaces which are disjoint unions of cylinders.

$$(z_1,\ldots,z_n,\sigma) =$$
 $(z_1,\ldots,z_n,\sigma) \in R_n \subset \mathcal{M}\binom{n}{n} \in R_n \subset \mathcal{M}\binom{n}{n}$

In particular every \mathcal{M} -algebra is a **R**-algebra. Viceversa, given a **R**-algebra $\mathbf{X} = (X_n)_n$, i.e. a sequence of R_n -spaces X_n , we can form $F_{\mathbf{R}}^{\mathcal{M}}(\mathbf{X})$.

$\Lambda \mathfrak{M}_{*,1}$ as a relatively free algebra

For all $g \ge 0$ and $n \ge 1$ the group $R_n = T^n \rtimes \mathfrak{S}_n$ acts on the space $\mathfrak{M}_{g,n}$: given S with ordered and parametrised boundary components, we can reorder the labels $1, \ldots, n$ of the boundary components, and rotate the parametrisations. R_n also acts Λ -wise on $\Lambda \mathfrak{M}_{g,n}$:

$$R_n \circlearrowleft \mathfrak{M}_{g,n}, \qquad R_n \circlearrowright \Lambda \mathfrak{M}_{g,n}.$$

In fact
$$\mathfrak{M}_{g,n} \subset \mathcal{M}({}_{n})$$
, and $R_{n} \subset \mathcal{M}({}_{n}^{n})$.
Recall that $\Lambda \mathfrak{M}_{g,n} = \coprod_{[\varphi] \in \operatorname{Conj}(\Gamma_{g,n})} \Lambda \mathfrak{M}_{g,n}(\varphi)$. Put

$$\mathfrak{C}_{\mathfrak{g},n} := \coprod_{\substack{[\varphi] \in \operatorname{Conj}(\Gamma_{\mathfrak{g},n})\\\varphi \text{ is } \partial\text{-irreducible}}} \Lambda \mathfrak{M}_{\mathfrak{g},n}(\varphi) \subset \Lambda \mathfrak{M}_{\mathfrak{g},n}.$$

Then R_n acts on $\mathfrak{C}_n := \coprod_{g \ge 0} \mathfrak{C}_{g,n}$, so $\mathfrak{C} := (\mathfrak{C}_n)_{n \in \mathbb{N}}$ is a **R**-algebra.

Proposition (improving on the naive conjecture)

 $\Lambda \mathfrak{M}_{*,1}$ is the colour-1 part of $F_{\mathsf{R}}^{\mathcal{M}}(\mathfrak{C})$.

BBPTY for coloured operads with homological stability

There is a notion of *N*-coloured OHS for an arbitrary set *N*. Let \mathcal{O} be an *N*-coloured OHS containing a sequence of groups $\mathbf{G} = (G_n)_n$ as suboperad (of 1-ary operations). Let $\mathbf{X} = (X_n)_n$ be a **G**-algebra. Let $n \in N$; then $F_{\mathbf{G}}^{\mathcal{O}}(\mathbf{X})_n$ is in particular a topological monoid.

Proposition

There is an equivalence of loop spaces

$$\Omega BF^{\mathcal{O}}_{\mathbf{G}}(\mathbf{X})_n \simeq \Omega B\mathcal{O}(_n) \times \Omega^{\infty} \Sigma^{\infty}_+ \left(\prod_{k \in \mathbf{N}} X_k / / G_k \right).$$

Let now $N = \{1, 2, 3, ...\}$: then \mathcal{M} is an N-coloured OHS containing \mathbf{R} as suboperad. Recall that $\Lambda \mathfrak{M}_{*,1}$ is the colour-1 part of $F_{\mathbf{R}}^{\mathcal{M}}(\mathfrak{C})$, where \mathfrak{C}_n is the R_n -space

$$\mathfrak{C}_n = \coprod_{\substack{g \ge 0}} \prod_{\substack{[\varphi] \in \operatorname{Conj}(\Gamma_{g,n}) \\ \partial-irreducible}} \Lambda \mathfrak{M}_{g,n}(\varphi).$$

We then have an equivalence of loop spaces

$$\Omega B \Lambda \mathfrak{M}_{*,1} \simeq \Omega B \mathcal{M}_{1} \times \Omega^{\infty} \Sigma^{\infty}_{+} \left(\coprod_{n \ge 1} \mathfrak{C}_{n} / / \mathcal{R}_{n} \right) \simeq \Omega^{\infty} \mathrm{MTSO}(2) \times \Omega^{\infty} \Sigma^{\infty}_{+} \mathfrak{X}.$$