(*) 24/7

David Asperó

University of East Anglia

Set theory of the reals
CMO-BIRS Oaxaca, August 2019

The main result is joint work with Ralf Schindler.

Forcing axioms

Given a class \mathcal{K} of forcing notions and a cardinal $\kappa, \mathrm{FA}_{\kappa}(\mathcal{K})$ is the following statement:

For every $\mathbb{P} \in \mathcal{K}$ and every collection $\left\{D_{i}: i<\kappa\right\}$ of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{i} \neq \emptyset$ for each $i<\kappa$.

For this talk, κ is always

Forcing axioms

Given a class \mathcal{K} of forcing notions and a cardinal $\kappa, \mathrm{FA}_{\kappa}(\mathcal{K})$ is the following statement:

For every $\mathbb{P} \in \mathcal{K}$ and every collection $\left\{D_{i}: i<\kappa\right\}$ of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{i} \neq \emptyset$ for each $i<\kappa$.

For this talk, κ is always ω_{1}.

Classical examples:

- $\mathrm{MA}_{\omega_{1}}$ is $\mathrm{FA}_{\omega_{1}}(\{\mathbb{P}: \mathbb{P} \operatorname{ccc}\})$.
- PFA is $\mathrm{FA}_{\omega_{1}}(\{\mathbb{P}: \mathbb{P}$ proper $\})$.
- MM (Martin's Maximum) is $\mathrm{FA}_{\omega_{1}}(\{\mathbb{P}: \mathbb{P}$ semiproper $\})$ (equivalently,
$\mathrm{FA}_{\omega_{1}}\left(\left\{\mathbb{P}: \mathbb{P}\right.\right.$ preserves stationary subsets of $\left.\left.\left.\omega_{1}\right\}\right)\right)$.

Theorem (Foreman-Magidor-Shelah, 1984)

(1) $M M$ is a maximal forcing axiom: If \mathbb{P} does not preserve stationary subsets of ω_{1}, then $F A_{\omega_{1}}(\{\mathbb{P}\})$ fails.
(2) $M M$, and in fact $M M^{++}$, can be forced assuming the existence of a supercompact cardinal.

Theorem (Foreman-Magidor-Shelah, 1984)

(1) $M M$ is a maximal forcing axiom: If \mathbb{P} does not preserve stationary subsets of ω_{1}, then $F A_{\omega_{1}}(\{\mathbb{P}\})$ fails.
(2) $M M$, and in fact $M M^{++}$, can be forced assuming the existence of a supercompact cardinal.
MM^{++}is the following strong form of MM: For every \mathbb{P} preserving stationary subsets of ω_{1}, every $\left\{D_{i}: i<\omega_{1}\right\}$ consisting of dense subsets of \mathbb{P} and every $\left\{\tau_{i}: i<\omega_{1}\right\}$ consisting of \mathbb{P}-names for stationary subsets of ω_{1} there is a filter $G \subseteq \mathbb{P}$ such that

- $G \cap D_{i} \neq \emptyset$ for each $i<\omega_{1}$, and
- $\left\{\nu<\omega_{1}:(\exists p \in G) p \Vdash_{\mathbb{P}} \nu \in \tau_{i}\right\}$ is a stationary subset of ω_{1} for each $i<\omega_{1}$.
MM^{++}has many consequences for $H\left(\omega_{2}\right)$:
- $\mathfrak{p}=2^{\aleph_{0}}=\aleph_{2}$ and there is a simply boldface definable (over $H\left(\omega_{2}\right)$) well-order of $H\left(\omega_{2}\right)$ of length $\omega_{2}\left(\mathrm{MA}_{\omega_{1}}\right.$ [folklore?] and PFA [Todorčević, Veličković, and Moore], resp.)
- All \aleph_{1}-dense sets of reals are order-isomorphic. (PFA [Baumgartner])
- There is a 5-element basis for the uncountable linear orders. (PFA [Moore])
- $\delta_{2}^{1}=\omega_{2}$ (MM [Woodin])
- ...
MM^{++}has many consequences for $H\left(\omega_{2}\right)$:
- $\mathfrak{p}=2^{\aleph_{0}}=\aleph_{2}$ and there is a simply boldface definable (over $H\left(\omega_{2}\right)$) well-order of $H\left(\omega_{2}\right)$ of length $\omega_{2}\left(\mathrm{MA}_{\omega_{1}}\right.$ [folklore?] and PFA [Todorčević, Veličković, and Moore], resp.)
- All \aleph_{1}-dense sets of reals are order-isomorphic. (PFA [Baumgartner])
- There is a 5-element basis for the uncountable linear orders. (PFA [Moore])
- $\delta_{2}^{1}=\omega_{2}$ (MM [Woodin])
- ...

