(*) 24/7

David Asperó

University of East Anglia

Set theory of the reals

CMO-BIRS Oaxaca, August 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The main result is joint work with Ralf Schindler.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Forcing axioms

(日) (日) (日) (日) (日) (日) (日)

Given a class \mathcal{K} of forcing notions and a cardinal κ , FA_{κ}(\mathcal{K}) is the following statement:

For every $\mathbb{P} \in \mathcal{K}$ and every collection $\{D_i : i < \kappa\}$ of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_i \neq \emptyset$ for each $i < \kappa$.

For this talk, κ is always ω_1 .

Forcing axioms

(日) (日) (日) (日) (日) (日) (日)

Given a class \mathcal{K} of forcing notions and a cardinal κ , FA_{κ}(\mathcal{K}) is the following statement:

For every $\mathbb{P} \in \mathcal{K}$ and every collection $\{D_i : i < \kappa\}$ of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_i \neq \emptyset$ for each $i < \kappa$.

For this talk, κ is always ω_1 .

Classical examples:

- MA_{ω_1} is $FA_{\omega_1}(\{\mathbb{P} : \mathbb{P} \text{ ccc}\})$.
- PFA is $FA_{\omega_1}(\{\mathbb{P} : \mathbb{P} \text{ proper}\}).$
- MM (Martin's Maximum) is FA_{ω1}({ℙ : ℙ semiproper}) (equivalently, FA_{ω1}({ℙ : ℙ preserves stationary subsets of ω1})).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem (Foreman-Magidor-Shelah, 1984)

- MM is a maximal forcing axiom: If P does not preserve stationary subsets of ω₁, then FA_{ω1}({P}) fails.
- (2) *MM*, and in fact *MM*⁺⁺, can be forced assuming the existence of a supercompact cardinal.

 MM^{++} is the following strong form of MM: For every \mathbb{P} preserving stationary subsets of ω_1 , every $\{D_i : i < \omega_1\}$ consisting of dense subsets of \mathbb{P} and every $\{\tau_i : i < \omega_1\}$ consisting of \mathbb{P} -names for stationary subsets of ω_1 there is a filter $G \subseteq \mathbb{P}$ such that

- $oldsymbol{G} \cap oldsymbol{D}_i
 eq \emptyset$ for each $i < \omega_1$, and
- {ν < ω₁ : (∃p ∈ G) p ⊩_ℙ ν ∈ τ_i} is a stationary subset of ω₁ for each i < ω₁.

Theorem (Foreman-Magidor-Shelah, 1984)

- MM is a maximal forcing axiom: If P does not preserve stationary subsets of ω₁, then FA_{ω1}({P}) fails.
- (2) *MM*, and in fact *MM*⁺⁺, can be forced assuming the existence of a supercompact cardinal.

 MM^{++} is the following strong form of MM: For every \mathbb{P} preserving stationary subsets of ω_1 , every $\{D_i : i < \omega_1\}$ consisting of dense subsets of \mathbb{P} and every $\{\tau_i : i < \omega_1\}$ consisting of \mathbb{P} -names for stationary subsets of ω_1 there is a filter $G \subseteq \mathbb{P}$ such that

- $G \cap D_i \neq \emptyset$ for each $i < \omega_1$, and
- {ν < ω₁ : (∃p ∈ G) p ⊩_P ν ∈ τ_i} is a stationary subset of ω₁ for each i < ω₁.

MM^{++} has many consequences for $H(\omega_2)$:

- p = 2^{ℵ₀} = ℵ₂ and there is a simply boldface definable (over H(ω₂)) well-order of H(ω₂) of length ω₂ (MA_{ω₁} [folklore?] and PFA [Todorčević, Veličković, and Moore], resp.)
- All ℵ₁-dense sets of reals are order-isomorphic. (PFA [Baumgartner])
- There is a 5-element basis for the uncountable linear orders. (PFA [Moore])
- $\delta_2^1 = \omega_2$ (MM [Woodin])
- ...

Empirical fact: MM⁺⁺ seems to provide a complete theory for $H(\omega_2)$ modulo forcing (on the other hand, MM, or even MM^{+ ω}, does not [Larson]).

