# Clique Is Hard for State-of-the-Art Algorithms 

Susanna F. de Rezende

KTH Royal Institute of Technology

Oахаса<br>August 2018

Talk based on joint work with:

A. Atserias

I. Bonacina M. Lauria

J. Nordström

A. Razborov

## Maximum clique problem

- What is the size of a maximum clique in $G$ ?



## Maximum clique problem

- What is the size of a maximum clique in $G$ ?



## Maximum clique problem

- What is the size of a maximum clique in $G$ ?



## Motivation

- Clique fundamental problem


## Motivation

- Clique fundamental problem
- Easy to decide if $G$ contains a $k$-clique in time $n^{k}$



## Motivation

- Clique fundamental problem
- Easy to decide if $G$ contains a $k$-clique in time $n^{k}$


Is this optimal?

## Our main result

## Theorem (informal)

State-of-the-art algorithms require time $n^{\Omega(k)}$ to determine that the maximum clique in a random graph is $k$.

## Our main result

## Theorem (informal)

State-of-the-art algorithms require time $n^{\Omega(k)}$ to determine that the maximum clique in a random graph is $k$.

- To analyse algorithms need to formalise method of reasoning used


## Our main result

## Theorem (informal)

State-of-the-art algorithms require time $n^{\Omega(k)}$ to determine that the maximum clique in a random graph is $k$.

- To analyse algorithms need to formalise method of reasoning used
- If graph has no $k$-clique, trace of algorithm gives proof of this fact
- Lower bound on size of such proofs $\Rightarrow$ lower bound on running time


## Our main result

## Theorem (informal)

State-of-the-art algorithms require time $n^{\Omega(k)}$ to determine that the maximum clique in a random graph is $k$.

- To analyse algorithms need to formalise method of reasoning used
- If graph has no $k$-clique, trace of algorithm gives proof of this fact
- Lower bound on size of such proofs $\Rightarrow$ lower bound on running time
- Brings us to topic of this talk: proof complexity


## What is resolution?

Input: Unsatisfiable CNF formula, e.g.:

$$
\neg x \wedge(\neg y \vee \neg z) \wedge(y \vee \neg w) \wedge(x \vee w) \wedge(\neg x \vee z) \wedge \neg y
$$

Goal: Certify unsatisfiability using resolution rule

$$
\frac{C \vee x \quad D \vee \neg x}{C \vee D}
$$

## Resolution refutation



$$
\neg x
$$

$$
y \vee \neg w
$$

$$
x \vee w
$$


$\rightarrow 7$

## Resolution refutation



$$
\neg x
$$


$\neg y$

## Resolution refutation


$\neg x$

$\neg y$

## Resolution refutation



Tree-like $=$ the proof DAG is a tree
Regular $=$ no variable resolved twice in any source-to-sink path Size $=\#$ of nodes in the proof DAG

## Branching program



## Branching program



Interested in branching programs solving falsified clause search problem

Falsified clause search problem: given unsat formula and an assignment to variables, find a falsified clause

## Branching program solving falsified clause problem



Tree-like $=$ the DAG is a tree
Regular $=$ no variable resolved twice in any source-to-sink path Size $=\#$ of nodes in the DAG

## Branching program solving falsified clause problem



Tree-like $=$ the DAG is a tree (a.k.a. decision tree)
Read-once $=$ no variable queried twice in any source-to-sink path Size $=\#$ of nodes in the DAG

## Branching program solving falsified clause problem



Decision tree
$=$ tree-like resolution
Read-once branching program $=$ regular resolution

General branching program stronger than general resolution

Tree-like $=$ the DAG is a tree (a.k.a. decision tree)
Read-once $=$ no variable queried twice in any source-to-sink path Size $=\#$ of nodes in the DAG

## Encoding the k-clique problem in CNF

Graph $G=(V, E), k \in \mathbb{N}$
Formula Clique $(\boldsymbol{G}, \boldsymbol{k})$ :
$x_{v, i}$ : "vertex $v$ is $i$-th member of clique"