Empirical fact: MM^{++}seems to provide a complete theory for $H\left(\omega_{2}\right)$ modulo forcing (on the other hand, MM, or even $\mathrm{MM}^{+\omega}$, does not [Larson]).

(*)

In the 1990's, Woodin defined and studied the following axiom. ${ }^{1}$
$(*)$: AD holds in $L(\mathbb{R})$ and $L\left(\mathcal{P}\left(\omega_{1}\right)\right)$ is a $\mathbb{P}_{\max }$-extension of $L(\mathbb{R})$.

[^0]In the 1990's, Woodin defined and studied the following axiom. ${ }^{1}$
$(*)$: AD holds in $L(\mathbb{R})$ and $L\left(\mathcal{P}\left(\omega_{1}\right)\right)$ is a $\mathbb{P}_{\max }$-extension of $L(\mathbb{R})$.
$\mathbb{P}_{\max } \in L(\mathbb{R})$ is the forcing we will define next.

[^1]Given $\eta \leq \omega_{1}$, a sequence $\left(\left\langle\left(M_{\alpha}, I_{\alpha}\right), G_{\alpha}, j_{\alpha, \beta}\right\rangle: \alpha<\beta \leq \eta\right)$ is a generic iteration (of (M_{0}, l_{0})) iff

- M_{0} is a countable transitive model of ZFC* (enough of ZFC).
- $I_{0} \in M_{0}$ is, in M_{0}, a normal ideal on $\omega_{1}^{M_{0}}$.
- $j_{\alpha, \beta}$, for $\alpha<\beta \leq \eta$, is a commuting system of elementary embeddings

$$
j_{\alpha, \beta}:\left(M_{\alpha} ; \in, I_{\alpha}\right) \longrightarrow\left(M_{\beta}, \in, I_{\beta}\right)
$$

- For each $\alpha<\eta, G_{\alpha}$ is a $\mathcal{P}\left(\omega_{1}\right)^{M_{\alpha}} / I_{\alpha}$-generic filter over M_{α},

$$
j_{\alpha, \alpha+1}: M_{\alpha} \longrightarrow \operatorname{Ult}\left(M_{\alpha}, G_{\alpha}\right)
$$

is the corresponding elementary embedding, and

$$
\left(M_{\alpha+1}, I_{\alpha+1}\right)=\left(\operatorname{Ult}\left(M_{\alpha}, G_{\alpha}\right), j_{\alpha, \alpha+1}\left(I_{\alpha}\right)\right)
$$

- If $\beta \leq \eta$ is a limit ordinal, $\left(M_{\beta}, I_{\beta}\right)$ and $j_{\alpha, \beta}$ (for $\left.\alpha<\beta\right)$ is the direct limit of $\left(\left\langle\left(M_{\alpha}, I_{\alpha}\right), G_{\alpha}, j_{\alpha, \alpha^{\prime}}\right\rangle: \alpha<\alpha^{\prime}<\beta\right)$.

A pair (M, I) is iterable if the models in every generic iteration of (M, I) are well-founded.
is the following forcing:

A pair (M, I) is iterable if the models in every generic iteration of (M, I) are well-founded.
$\mathbb{P}_{\max }$ is the following forcing:
Conditions in $\mathbb{P}_{\text {max }}$ are triples (M, I, a), where
(1) (M, I) is an iterable pair.
(2) $M \models \mathrm{MA}_{\omega_{1}}$
(3) $a \in \mathcal{P}\left(\omega_{1}\right)^{M}$ and $M \models \omega_{1}=\omega_{1}^{L[a]}$.