MM^{++} has many consequences for $H(\omega_2)$:

- p = 2^{ℵ₀} = ℵ₂ and there is a simply boldface definable (over H(ω₂)) well-order of H(ω₂) of length ω₂ (MA_{ω₁} [folklore?] and PFA [Todorčević, Veličković, and Moore], resp.)
- All ℵ₁-dense sets of reals are order-isomorphic. (PFA [Baumgartner])
- There is a 5-element basis for the uncountable linear orders. (PFA [Moore])
- $\delta_2^1 = \omega_2$ (MM [Woodin])
- ...

Empirical fact: MM^{++} seems to provide a complete theory for $H(\omega_2)$ modulo forcing (on the other hand, MM, or even $MM^{+\omega}$, does not [Larson]).

In the 1990's, Woodin defined and studied the following axiom.¹

(*): AD holds in $L(\mathbb{R})$ and $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{max} -extension of $L(\mathbb{R})$.

 $\mathbb{P}_{\max} \in L(\mathbb{R})$ is the forcing we will define next.

¹Most uncredited results about (*) that follow are due to Woodin. $(a) \rightarrow (a) \rightarrow (a)$

In the 1990's, Woodin defined and studied the following axiom.¹

(*): AD holds in $L(\mathbb{R})$ and $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{max} -extension of $L(\mathbb{R})$.

 $\mathbb{P}_{max} \in L(\mathbb{R})$ is the forcing we will define next.

¹Most uncredited results about (*) that follow are due to Woodin.

Given $\eta \leq \omega_1$, a sequence ($\langle (M_{\alpha}, I_{\alpha}), G_{\alpha}, j_{\alpha,\beta} \rangle : \alpha < \beta \leq \eta$) is a generic iteration (of (M_0, I_0)) iff

- *M*₀ is a countable transitive model of ZFC* (enough of ZFC).
- $I_0 \in M_0$ is, in M_0 , a normal ideal on $\omega_1^{M_0}$.
- $j_{\alpha,\beta}$, for $\alpha < \beta \leq \eta$, is a commuting system of elementary embeddings

$$j_{\alpha,\beta}: (M_{\alpha}; \in, I_{\alpha}) \longrightarrow (M_{\beta}, \in, I_{\beta})$$

For each α < η, G_α is a P(ω₁)^{M_α}/I_α-generic filter over M_α,

$$j_{\alpha,\alpha+1}: M_{\alpha} \longrightarrow \mathsf{Ult}(M_{\alpha}, G_{\alpha})$$

is the corresponding elementary embedding, and $(M_{\alpha+1}, I_{\alpha+1}) = (\text{Ult}(M_{\alpha}, G_{\alpha}), j_{\alpha,\alpha+1}(I_{\alpha})).$

If β ≤ η is a limit ordinal, (M_β, I_β) and j_{α,β} (for α < β) is the direct limit of (⟨(M_α, I_α), G_α, j_{α,α'}⟩ : α < α' < β).

A pair (M, I) is *iterable* if the models in every generic iteration of (M, I) are well-founded.

 \mathbb{P}_{max} is the following forcing:

Conditions in \mathbb{P}_{max} are triples (M, I, a), where (1) (M, I) is an iterable pair. (2) $M \models MA_{\omega_1}$ (3) $a \in \mathcal{P}(\omega_1)^M$ and $M \models \omega_1 = \omega_1^{L[a]}$. Extension relation: $(M^1, I^1, a^1) \leq_{\mathbb{P}_{max}} (M^0, I^0, a^0)$ iff $(M^0, I^0, a^0) \in M_1$ and, in M^1 , there is a generic iteration $\mathcal{I} = (\langle (M_{\alpha}, I_{\alpha}), G_{\alpha}, j_{\alpha,\beta} \rangle : \alpha < \beta \leq \eta)$ of (M^0, I^0) for $\eta = \omega_1^{M^1}$ such that

(a) $j_{0,\eta}(a^0) = a^1$

(b) \mathcal{I} is *correct* in (M^1, I^1) , in the sense that $j_{0,\eta}(I^0) \subseteq I^1$ and every I_{η} -positive subset of $\omega_1^{M_{\eta}} (= \omega_1^{M^1})$ in M_{η} is I^1 -positive.

A pair (M, I) is *iterable* if the models in every generic iteration of (M, I) are well-founded.

