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Adversarial attacks

[Szegedy et al.] Intriguing properties of neural networks
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Untargeted adversarial examples
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Targeted adversarial examples
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[Goodfellow et al., Szegedy et al.] [Papernot et al., 2016a, 2016b]

White-box vs Black-box Attacks
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White-box vs Black-box Attacks

Gradient-based methods that generate
adversarial images by perturbing the
gradients of the loss function w.r.t. the
input image
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White-box vs Black-box Attacks

Gradient-based methods that generate
adversarial images by perturbing the
gradients of the loss function w.r.t. the
input image

• More realistic and applicable model
• Challenging because of weak adversaries: 

no knowledge of the network architecture
• Previous attacks require ‘transferability’ 

assumption on adversarial examples
• GAN based attacks
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Are NNs reliable to use in safety-
critical  application?
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Verification of Neural Networks
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• Scalability (size of the network, 
dimensionality of perturbations)
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Verification of NN

IJCAI’18: 
Reachability Analysis of Deep Neural Networks with Provable Guarantees
Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska
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Verification of NN

IJCAI’18: 
Reachability Analysis of Deep Neural Networks with Provable Guarantees
Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska
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Neural Networks
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Neural Networks

[Alfredo Canziani, Adam Paszke, Eugenio Culurciello
An Analysis of Deep Neural Network Models for Practical Applications]
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Binarized Neural Networks

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio
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• special class of NN, where most parameters
are binary {-1,1}

• allows fast binary matrix multiplication (7x
speed up on a GPU).

• produces smaller size models as most
parameters are binary

Why Binarized Neural Networks
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F()BinBlock

A block can be encoded as SAT

Binarized Building Block
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SAT-based approach to adversarial examples

Verifying Properties of Binarized Deep Neural Networks
N.Narodytska, with S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, T. Walsh 
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Step 1 Step 2

• Adversarial goal

• Constraints on 
perturbation

Boolean encoding

Network function
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Boolean encoding
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Search procedure
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Experiments
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Dataset: MNIST, MNIST-ROT, MNIST-BACK
Network: BNN with FC layers
Problem: Untargeted adversarial examples
Encodings: SAT, ILP, CEG-SAT
+ few simplifications, e.g. un-normalized and
binarized inputs

Experiments
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Dataset: MNIST, MNIST-ROT, MNIST-BACK
Network: BNN with FC layers
Problem: Untargeted adversarial examples
Encodings: SAT, ILP, CEG-SAT
+ few simplifications, e.g. un-normalized and
binarized inputs

Vary:
• the value of maximum perturbation ε

Experiments
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Untargeted adversarial examples

Input: ( , 4)
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Untargeted adversarial examples
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• Most papers focus on robustness property
• Network equivalence 
• Invertibility of the network

Few observations on properties 
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• Most papers focus on classification problems
• Generative adversarial networks
• Reinforcement learning

Few observations on networks 
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Summary
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• Scalability remains the main issue
• We need to look beyond robustness 

Verification of Neural Networks
is an emerging exciting area!

Summary
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Thanks!
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High-level structure 

Linear transform Non-linear transform



116

High-level structure 

Linear transform Non-linear transform
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Network formula
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Decision (robustness) problem 
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