Extension relation: $\left(M^{1}, I^{1}, a^{1}\right) \leq_{\mathbb{P}_{\text {max }}}\left(M^{0}, I^{0}, a^{0}\right)$ iff $\left(M^{0}, I^{0}, a^{0}\right) \in M_{1}$ and, in M^{1}, there is a generic iteration $\mathcal{I}=\left(\left\langle\left(M_{\alpha}, I_{\alpha}\right), G_{\alpha}, j_{\alpha, \beta}\right\rangle: \alpha<\beta \leq \eta\right)$ of $\left(M^{0}, I^{0}\right)$ for $\eta=\omega_{1}^{M^{1}}$ such that
(a) $j_{0, \eta}\left(a^{0}\right)=a^{1}$
(b) \mathcal{I} is correct in $\left(M^{1}, I^{1}\right)$, in the sense that $j_{0, \eta}\left(I^{0}\right) \subseteq I^{1}$ and every I_{η}-positive subset of $\omega_{1}^{M_{\eta}}\left(=\omega_{1}^{M^{1}}\right)$ in M_{η} is ${ }^{1}$-positive.

Some properties of $\mathbb{P}_{\text {max }}$ under $A D^{L(\mathbb{R})}$:

- $\mathbb{P}_{\text {max }}$ is weakly homogeneous (for all $p_{0}, p_{1} \in \mathbb{P}_{\text {max }}$ there are $p_{0}^{\prime} \leq_{\mathbb{P}_{\text {max }}} p_{0}$ and $p_{1}^{\prime} \leq_{\mathbb{P}_{\text {max }}} p_{1}$ such that $\left.\mathbb{P}_{\text {max }} \upharpoonright p_{0}^{\prime} \cong \mathbb{P}_{\text {max }} \upharpoonright p_{1}^{\prime}\right)$.
- $\mathbb{P}_{\text {max }}$ is σ-closed (in particular it does not add new reals).
- If G is $\mathbb{P}_{\text {max }}$-generic over $L(\mathbb{R})$, then $L(\mathbb{R})[G] \models \mathrm{ZFC}$, and if

$$
A_{G}=\bigcup\{b:(N, J, b) \in G\}
$$

G can be computed in $L(\mathbb{R})\left[A_{G}\right]$ as the set $\Gamma_{A_{G}}$ of $(M, I, b) \in \mathbb{P}_{\text {max }}$ such that there is a correct iteration (relative to $\left(H\left(\omega_{2}\right), \mathrm{NS}_{\omega_{1}}\right)$) sending b to A_{G}.

If fact, for any $A \subseteq \omega_{1}$ such that $\omega_{1}^{L[A]}=\omega_{1}, \Gamma_{A}$ can be computed in $L(\mathbb{R})[A], \Gamma_{A}$ is a $\mathbb{P}_{\text {max }}$-generic filter over $L(\mathbb{R})$, and

$$
L(\mathbb{R})\left[\Gamma_{A}\right]=L(\mathbb{R})[G]
$$

In particular, $L(\mathbb{R})[G] \models V=L\left(\mathcal{P}\left(\omega_{1}\right)\right)$, and so $L(\mathbb{R})[G] \models(*)$ if $L(\mathbb{R}) \models \mathrm{AD}$ and G is $\mathbb{P}_{\text {max }}$-generic over $L(\mathbb{R})$.

- (Π_{2} maximality) Assuming enough large cardinals (e.g. a proper class of Woodin cardinal). If G is $\mathbb{P}_{\text {max }}$-generic over $L(\mathbb{R}), \mathcal{Q}$ is a set-forcing in V, H is \mathcal{Q}-generic over V, and σ is a Π_{2} sentence such that

$$
\left(H\left(\omega_{2}\right), \in, \mathrm{NS}_{\omega_{1}}\right)^{V[H]} \models \sigma,
$$

then

$$
\left(H\left(\omega_{2}\right), \in, N S_{\omega_{1}}\right)^{L(\mathbb{R})[G]} \models \sigma
$$

- (Completeness modulo set-forcing) Assuming enough large cardinals (e.g. a proper class of Woodin cardinal). Let \mathcal{Q}_{0} and \mathcal{Q}_{1} be set-forcings in V, let H_{0} be \mathcal{Q}_{0}-generic over V and H_{1} be \mathcal{Q}_{1}-generic over V, and let G_{0} be $\mathbb{P}_{\text {max }}^{L\left(\mathbb{R}^{\left.V\left(H_{0}\right]\right)}\right.}$-generic over $L\left(\mathbb{R}^{V\left[H_{0}\right]}\right)$ and G_{1} be $\mathbb{P}_{\text {max }}^{L\left(\mathbb{R}^{\left.\left.V / H_{1}\right]\right)}\right.}$-generic over $L\left(\mathbb{R}^{V\left[H_{H}\right]}\right)$. Then

$$
\operatorname{Th}\left(L\left(\mathbb{R}^{V\left[H_{0}\right]}\right)\left[G_{0}\right]\right)=\operatorname{Th}\left(L\left(\mathbb{R}^{V\left[H_{1}\right]}\right)\left[G_{1}\right]\right)
$$