 \mathbb{P}_{max} is the following forcing:

Conditions in \mathbb{P}_{max} are triples (M, I, a), where (1) (M, I) is an iterable pair. (2) $M \models MA_{\omega_1}$ (3) $a \in \mathcal{P}(\omega_1)^M$ and $M \models \omega_1 = \omega_1^{L[a]}$. Extension relation: $(M^1, I^1, a^1) \leq_{\mathbb{P}_{max}} (M^0, I^0, a^0)$ iff $(M^0, I^0, a^0) \in M_1$ and, in M^1 , there is a generic iteration $\mathcal{I} = (\langle (M_\alpha, I_\alpha), G_\alpha, j_{\alpha,\beta} \rangle : \alpha < \beta \leq \eta)$ of (M^0, I^0) for $\eta = \omega_1^{M^1}$ such that

(a) $j_{0,\eta}(a^0) = a^1$

(b) \mathcal{I} is *correct* in (M^1, I^1) , in the sense that $j_{0,\eta}(I^0) \subseteq I^1$ and every I_{η} -positive subset of $\omega_1^{M_{\eta}}$ (= $\omega_1^{M^1}$) in M_{η} is I^1 -positive.

(日) (日) (日) (日) (日) (日) (日)

Some properties of \mathbb{P}_{max} under $AD^{L(\mathbb{R})}$:

- \mathbb{P}_{max} is weakly homogeneous (for all $p_0, p_1 \in \mathbb{P}_{max}$ there are $p'_0 \leq_{\mathbb{P}_{max}} p_0$ and $p'_1 \leq_{\mathbb{P}_{max}} p_1$ such that $\mathbb{P}_{max} \upharpoonright p'_0 \cong \mathbb{P}_{max} \upharpoonright p'_1$).
- \mathbb{P}_{max} is σ -closed (in particular it does not add new reals).

(日) (日) (日) (日) (日) (日) (日)

• If G is \mathbb{P}_{max} -generic over $L(\mathbb{R})$, then $L(\mathbb{R})[G] \models \mathsf{ZFC}$, and if

$$A_G = \bigcup \{b : (N, J, b) \in G\},\$$

G can be computed in $L(\mathbb{R})[A_G]$ as the set Γ_{A_G} of $(M, I, b) \in \mathbb{P}_{max}$ such that there is a correct iteration (relative to $(H(\omega_2), NS_{\omega_1})$) sending *b* to A_G .

If fact, for any $A \subseteq \omega_1$ such that $\omega_1^{L[A]} = \omega_1$, Γ_A can be computed in $L(\mathbb{R})[A]$, Γ_A is a \mathbb{P}_{max} -generic filter over $L(\mathbb{R})$, and

 $L(\mathbb{R})[\Gamma_A] = L(\mathbb{R})[G]$

In particular, $L(\mathbb{R})[G] \models V = L(\mathcal{P}(\omega_1))$, and so $L(\mathbb{R})[G] \models (*)$ if $L(\mathbb{R}) \models AD$ and *G* is \mathbb{P}_{max} -generic over $L(\mathbb{R})$.

• (Π_2 maximality) Assuming enough large cardinals (e.g. a proper class of Woodin cardinal). If *G* is \mathbb{P}_{max} -generic over $L(\mathbb{R})$, \mathcal{Q} is a set-forcing in *V*, *H* is \mathcal{Q} -generic over *V*, and σ is a Π_2 sentence such that

$$(H(\omega_2), \in, \mathsf{NS}_{\omega_1})^{V[H]} \models \sigma,$$

then

$$(H(\omega_2), \in, \mathsf{NS}_{\omega_1})^{L(\mathbb{R})[G]} \models \sigma$$

 $\mathsf{Th}(L(\mathbb{R}^{V[H_0]})[G_0]) = \mathsf{Th}(L(\mathbb{R}^{V[H_1]})[G_1])$

Proof of the completeness result: Let σ be any sentence and suppose

 $L(\mathbb{R}^{V[H_0]})[G_0] \models \sigma$

By weak homogeneity of \mathbb{P}_{max} ,

$$L(\mathbb{R}^{V[H_0]}) \models `` \Vdash_{\mathbb{P}_{max}} \sigma"$$

But the theory of $L(\mathbb{R})$ is invariant under forcing with our background large cardinals. Hence,

$$L(\mathbb{R}^{V[H_1]})\models$$
 " $\Vdash_{\mathbb{P}_{max}}\sigma$ "

and therefore

 $L(\mathbb{R}^{V[H_1]})[G_1] \models \sigma$

(日) (日) (日) (日) (日) (日) (日)

Some consequences of (*):

- p = 2^{ℵ₀} = ℵ₂ and there is a simply boldface definable (over H(ω₂)) well–order of H(ω₂) of length ω₂.
- All ℵ₁-dense sets of reals are order-isomorphic.
- There is a 5-element basis for the uncountable linear orders.