## Encoding the k-clique problem in CNF

Graph $G=(V, E), k \in \mathbb{N}$
Formula $\operatorname{Clique}(\boldsymbol{G}, \boldsymbol{k})$ :
$x_{v, i}$ : "vertex $v$ is $i$-th member of clique"
$\exists i$ th clique-member

$$
i \in[k]
$$

non-neighbours are

$$
\neg x_{v, i} \vee \neg x_{u, j}
$$

$$
\bigvee_{v \in V} x_{v, i}
$$

$$
(v, u) \notin E
$$

not both in clique

## Encoding the k-clique problem in CNF

Graph $G=(V, E), k \in \mathbb{N}$
Formula $\operatorname{Clique}(\boldsymbol{G}, \boldsymbol{k})$ :
$x_{v, i}$ : "vertex $v$ is $i$-th member of clique"
$\exists i$ th clique-member
non-neighbours are
not both in clique

$$
\begin{equation*}
\bigvee_{v \in V} x_{v, i} \tag{k}
\end{equation*}
$$

$\neg x_{v, i} \vee \neg x_{u, j}$
$(v, u) \notin E$

Formula $\operatorname{Clique}(G, k)$ is satisfiable $\Leftrightarrow G$ has a $k$-clique

## State-of-the-art algorithms

Östergård's algorithm using Russian doll search

- often used in practice
- has been available online since 2003
- main component of the Cliquer software
- algorithm of choice in the open source software SageMath


## State-of-the-art algorithms

Östergård's algorithm using Russian doll search

- often used in practice
- has been available online since 2003
- main component of the Cliquer software
- algorithm of choice in the open source software SageMath

Colour-based branch-and-bound algorithms

- arguably the most successful in practice
- uses colouring as bounding (and often as branching) strategy
- basic idea: $(k-1)$-colourable graph cannot contain $k$-clique
- extended survey and computational analysis in [Prosser'12] and [McCreesh'17]


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$


| $b_{1}$ | $\boxed{b_{2}}$ | $\boxed{b_{3}}$ | $\boxed{b_{4}}$ | $\boxed{b_{5}}$ |
| :--- | :--- | :--- | :--- | :--- |
| $b_{6}$ | $\left.\begin{array}{\|c}b_{7} \\ \hline\end{array}\right]$ |  |  |  |

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$

## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$


| 1 | $\boxed{2}$ | $\boxed{3}$ | $\boxed{3}$ | $\boxed{3}$ | $\boxed{4}$ | $\square$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$

## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$


## Östergård's algorithm

- $G=(V, E)$
- $V=[n]=\{1,2, \ldots, n\}$


| 1 | $\boxed{2}$ | $\boxed{3}$ | $\boxed{3}$ | $\boxed{3}$ | $\boxed{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$b_{i}:=\max \{\ell: \exists \ell$-clique among vertices $\{1,2, \ldots, i\}\}$

## Östergård's algorithm



## Colour-based branch and bound

|  | $\begin{aligned} & 1 \text { expand }(H, \text { sol }) \text { : } \\ & 2 \text { begin } \end{aligned}$ |  |
| :---: | :---: | :---: |
|  | 3 | $($ order,$b) \leftarrow$ colourOrder $(H)$ |
|  | 4 | $\begin{gathered} \text { while } V(H) \neq \emptyset \text { do } \\ \quad i \leftarrow\|V(H)\| \end{gathered}$ |
| 1 MaxClique $(G)$ : | 5 6 | if $\mid$ sol $\|+b[i] \leq\|i n c\|$ then return |
| 2 begin | 7 | $v \leftarrow \operatorname{order}[i]$ |
| 3 global $i n c \leftarrow \emptyset$ |  |  |
| 4 expand (G, $\emptyset)$ | 8 | sol ${ }^{\prime} \leftarrow \operatorname{sol} \cup\{v\}$ |
| 5 return inc | 9 | $V^{\prime} \leftarrow V(H) \cap N(v)$ |
|  | 10 | expand ( $H\left[V^{\prime}\right]$, sol $\left.{ }^{\prime}\right)$ |
|  | 11 | - $H \leftarrow H \backslash\{v\}$ |
|  | 12 | if $\mid$ sol ${ }^{\prime}\left\|>\|i n c\|\right.$ then $i n c \leftarrow s o l^{\prime}$ |
|  | 13 | return |

## What kind of proofs do these algorithms generate?

## Recall encoding of $k$-clique problem in CNF

$x_{v, i}$ : "vertex $v$ is $i$-th member of clique"
$\exists i$ th clique-member
non-neighbours are not both in clique

$$
\bigvee_{v \in V} x_{v, i}
$$

$$
i \in[k]
$$

$$
\neg x_{v, i} \vee \neg x_{u, j}
$$

$$
(v, u) \notin E
$$

## Recall encoding of $k$-clique problem in CNF

$x_{v, i}$ : "vertex $v$ is $i$-th member of clique"
$\exists i$ th clique-member
non-neighbours are not both in clique

$$
\bigvee_{v \in V} x_{v, i} \quad i \in[k]
$$

$$
\neg x_{v, i} \vee \neg x_{u, j}
$$

$$
(v, u) \notin E
$$

Doesn't capture: if no $k$-clique where $v$ is 1 st member $\Rightarrow$ no $k$-clique where $v$ is 2 nd member