Proof of the completeness result: Let σ be any sentence and suppose

$$
L\left(\mathbb{R}^{V\left[H_{0}\right]}\right)\left[G_{0}\right] \models \sigma
$$

By weak homogeneity of $\mathbb{P}_{\text {max }}$,

$$
L\left(\mathbb{R}^{V\left[H_{0}\right]}\right) \models " \vdash_{\mathbb{P}_{\max }} \sigma "
$$

But the theory of $L(\mathbb{R})$ is invariant under forcing with our background large cardinals. Hence,

$$
L\left(\mathbb{R}^{V\left[H_{1}\right]}\right) \models " \Vdash_{\mathbb{P}_{\max }} \sigma "
$$

and therefore

$$
L\left(\mathbb{R}^{V\left[H_{1}\right]}\right)\left[G_{1}\right] \models \sigma
$$

Some consequences of ($*$):

- $\mathfrak{p}=2^{\aleph_{0}}=\aleph_{2}$ and there is a simply boldface definable (over $\left.H\left(\omega_{2}\right)\right)$ well-order of $H\left(\omega_{2}\right)$ of length ω_{2}.
- All \aleph_{1}-dense sets of reals are order-isomorphic.
- There is a 5-element basis for the uncountable linear orders.
- $\delta_{2}^{1}=\omega_{2}$
- ...

Some consequences of (*):

- $\mathfrak{p}=2^{\aleph_{0}}=\aleph_{2}$ and there is a simply boldface definable (over $\left.H\left(\omega_{2}\right)\right)$ well-order of $H\left(\omega_{2}\right)$ of length ω_{2}.
- All \aleph_{1}-dense sets of reals are order-isomorphic.
- There is a 5 -element basis for the uncountable linear orders.
- $\delta_{2}^{1}=\omega_{2}$

So (*) and forcing axioms in the region of MM seem to be closely related. However, $\mathrm{MM}^{+\omega}$ does not imply (*): $\mathrm{MM}^{+\omega}$ is consistent with a lightface definable well-order, over $H\left(\omega_{2}\right)$, of $H\left(\omega_{2}\right)$ [Larson], which cannot exist under (*). Otherwise by weak homogeneity of $\mathbb{P}_{\text {max }}$ there would be a well-order of \mathbb{R} in $L(\mathbb{R})$, contradicting $A D^{L(\mathbb{R})}$.

More consequences of (*):

- For every $X \subseteq \omega_{1}$ such that $X \notin L[x]$ for any $x \in \mathbb{R}$ there is a real r and a $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic filter H over $L[r]$ such that $L[r][X]=L[r][H]$.
- For every $X \subseteq \omega_{1}$ there is $Y \subseteq \omega_{1}$ such that $X \in L[Y]$ and such that for every $Z \subseteq \omega_{1}$, if $Z \cap \alpha \in L[Y]$ for all $\alpha<\omega_{1}$, then $Z \in L[Y]$.

$(*)$ is NICE

To summarize:
(1) $\left(\Pi_{2}\right.$-maximality $)(*)+$ large cardinals implies that $\left(H\left(\omega_{2}\right) ; \in, N S_{\omega_{1}}\right)$ satisfies all forcible Π_{2} sentences over $\left(H\left(\omega_{2}\right) ; \in, N S_{\omega_{1}}\right)$.
(2) (Completeness) $(*)+$ large cardinals provides a complete theory for $L\left(\mathcal{P}\left(\omega_{1}\right)\right)$, modulo set-forcing.
(3) (Minimality) $(*)$ implies that $L\left(\mathcal{P}_{\omega_{1}}\right)$ is a "canonical" model; in fact, of the form $L(\mathbb{R})[H]$ for any $r \in \mathbb{R}$ and any $\operatorname{Coll}\left(\omega,<\omega_{1}\right)$-generic H over $L[r]$.

But in order for (*) to be strongly NICE, it would have to be compatible with all possible large cardinals.

Question (Woodin): Is (*) compatible with all possible large cardinals? Does in fact $(*)$ follow from MM^{++}?

The main result

Theorem (A-Schindler)
$M M^{++}$implies (*).