•
$$\delta_2^1 = \omega_2$$

• . . .

So (*) and forcing axioms in the region of MM seem to be closely related. However, $MM^{+\omega}$ does **not** imply (*): $MM^{+\omega}$ is consistent with a lightface definable well–order, over $H(\omega_2)$, of $H(\omega_2)$ [Larson], which cannot exist under (*). Otherwise by weak homogeneity of \mathbb{P}_{max} there would be a well–order of \mathbb{R} in $L(\mathbb{R})$, contradicting $AD^{L(\mathbb{R})}$. Some consequences of (*):

- p = 2^{ℵ₀} = ℵ₂ and there is a simply boldface definable (over H(ω₂)) well–order of H(ω₂) of length ω₂.
- All ℵ₁-dense sets of reals are order-isomorphic.
- There is a 5-element basis for the uncountable linear orders.

•
$$\delta_2^1 = \omega_2$$

• . . .

So (*) and forcing axioms in the region of MM seem to be closely related. However, $MM^{+\omega}$ does **not** imply (*): $MM^{+\omega}$ is consistent with a lightface definable well–order, over $H(\omega_2)$, of $H(\omega_2)$ [Larson], which cannot exist under (*). Otherwise by weak homogeneity of \mathbb{P}_{max} there would be a well–order of \mathbb{R} in $L(\mathbb{R})$, contradicting $AD^{L(\mathbb{R})}$. More consequences of (*):

- For every X ⊆ ω₁ such that X ∉ L[x] for any x ∈ ℝ there is a real r and a Coll(ω, <ω₁)–generic filter H over L[r] such that L[r][X] = L[r][H].
- For every X ⊆ ω₁ there is Y ⊆ ω₁ such that X ∈ L[Y] and such that for every Z ⊆ ω₁, if Z ∩ α ∈ L[Y] for all α < ω₁, then Z ∈ L[Y].

(日) (日) (日) (日) (日) (日) (日)

(*) **is** NICE

(日) (日) (日) (日) (日) (日) (日)

To summarize:

- (1) $(\Pi_2$ -maximality) (*) + large cardinals implies that $(H(\omega_2); \in, NS_{\omega_1})$ satisfies all forcible Π_2 sentences over $(H(\omega_2); \in, NS_{\omega_1})$.
- (2) (**Completeness**) (*) + large cardinals provides a complete theory for $L(\mathcal{P}(\omega_1))$, modulo set-forcing.
- (3) (Minimality) (*) implies that L(P_{ω1}) is a "canonical" model; in fact, of the form L(ℝ)[H] for any r ∈ ℝ and any Coll(ω, <ω1)–generic H over L[r].

But in order for (*) to be strongly NICE, it would have to be compatible with all possible large cardinals.

Question (Woodin): Is (*) compatible with all possible large cardinals? Does in fact (*) follow from MM⁺⁺?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The main result

・ロト・日本・モー・ モー うへの

```
Theorem (A–Schindler)
MM<sup>++</sup> implies (*).
```

A related result

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Todorčević)

Assume all sets of reals in $L(\mathbb{R})$ are universally Baire. If \mathcal{U} is a Ramsey ultrafilter, then \mathcal{U} is $\mathcal{P}(\omega)/Fin$ –generic over $L(\mathbb{R})$.

In the rest of the talk, I will sketch the proof of our theorem. As we will see, the main idea is to use "iterated \mathcal{L} -forcing" with side conditions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 MM^{++} implies $AD^{L(\mathbb{R})}$ (PFA suffices), so we only need to show that $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{max} -extension on $L(\mathbb{R})$.

It is well-known that if NS_{ω_1} is saturated, MA_{ω_1} holds, $\mathcal{P}(\omega_1)^{\sharp}$ exists, and $A \subseteq \omega_1$ is such that $\omega_1^{L[A]} = \omega_1$, then Γ_A is a filter on \mathbb{P}_{max} and $L(\mathcal{P}(\omega_1)) = L(\mathbb{R})[\Gamma_A]$.