## Recall encoding of $k$-clique problem in CNF

$x_{v, i}$ : "vertex $v$ is $i$-th member of clique"
$\exists i$ th clique-member
non-neighbours are
not both in clique

$$
\bigvee_{v \in V} x_{v, i} \quad i \in[k]
$$

$$
\neg x_{v, i} \vee \neg x_{u, j}
$$

$$
(v, u) \notin E
$$

Doesn't capture: if no $k$-clique where $v$ is 1 st member $\Rightarrow$ no $k$-clique where $v$ is 2 nd member

Fix: define "stronger" formula
$\Rightarrow$ split $V=V_{1} \dot{\cup} \ldots \dot{U} V_{k}$ s.t. $v \in V_{i}$ can only be $i$ th clique member

## Recall encoding of $k$-clique problem in CNF

$x_{v}$ : "vertex $v$ is $i$-th member of clique" for $v \in V_{i}$
$\exists i$ th clique-member

$$
\bigvee_{v \in V_{i}} x_{v}
$$

$$
i \in[k]
$$

non-neighbours are

$$
\neg x_{v} \vee \neg x_{u}
$$

$$
(v, u) \notin E
$$

not both in clique

Doesn't capture: if no $k$-clique where $v$ is 1 st member $\Rightarrow$ no $k$-clique where $v$ is 2 nd member

Fix: define "stronger" formula
$\Rightarrow$ split $V=V_{1} \dot{\cup} \ldots \dot{U} V_{k}$ s.t. $v \in V_{i}$ can only be $i$ th clique member

## Recall encoding of $k$-clique problem in CNF

$x_{v}$ : "vertex $v$ is $i$-th member of clique" for $v \in V_{i}$
$\exists i$ th clique-member

$$
\bigvee_{v \in V_{i}} x_{v}
$$

$$
i \in[k]
$$

non-neighbours are

$$
\neg x_{v} \vee \neg x_{u}
$$

$$
(v, u) \notin E
$$

not both in clique

Doesn't capture: if no $k$-clique where $v$ is 1 st member $\Rightarrow$ no $k$-clique where $v$ is 2 nd member

Fix: define "stronger" formula
$\Rightarrow$ split $V=V_{1} \dot{\cup} \ldots \dot{U} V_{k}$ s.t. $v \in V_{i}$ can only be $i$ th clique member
$G$ has no $k$-clique $\Rightarrow$ formula unsat (converse not necessarily true)

## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution


## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution
- Bound $=$ ?


## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution
- Bound = ?
- Are there small resolution proofs of the fact that $(k-1)$-colourable graphs do not contain $k$-cliques?


## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution
- Bound = ?
- Are there small resolution proofs of the fact that $(k-1)$-colourable graphs do not contain $k$-cliques?
- Complete $(k-1)$-partite graph



## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution
- Bound = ?
- Are there small resolution proofs of the fact that $(k-1)$-colourable graphs do not contain $k$-cliques?
- Complete ( $k-1$ )-partite graph
- Hard for tree-like resolution



## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution
- Bound = ?
- Are there small resolution proofs of the fact that $(k-1)$-colourable graphs do not contain $k$-cliques?
- Complete $(k-1)$-partite graph
- Hard for tree-like resolution
- Easy for regular resolution! (can do $\approx 2^{k} n^{2}$ )
- In fact, any $(k-1)$-colourable graph is easy for regular resolution



## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution
- Bound $=$ regular resolution
- Are there small resolution proofs of the fact that $(k-1)$-colourable graphs do not contain $k$-cliques?
- Complete $(k-1)$-partite graph
- Hard for tree-like resolution
- Easy for regular resolution! (can do $\approx 2^{k} n^{2}$ )
- In fact, any $(k-1)$-colourable graph is easy for regular resolution



## What kind of proofs do these algorithms generate?

Colouring-base branch-and-bound algorithm

- Branch $=$ tree-like resolution
- Bound = regular resolution
- Are there small resolution proofs of the fact that $(k-1)$-colourable graphs do not contain $k$-cliques?