A related result

Theorem (Todorčević)
Assume all sets of reals in $L(\mathbb{R})$ are universally Baire. If \mathcal{U} is a Ramsey ultrafilter, then \mathcal{U} is $\mathcal{P}(\omega) /$ Fin-generic over $L(\mathbb{R})$.

In the rest of the talk, I will sketch the proof of our theorem. As we will see, the main idea is to use "iterated \mathcal{L}-forcing" with side conditions.
MM^{++}implies $\mathrm{AD}^{L(\mathbb{R})}$ (PFA suffices), so we only need to show that $L\left(\mathcal{P}\left(\omega_{1}\right)\right)$ is a $\mathbb{P}_{\max }$-extension on $L(\mathbb{R})$.
MM^{++}implies $\mathrm{AD}^{L(\mathbb{R})}$ (PFA suffices), so we only need to show that $L\left(\mathcal{P}\left(\omega_{1}\right)\right)$ is a $\mathbb{P}_{\max }$-extension on $L(\mathbb{R})$.

It is well-known that if $N S_{\omega_{1}}$ is saturated, $\mathrm{MA}_{\omega_{1}}$ holds, $\mathcal{P}\left(\omega_{1}\right)^{\sharp}$ exists, and $A \subseteq \omega_{1}$ is such that $\omega_{1}^{L[A]}=\omega_{1}$, then Γ_{A} is a filter on $\mathbb{P}_{\text {max }}$ and $L\left(\mathcal{P}\left(\omega_{1}\right)\right)=L(\mathbb{R})\left[\Gamma_{A}\right]$.

Since MM^{++}implies the hypotheses (in fact MM does), it suffices to assume MM^{++}and prove that Γ_{A} is in fact $\mathbb{P}_{\text {max }}$-generic over $L(\mathbb{R})$.

So let $D \in L(\mathbb{R})$ be a dense subset of $\mathbb{P}_{\text {max }}$. We will prove that $\Gamma_{A} \cap D \neq \emptyset$.
MM^{++}implies that every set of reals in $L(\mathbb{R})$ is universally Baire and the class of sets of reals in $L(\mathbb{R})$ is productive, so we may fix a tree T on $\omega \times 2^{\aleph_{2}}$ such that $p[T]$ is (a set of reals coding the members of) D and such that
${ }^{-}$Coll $\left(\omega, \omega_{2}\right)$ " $p[T]$ codes the members of a dense subset of $\mathbb{P}_{\text {max }}$ "

It suffices to show that there is a forcing \mathcal{Q} preserving stationary subsets of ω_{1} and forcing that there is a branch $[x, b]$ through T such that x codes a member of Γ_{A}.

Let $\kappa=\left(2^{\aleph_{2}}\right)^{+}$. Let d be Coll (κ, κ)-generic over V. In $V[d]$ there is a club $D \subseteq \kappa$ of ordinals above ω_{2} and a 'diamond sequence'

$$
\left(\left\langle Q_{\lambda}, B_{\lambda}\right\rangle: \lambda \in C\right)
$$

such that $\left(Q_{\lambda}: \lambda \in C\right)$ is a strictly \subseteq-increasing and \subseteq-continuous seq. of transitive elem. submodels of $H(\kappa)^{V[d]}=H(\kappa)^{V}$ and $B_{\lambda} \subseteq Q_{\lambda}$ for all $\lambda \in C$.

Enough to show there is in $V[d]$ a forcing \mathcal{P} preserving stationary subsets of ω_{1} and forcing that there is a branch $[x, b]$ through T such that x codes a member of Γ_{A}. (Hence l'll be writting V for $V[d]$.)
\mathcal{P} will be \mathcal{P}_{κ}, where

$$
\left(\mathcal{P}_{\lambda}: \lambda \in \mathcal{C} \cup\{\kappa\}\right)
$$

is the sequence of forcings defined by letting \mathcal{P}_{λ} be the set, ordered under \supseteq, of finite sets p of sentences, in a suitable fixed language, such that $\operatorname{Coll}(\omega, \lambda)$ forces that there is a λ-certificate for p.