Since MM⁺⁺ implies the hypotheses (in fact MM does), it suffices to assume MM⁺⁺ and prove that Γ_A is in fact \mathbb{P}_{max} -generic over $L(\mathbb{R})$.

So let $D \in L(\mathbb{R})$ be a dense subset of \mathbb{P}_{max} . We will prove that $\Gamma_A \cap D \neq \emptyset$.

 MM^{++} implies that every set of reals in $L(\mathbb{R})$ is universally Baire and the class of sets of reals in $L(\mathbb{R})$ is productive, so we may fix a tree T on $\omega \times 2^{\aleph_2}$ such that p[T] is (a set of reals coding the members of) D and such that

 $\Vdash_{\operatorname{Coll}(\omega,\omega_2)} "p[T] \text{ codes the members of a dense subset of } p_{max_2}" \xrightarrow{} 20\%$

 MM^{++} implies $AD^{L(\mathbb{R})}$ (PFA suffices), so we only need to show that $L(\mathcal{P}(\omega_1))$ is a \mathbb{P}_{max} -extension on $L(\mathbb{R})$.

It is well-known that if NS_{ω_1} is saturated, MA_{ω_1} holds, $\mathcal{P}(\omega_1)^{\sharp}$ exists, and $A \subseteq \omega_1$ is such that $\omega_1^{L[A]} = \omega_1$, then Γ_A is a filter on \mathbb{P}_{max} and $L(\mathcal{P}(\omega_1)) = L(\mathbb{R})[\Gamma_A]$.

Since MM⁺⁺ implies the hypotheses (in fact MM does), it suffices to assume MM⁺⁺ and prove that Γ_A is in fact \mathbb{P}_{max} -generic over $L(\mathbb{R})$.

So let $D \in L(\mathbb{R})$ be a dense subset of \mathbb{P}_{max} . We will prove that $\Gamma_A \cap D \neq \emptyset$.

 MM^{++} implies that every set of reals in $L(\mathbb{R})$ is universally Baire and the class of sets of reals in $L(\mathbb{R})$ is productive, so we may fix a tree T on $\omega \times 2^{\aleph_2}$ such that p[T] is (a set of reals coding the members of) D and such that

 $\Vdash_{Coll(\omega, \omega_2)}$ "p[T] codes the members of a dense subset of \mathbb{P}_{max} "

It suffices to show that there is a forcing Q preserving stationary subsets of ω_1 and forcing that there is a branch [x, b] through T such that x codes a member of Γ_A .

Let $\kappa = (2^{\aleph_2})^+$. Let *d* be Coll (κ, κ) -generic over *V*. In *V*[*d*] there is a club $D \subseteq \kappa$ of ordinals above ω_2 and a 'diamond sequence'

 $(\langle Q_{\lambda}, B_{\lambda} \rangle : \lambda \in C)$

such that $(Q_{\lambda} : \lambda \in C)$ is a strictly \subseteq -increasing and \subseteq -continuous seq. of transitive elem. submodels of $H(\kappa)^{V[d]} = H(\kappa)^{V}$ and $B_{\lambda} \subseteq Q_{\lambda}$ for all $\lambda \in C$.

Enough to show there is in V[d] a forcing \mathcal{P} preserving stationary subsets of ω_1 and forcing that there is a branch [x, b]through T such that x codes a member of Γ_A . (Hence I'll be writting V for V[d].) \mathcal{P} will be \mathcal{P}_{κ} , where

$$(\mathcal{P}_{\lambda} : \lambda \in \mathcal{C} \cup \{\kappa\})$$

(日) (日) (日) (日) (日) (日) (日)

is the sequence of forcings defined by letting \mathcal{P}_{λ} be the set, ordered under \supseteq , of finite sets *p* of sentences, in a suitable fixed language, such that $Coll(\omega, \lambda)$ forces that there is a λ -certificate for *p*.

λ -certificates

A λ -pre-certificate (relative to $(H(\omega_2)^V; \in, NS_{\omega_1}^V, A)$ and T) is a complete set Σ of sentences, in a suitable fixed language, describing finitary information about the following objects.

(1) $\mathcal{M}_0, \mathcal{N}_0 \in \mathbb{P}_{max}$

(2) $x = \langle k_n : n < \omega \rangle$, a real coding N_0 , and $\langle (k_n, \alpha_n) : n < \omega \rangle$, a branch through *T*.