Östergård's algorithm

- Branch $=$ tree-like resolution
- Bound = regular resolution
- Reuse previous computations for bounding

Regular resolution captures any such algorithms, even for oracle access to optimal ordering of vertices and optimal colourings

## Hardness of $k$-clique for resolution

Previous work

- $n^{\Omega(k)}$ for tree-like resolution [Beyersdorff, Galesi, Lauria '11]
- $n^{\Omega(k)}$ for general resolution for binary encoding [Lauria, Pudlák, Rödl, Thapen '13]
- $\exp \left(n^{\Omega(1)}\right)$ for general resolution for $k \gg n^{5 / 6}$ [Beame, Impagliazzo, Sabharwal '01]


## Hardness of $k$-clique for resolution

Previous work

- $n^{\Omega(k)}$ for tree-like resolution [Beyersdorff, Galesi, Lauria '11]
- $n^{\Omega(k)}$ for general resolution for binary encoding [Lauria, Pudlák, Rödl, Thapen '13]
- $\exp \left(n^{\Omega(1)}\right)$ for general resolution for $k \gg n^{5 / 6}$ [Beame, Impagliazzo, Sabharwal '01]

Many reasons to care about small $k$

## Hardness of $k$-clique for resolution

## Previous work

- $n^{\Omega(k)}$ for tree-like resolution [Beyersdorff, Galesi, Lauria '11]
- $n^{\Omega(k)}$ for general resolution for binary encoding [Lauria, Pudlák, Rödl, Thapen '13]
- $\exp \left(n^{\Omega(1)}\right)$ for general resolution for $k \gg n^{5 / 6}$ [Beame, Impagliazzo, Sabharwal '01]

Many reasons to care about small $k$


## Hardness of $k$-clique for resolution

Previous work

- $n^{\Omega(k)}$ for tree-like resolution [Beyersdorff, Galesi, Lauria '11]
- $n^{\Omega(k)}$ for general resolution for binary encoding [Lauria, Pudlák, Rödl, Thapen '13]
- $\exp \left(n^{\Omega(1)}\right)$ for general resolution for $k \gg n^{5 / 6}$ [Beame, Impagliazzo, Sabharwal '01]

Usual proof complexity tool-box seems to fail:

- Random restrictions
- Interpolation techniques [Krajíček '97]
- Size-width lower bound [Ben-Sasson, Wigderson '99]


## What are hard instance for regular resolution?

- Erdős-Rényi random graph: $G \sim \mathcal{G}(n, p)$
- $n$ vertices
- include each possible edge with probability $p$



## What are hard instance for regular resolution?

- Erdős-Rényi random graph: $G \sim \mathcal{G}(n, p)$
- $n$ vertices
- include each possible edge with probability $p$

What is an appropriate $p$ ?

$$
E[\# \text { of } k \text {-cliques }]=\binom{n}{k} p^{k(k-1) / 2}
$$

- Threshold value for having a $k$-clique $p \approx n^{-2 /(k-1)}$
- Choose $p$ slightly below so that w.h.p. no $k$-clique but still dense


## Slightly more formal statement of main result

> Theorem
> Let $k \ll n^{1 / 4}$ and let $G \sim \mathcal{G}(n, p)$ for $p$ slightly less than threshold. W.h.p. any regular resolution refutation of $\operatorname{Clique}(G, k)$ has length $n^{\Omega(k)}$.

## Slightly more formal statement of main result

> Theorem
> Let $k \ll n^{1 / 4}$ and let $G \sim \mathcal{G}(n, p)$ for $p$ slightly less than threshold. W.h.p. any regular resolution refutation of $\operatorname{Clique}(G, k)$ has length $n^{\Omega(k)}$.

- Tight: upper bound $n^{O(k)}$ (even for tree-like resolution)
- Lower bound degrades gracefully with smaller density


## Take away

Summary

- $k$-clique fundamental problem
- Prove $n^{\Omega(k)}$ average case lower bound for regular resolution
- Holds for proof system that captures state-of-the-art algorithms


## Take away

## Summary

- $k$-clique fundamental problem
- Prove $n^{\Omega(k)}$ average case lower bound for regular resolution
- Holds for proof system that captures state-of-the-art algorithms

Open problems

- Prove hardness for explicit graphs
- Extend to general resolution
- Why are CDCL solvers slower than clique-solvers?
- Can we design better algorithms (e.g. that are not captured by regular resolution)?


## Take away

## Summary

- $k$-clique fundamental problem
- Prove $n^{\Omega(k)}$ average case lower bound for regular resolution
- Holds for proof system that captures state-of-the-art algorithms

Open problems

- Prove hardness for explicit graphs
- Extend to general resolution
- Why are CDCL solvers slower than clique-solvers?
- Can we design better algorithms (e.g. that are not captured by regular resolution)?


# Thanks! 