λ-certificates

A λ-pre-certificate (relative to $\left(H\left(\omega_{2}\right)^{V} ; \in, \mathrm{NS}_{\omega_{1}}^{V}, A\right)$ and T) is a complete set Σ of sentences, in a suitable fixed language, describing finitary information about the following objects.
(1) $\mathcal{M}_{0}, \mathcal{N}_{0} \in \mathbb{P}_{\text {max }}$
(2) $x=\left\langle k_{n}: n<\omega\right\rangle$, a real coding N_{0}, and $\left\langle\left(k_{n}, \alpha_{n}\right): n<\omega\right\rangle$, a branch through T.
(3) $\left\langle\mathcal{M}_{i}, \pi_{i, j}: i \leq j \leq \omega_{1}^{N_{0}}\right\rangle \in N_{0}$, a generic iteration of \mathcal{M}_{0} witnessing $\mathcal{N}_{0} \leq \mathbb{P}_{\text {max }} \mathcal{M}_{0}$.
(4) $\left\langle\mathcal{N}_{i}, \sigma_{i, j}: i \leq j \leq \omega_{1}\right\rangle$, a generic iteration of \mathcal{N}_{0} such that if

$$
\mathcal{N}_{\omega_{1}}=\left(N_{\omega_{1}} ; \in, I^{*}, A^{*}\right),
$$

then $A^{*}=A$.
(5) $\left\langle\mathcal{M}_{i}, \pi_{i, j}: i \leq j \leq \omega_{1}\right\rangle=\sigma_{0, \omega_{1}}\left(\left\langle\mathcal{M}_{i}, \pi_{i, j}: i \leq j \leq \omega_{1}^{\mathcal{N}_{0}}\right\rangle\right)$ and

$$
\mathcal{M}_{\omega_{1}}=\left(H\left(\omega_{2}\right)^{V} ; \in, \mathrm{NS}_{\omega_{1}}^{V}, A\right)
$$

(6) $K \subset \omega_{1}$, and for all $\delta \in K$,
(a) $\lambda_{\delta} \in C \cap \lambda$, and if $\gamma<\delta$ is in K, then $\lambda_{\gamma}<\lambda_{\delta}$ and $X_{\gamma} \cup\left\{\lambda_{\gamma}\right\} \subset X_{\delta}$,
(b) $X_{\delta} \prec\left(Q_{\lambda_{\delta}} ; \in, \mathcal{P}_{\lambda_{\delta}}, B_{\lambda_{\delta}}\right)$, and
(c) $X_{\delta} \cap \omega_{1}=\delta$

A λ-pre-certificate Σ is a λ-certificate if, in addition:
(\triangle) For every $\delta \in K$,

$$
[\Sigma]^{<\omega} \cap X_{\delta} \cap E \neq \emptyset
$$

for every dense $E \subseteq \mathcal{P}_{\delta}$ definable over the structure

$$
\left(Q_{\lambda_{\delta}} ; \in, \mathcal{P}_{\lambda_{\delta}}, B_{\lambda_{\delta}}\right)
$$

from parameters in X_{δ}.

A λ-pre-certificate Σ is a λ-certificate if, in addition:
(\triangle) For every $\delta \in K$,

$$
[\Sigma]^{<\omega} \cap X_{\delta} \cap E \neq \emptyset
$$

for every dense $E \subseteq \mathcal{P}_{\delta}$ definable over the structure

$$
\left(Q_{\lambda_{\delta}} ; \in, \mathcal{P}_{\lambda_{\delta}}, B_{\lambda_{\delta}}\right)
$$

from parameters in X_{δ}.

A condition in \mathcal{P}_{λ} is a finite set p of sentences such that
$\Vdash^{\text {Coll }(\omega, \lambda)}$ "There is a λ-certificate Σ such that $p \in[\Sigma]<\omega$ "

- ($\left.\mathcal{P}_{\lambda}: \lambda \in C \cup\{\kappa\}\right)$ is an \subseteq-increasing and \subseteq-continuous seq. of forcings and $\mathcal{P}_{\kappa} \subseteq H(\kappa)^{V}$.
- ($\left.\mathcal{P}_{\lambda}: \lambda \in C \cup\{\kappa\}\right)$ is an \subseteq-increasing and \subseteq-continuous seq. of forcings and $\mathcal{P}_{\kappa} \subseteq H(\kappa)^{V}$.
- For every $\lambda \in C, \mathcal{P}_{\lambda} \neq \emptyset$: Let g be $\operatorname{Coll}\left(\omega, \omega_{2}\right)$-generic over V. Then

$$
\mathcal{M}_{0}=\left(H\left(\omega_{2}\right)^{V} ; \in, \mathrm{NS}_{\omega_{1}}^{V}\right)
$$