(3) $\langle \mathcal{M}_i, \pi_{i,j} : i \leq j \leq \omega_1^{N_0} \rangle \in N_0$, a generic iteration of \mathcal{M}_0 witnessing $\mathcal{N}_0 \leq_{\mathbb{P}_{max}} \mathcal{M}_0$.

(4) $\langle N_i, \sigma_{i,j} : i \leq j \leq \omega_1 \rangle$, a generic iteration of N_0 such that if

$$\mathcal{N}_{\omega_1} = (N_{\omega_1}; \in, I^*, A^*),$$

then $A^* = A$.

(5)
$$\langle \mathcal{M}_i, \pi_{i,j} : i \leq j \leq \omega_1 \rangle = \sigma_{0,\omega_1} (\langle \mathcal{M}_i, \pi_{i,j} : i \leq j \leq \omega_1^{\mathcal{N}_0} \rangle)$$
 and
$$\mathcal{M}_{\omega_1} = (H(\omega_2)^V; \in, \mathsf{NS}_{\omega_1}^V, \mathcal{A})$$

(6) $K \subset \omega_1$, and for all $\delta \in K$,

(a) $\lambda_{\delta} \in C \cap \lambda$, and if $\gamma < \delta$ is in *K*, then $\lambda_{\gamma} < \lambda_{\delta}$ and $X_{\gamma} \cup \{\lambda_{\gamma}\} \subset X_{\delta}$,

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ ののの

(b)
$$X_{\delta} \prec (Q_{\lambda_{\delta}}; \in, \mathcal{P}_{\lambda_{\delta}}, B_{\lambda_{\delta}})$$
, and

(c) $X_{\delta} \cap \omega_1 = \delta$

A λ -pre-certificate Σ is a λ -certificate if, in addition: (\triangle) For every $\delta \in K$,

 $[\Sigma]^{<\omega} \cap X_{\delta} \cap E \neq \emptyset$

for every dense $E \subseteq \mathcal{P}_{\delta}$ definable over the structure

 $(Q_{\lambda_{\delta}}; \in, \mathcal{P}_{\lambda_{\delta}}, B_{\lambda_{\delta}})$

from parameters in X_{δ} .

A condition in \mathcal{P}_{λ} is a finite set p of sentences such that

 $Dash_{\mathsf{Coll}(\omega,\lambda)}$ "There is a λ –certificate Σ such that $p\in [\Sigma]^{<\omega}$ "

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

A λ -pre-certificate Σ is a λ -certificate if, in addition: (\triangle) For every $\delta \in K$,

 $[\Sigma]^{<\omega} \cap X_{\delta} \cap E \neq \emptyset$

for every dense $E \subseteq \mathcal{P}_{\delta}$ definable over the structure

 $(Q_{\lambda_{\delta}}; \in, \mathcal{P}_{\lambda_{\delta}}, B_{\lambda_{\delta}})$

from parameters in X_{δ} .

A condition in \mathcal{P}_{λ} is a finite set p of sentences such that $\Vdash_{\text{Coll}(\omega,\lambda)}$ "There is a λ -certificate Σ such that $p \in [\Sigma]^{<\omega}$ " • $(\mathcal{P}_{\lambda} : \lambda \in \mathcal{C} \cup \{\kappa\})$ is an \subseteq -increasing and \subseteq -continuous seq. of forcings and $\mathcal{P}_{\kappa} \subseteq H(\kappa)^{V}$.

• For every $\lambda \in C$, $\mathcal{P}_{\lambda} \neq \emptyset$: Let g be Coll(ω, ω_2)-generic over V. Then

$$\mathcal{M}_0 = (H(\omega_2)^V; \in, \mathsf{NS}_{\omega_1}^V)$$

is a \mathbb{P}_{\max} -condition. Since p[T] is a dense subset of \mathbb{P}_{\max} in V[g], there is in V[g] a branch $\langle (k_n)_{n < \omega}, (\alpha_n)_{n < \omega} \rangle$ of T with $(k_n)_{n < \omega}$ coding $\mathcal{N}_0 \in \mathbb{P}_{\max}$, together with a correct iteration $\mathcal{I}_0 = \langle \mathcal{M}_i, \pi_{i,j} : i \le j \le \omega_1^{\mathcal{N}_0} \rangle \in N_0$ of \mathcal{M}_0 witnessing $\mathcal{N}_0 \le \mathbb{P}_{\max} \mathcal{M}_0$.

In V[g], let $(\mathcal{N}_i, \sigma_{i,j} : i < j \le \omega_1)$ be a generic iteration of \mathcal{N}_0 . Let $\mathcal{I} = (\mathcal{M}_i, \pi_{i,j} : i < j \le \omega_1) = \sigma_{0,\omega_1}(\mathcal{I}_0)$. • $(\mathcal{P}_{\lambda} : \lambda \in \mathcal{C} \cup \{\kappa\})$ is an \subseteq -increasing and \subseteq -continuous seq. of forcings and $\mathcal{P}_{\kappa} \subseteq \mathcal{H}(\kappa)^{V}$.

• For every $\lambda \in C$, $\mathcal{P}_{\lambda} \neq \emptyset$: Let g be Coll (ω, ω_2) -generic over V. Then

$$\mathcal{M}_{\mathsf{0}} = (\mathit{H}(\omega_{\mathsf{2}})^{\mathit{V}}; \in, \mathsf{NS}_{\omega_{1}}^{\mathit{V}})$$

is a \mathbb{P}_{\max} -condition. Since p[T] is a dense subset of \mathbb{P}_{\max} in V[g], there is in V[g] a branch $\langle (k_n)_{n < \omega}, (\alpha_n)_{n < \omega} \rangle$ of T with $(k_n)_{n < \omega}$ coding $\mathcal{N}_0 \in \mathbb{P}_{\max}$, together with a correct iteration $\mathcal{I}_0 = \langle \mathcal{M}_i, \pi_{i,j} : i \le j \le \omega_1^{\mathcal{N}_0} \rangle \in N_0$ of \mathcal{M}_0 witnessing $\mathcal{N}_0 \le_{\mathbb{P}_{\max}} \mathcal{M}_0$.

In V[g], let $(\mathcal{N}_i, \sigma_{i,j} : i < j \le \omega_1)$ be a generic iteration of \mathcal{N}_0 . Let $\mathcal{I} = (\mathcal{M}_i, \pi_{i,j} : i < j \le \omega_1) = \sigma_{0,\omega_1}(\mathcal{I}_0)$. \mathcal{I} lifts to a generic iteration $(\mathcal{M}_i^+, \pi_{i,j}^+ : i < j \le \omega_1)$ of *V*. Let $M = M_{\omega_1}^+$ and $\pi = \pi_{0,\omega_1}^+$. The theory of

 $\langle M_i, \pi_{i,j}, N_i, \sigma_{i,j} : i < j \le \omega_1 \rangle, \langle (k_n)_{n < \omega}, (\pi(\alpha_n))_{n < \omega} \rangle, \langle \rangle$

is a λ -certificate for \emptyset , relative to $\pi((H(\omega_2)^V; \in, \mathsf{NS}_{\omega_1}^V, A))$ and $\pi(T)$, in some outer model. But then there is a λ -certificate for \emptyset , relative to $\pi((H(\omega_2)^V; \in, \mathsf{NS}_{\omega_1}^V, A))$ and $\pi(T)$, in $M^{\mathsf{Coll}(\omega, \pi(\lambda))}$ by Σ_1^1 -absoluteness, and the same is true in $V^{\mathsf{Coll}(\omega, \lambda)}$, relative to $(H(\omega_2)^V; \in, \mathsf{NS}_{\omega_1}^V, A)$ and T, by elementarity of π . \Box

(日) (日) (日) (日) (日) (日) (日)

• Standard density argument show that if G is \mathcal{P} -generic over V and

$$\langle \mathcal{M}_{i}, \pi_{i,j}, \mathcal{N}_{i}, \sigma_{i,j} : i < j \le \omega_{1} \rangle, \langle (k_{n}, \alpha_{n}) : n < \omega \rangle, \langle \lambda_{\delta}, X_{\delta} : \delta \in K \rangle$$

is the term model given by $\Sigma := \bigcup G$, then

$$\mathcal{I} = \langle \mathcal{N}_i, \sigma_{i,j} : i < j \le \omega_1 \rangle$$

(日) (日) (日) (日) (日) (日) (日)

is a generic iteration such that

- $H(\omega_2)^V \subseteq N_{\omega_1}$,
- $(\mathcal{P}(\omega_1) \setminus \mathsf{NS}_{\omega_1})^V \subseteq \mathcal{P}(\omega_1)^{\mathcal{N}_{\omega_1}} \setminus I_{\mathcal{N}_{\omega_1}},$
- $A_{\mathcal{N}_{\omega_1}} = A$, and
- \mathcal{N}_0 is coded by a real in p[T].