is a $\mathbb{P}_{\text {max }}$-condition. Since $p[T]$ is a dense subset of $\mathbb{P}_{\max }$ in $V[g]$, there is in $V[g]$ a branch $\left\langle\left(k_{n}\right)_{n<\omega},\left(\alpha_{n}\right)_{n<\omega}\right\rangle$ of T with $\left(k_{n}\right)_{n<\omega}$ coding $\mathcal{N}_{0} \in \mathbb{P}_{\max }$, together with a correct iteration $\mathcal{I}_{0}=\left\langle\mathcal{M}_{i}, \pi_{i, j}: i \leq j \leq \omega_{1}^{\mathcal{N}_{0}}\right\rangle \in N_{0}$ of \mathcal{M}_{0} witnessing $\mathcal{N}_{0} \leq_{\mathbb{P}_{\text {max }}} \mathcal{M}_{0}$.

In $V[g]$, let $\left(\mathcal{N}_{i}, \sigma_{i, j}: i<j \leq \omega_{1}\right)$ be a generic iteration of \mathcal{N}_{0}. Let $\mathcal{I}=\left(\mathcal{M}_{i}, \pi_{i, j}: i<j \leq \omega_{1}\right)=\sigma_{0, \omega_{1}}\left(\mathcal{I}_{0}\right)$.
\mathcal{I} lifts to a generic iteration $\left(\mathcal{M}_{i}^{+}, \pi_{i, j}^{+}: i<j \leq \omega_{1}\right)$ of V. Let $M=M_{\omega_{1}}^{+}$and $\pi=\pi_{0, \omega_{1}}^{+}$. The theory of

$$
\left\langle M_{i}, \pi_{i, j}, N_{i}, \sigma_{i, j}: i<j \leq \omega_{1}\right\rangle,\left\langle\left(k_{n}\right)_{n<\omega},\left(\pi\left(\alpha_{n}\right)\right)_{n<\omega}\right\rangle,\langle \rangle
$$

is a λ-certificate for \emptyset, relative to $\pi\left(\left(H\left(\omega_{2}\right)^{V} ; \in, \mathrm{NS}_{\omega_{1}}^{V}, A\right)\right)$ and $\pi(T)$, in some outer model. But then there is a λ-certificate for \emptyset, relative to $\pi\left(\left(H\left(\omega_{2}\right)^{V} ; \in, \mathrm{NS}_{\omega_{1}}^{V}, A\right)\right)$ and $\pi(T)$, in $M^{\mathrm{Colll}(\omega, \pi(\lambda))}$ by Σ_{1}^{1}-absoluteness, and the same is true in $V^{\text {Coll }(\omega, \lambda)}$, relative to $\left(H\left(\omega_{2}\right)^{V} ; \in, \mathrm{NS}_{\omega_{1}}^{V}, A\right)$ and T, by elementarity of π.

- Standard density argument show that if G is \mathcal{P}-generic over V and

$$
\left\langle\mathcal{M}_{i}, \pi_{i, j}, \mathcal{N}_{i}, \sigma_{i, j}: i<j \leq \omega_{1}\right\rangle,\left\langle\left(k_{n}, \alpha_{n}\right): n<\omega\right\rangle,\left\langle\lambda_{\delta}, X_{\delta}: \delta \in K\right\rangle
$$

is the term model given by $\Sigma:=\bigcup G$, then

$$
\mathcal{I}=\left\langle\mathcal{N}_{i}, \sigma_{i, j}: i<j \leq \omega_{1}\right\rangle
$$

is a generic iteration such that

- $H\left(\omega_{2}\right)^{V} \subseteq N_{\omega_{1}}$,
- $\left(\mathcal{P}\left(\omega_{1}\right) \backslash N S_{\omega_{1}}\right)^{V} \subseteq \mathcal{P}\left(\omega_{1}\right)^{\mathcal{N}_{\omega_{1}}} \backslash \mathcal{I}_{\mathcal{N}_{1}}$,
- $A_{\mathcal{N}_{\omega_{1}}}=A$, and
- \mathcal{N}_{0} is coded by a real in $p[T]$.

Crucial lemma

Lemma
If $S \in \mathcal{P}\left(\omega_{1}\right)^{\mathcal{N}_{\omega_{1}}} \backslash \mathcal{I}_{\mathcal{N}_{\omega_{1}}}$, then S is stationary in $V[G]$.
[This immediately implies that \mathcal{I} is correct in $V[G]$ and that \mathcal{P} preserves stationary subsets of V.]

Proof sketch of Lemma: Let \dot{C} be a \mathcal{P}-name for a club, \dot{S} a \mathcal{P}-name for set in $\mathcal{P}\left(\omega_{1}\right)^{\mathcal{N}_{\omega_{1}}} \backslash \mathcal{I}_{\mathcal{N}_{\omega_{1}}}$, and $p \in \mathcal{P}$. Let $\lambda \in C$ such that B_{λ} codes $\dot{C} \cap\left(\mathcal{P}_{\lambda} \times \omega_{1}\right)$ and

$$
\left(Q_{\lambda} ; \in, \mathcal{P}_{\lambda}, \dot{C} \cap \mathcal{P}_{\lambda}\right) \prec\left(H(\kappa)^{V} ; \in, \mathcal{P}, \dot{C}\right)
$$

Working in collapse W of V with $\omega_{1}^{V}<\omega_{1}^{W}$, find a \mathcal{P}_{λ}-generic filter G over V with $p \in G$. Let

$$
\left\langle\mathcal{M}_{i}, \pi_{i, j}: i<j<\omega_{1}^{V}\right\rangle,\left\langle\mathcal{N}_{i}, \sigma_{i, j}: i<j<\omega_{1}^{V}\right\rangle, \ldots
$$

be the corresponding objects given by G.

We may extend

$$
\left\langle\mathcal{N}_{i}, \sigma_{i, j}: i<j<\omega_{1}^{V}\right\rangle
$$

to

$$
\left\langle\mathcal{N}_{i}, \sigma_{i, j}: i<j<\omega_{1}^{W}\right\rangle
$$

such that $\delta=\omega_{1}^{V} \in \sigma_{\omega_{1}^{V}, \omega_{1}^{W}}(\dot{S})$.
By an elementarity argument as in the proof that $\mathcal{P}_{\lambda} \neq \emptyset$, there is, in V, some $q^{*} \leq_{\mathbb{P}_{\text {max }}} q$ for which there is some

$$
\delta \in K^{q^{*}}
$$

which q^{*} enforces to be in \dot{S} and such that

$$
\lambda_{\delta}=\lambda
$$

(For example existence of X_{δ} is witnessed by π " Q_{λ}.)

But since

$$
\left(Q_{\lambda} ; \in, \mathcal{P}_{\lambda}, \dot{\mathrm{C}} \cap \mathcal{P}_{\lambda}\right) \prec\left(H(\kappa)^{V} ; \in, \mathcal{P}, \dot{C}\right)
$$

by a density argument q^{*} forces that δ is a limit point of \dot{C}, and hence in \dot{C}. Clause (\triangle) is used crucially for this:

Given any $q^{\prime} \leq \mathcal{P} q^{*}$ and $\xi<\delta$, any κ-certificate Σ for q^{\prime} will contain $p \in X_{\delta}$ forcing some ordinal $\xi^{\prime}>\xi$ in \dot{C} (thanks to (\triangle), since

$$
\left\{r \in \mathcal{P}_{\lambda}:\left(\exists \xi^{\prime}>\xi\right) r \Vdash_{\mathcal{P}_{\lambda}} \xi^{\prime} \in \dot{C}\right\}
$$

is a dense set definable over

$$
\left(Q_{\lambda} ; \in, \mathcal{P}_{\lambda}, B_{\lambda}\right)
$$

from $\xi \in X_{\delta}$). Of course $\xi^{\prime}<\delta$ since $p \in X_{\delta}$ and $X_{\delta} \cap \omega_{1}=\delta$. But then $p \cup q^{\prime}$ is a common extension of p and q^{\prime} in \mathcal{P}.\square

Corollary
M^{++}implies the following.

- For every $X \subseteq \omega_{1}$ such that $X \notin L[x]$ for any $x \in \mathbb{R}$ there is a real r and a Coll $\left(\omega,<\omega_{1}\right)$-generic filter H over $L[r]$ such that $L[r][X]=L[r][H]$.
- For every $X \subseteq \omega_{1}$ there is $Y \subseteq \omega_{1}$ such that $X \in L[Y]$ and such that for every $Z \subseteq \omega_{1}$, if $Z \cap \alpha \in L[Y]$ for all $\alpha<\omega_{1}$, then $Z \in L[Y]$.

Thank you!

[^0]: ${ }^{1}$ Most uncredited results about $(*)$ that follow are due to Woodin.

[^1]: ${ }^{1}$ Most uncredited results about $(*)$ that follow are due to Woodin.