Crucial lemma

Lemma If $S \in \mathcal{P}(\omega_1)^{\mathcal{N}_{\omega_1}} \setminus I_{\mathcal{N}_{\omega_1}}$, then *S* is stationary in *V*[*G*]. [This immediately implies that \mathcal{I} is correct in *V*[*G*] and that \mathcal{P} preserves stationary subsets of *V*.]

Proof sketch of Lemma: Let \dot{C} be a \mathcal{P} -name for a club, \dot{S} a \mathcal{P} -name for set in $\mathcal{P}(\omega_1)^{\mathcal{N}_{\omega_1}} \setminus I_{\mathcal{N}_{\omega_1}}$, and $p \in \mathcal{P}$. Let $\lambda \in C$ such that B_{λ} codes $\dot{C} \cap (\mathcal{P}_{\lambda} \times \omega_1)$ and

$$(Q_{\lambda}; \in, \mathcal{P}_{\lambda}, \dot{C} \cap \mathcal{P}_{\lambda}) \prec (H(\kappa)^{V}; \in, \mathcal{P}, \dot{C})$$

Working in collapse *W* of *V* with $\omega_1^V < \omega_1^W$, find a \mathcal{P}_{λ} -generic filter *G* over *V* with $p \in G$. Let

$$\langle \mathcal{M}_i, \pi_{i,j} : i < j < \omega_1^V \rangle, \langle \mathcal{N}_i, \sigma_{i,j} : i < j < \omega_1^V \rangle, \ldots$$

be the corresponding objects given by G.

We may extend

$$\langle \mathcal{N}_i, \sigma_{i,j} : i < j < \omega_1^V \rangle$$

to

$$\langle \mathcal{N}_i, \sigma_{i,j} : i < j < \omega_1^W \rangle$$

such that $\delta = \omega_1^V \in \sigma_{\omega_1^V, \omega_1^W}(\dot{S})$.

By an elementarity argument as in the proof that $\mathcal{P}_{\lambda} \neq \emptyset$, there is, in *V*, some $q^* \leq_{\mathbb{P}_{max}} q$ for which there is some

 $\delta \in K^{q^*}$

which q^* enforces to be in \hat{S} and such that

 $\lambda_{\delta} = \lambda$

(日) (日) (日) (日) (日) (日) (日)

(For example existence of X_{δ} is witnessed by π " Q_{λ} .)

But since

$$(Q_{\lambda}; \in, \mathcal{P}_{\lambda}, \dot{C} \cap \mathcal{P}_{\lambda}) \prec (H(\kappa)^{V}; \in, \mathcal{P}, \dot{C}),$$

by a density argument q^* forces that δ is a limit point of C, and hence in C. Clause (\triangle) is used crucially for this:

Given any $q' \leq_{\mathcal{P}} q^*$ and $\xi < \delta$, any κ -certificate Σ for q' will contain $p \in X_{\delta}$ forcing some ordinal $\xi' > \xi$ in \dot{C} (thanks to (\triangle) , since

$$\{r \in \mathcal{P}_{\lambda} : (\exists \xi' > \xi)r \Vdash_{\mathcal{P}_{\lambda}} \xi' \in C\}$$

is a dense set definable over

$$(Q_{\lambda}; \in, \mathcal{P}_{\lambda}, B_{\lambda})$$

from $\xi \in X_{\delta}$). Of course $\xi' < \delta$ since $p \in X_{\delta}$ and $X_{\delta} \cap \omega_1 = \delta$. But then $p \cup q'$ is a common extension of p and q' in \mathcal{P} . \Box

Corollary

MM⁺⁺ *implies the following.*

- For every X ⊆ ω₁ such that X ∉ L[x] for any x ∈ ℝ there is a real r and a Coll(ω, <ω₁)–generic filter H over L[r] such that L[r][X] = L[r][H].
- For every X ⊆ ω₁ there is Y ⊆ ω₁ such that X ∈ L[Y] and such that for every Z ⊆ ω₁, if Z ∩ α ∈ L[Y] for all α < ω₁, then Z ∈ L[Y].

Thank you!

・ロン ・四マ・モン ・田・三田