Formal Analysis of Binarized Deep Neural Networks

Nina Narodytska

- 1. Motivation
- 2. Adversarial attacks on Neural Networks
- 3. Verification of Neural Networks
- 4. Few observations on properties/networks

Motivation

Confidential | ©2018 VMware, Inc.

Machine Learning

Function

Image Function

Image	Function	Output
-------	----------	--------

[bus, ...]

Adversarial attacks

[Szegedy et al.] Intriguing properties of neural networks

Given an input (X, C), an input X' = X + P is an untargeted adversarial example iff NN misclassifies X' and P is small according to some metric.

Given an input (\mathbf{X}, \mathbf{C}) , an input X' = X + P is an untargeted adversarial example iff NN misclassifies X' and P is small according to some metric.

Given an input (X, C), an input X' = X + P is an untargeted adversarial example iff NN misclassifies X' and P is small according to some metric.

Given an input (X, C), an input X' = X + P is an untargeted adversarial example iff <u>NN misclassifies</u> X' and P is small according to some metric.

Original image

1.Bus 2. ...

Original image

Perturbation

1.Bus 2. ...

Original image

Perturbation

Perturbed image

1.Bus 2. ...

Original image

Perturbation

Perturbed image

1.Bus 2. ...

1. Ostrich **2. Bus**

Given a input (X, C) and a target class T, an input X' = X + P is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Given a input (\mathbf{X}, \mathbf{C}) and a target class \mathbf{T} , an input X' = X + P is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Given a input (\mathbf{X}, \mathbf{C}) and a target class \mathbf{T} , an input $\mathbf{X'=X+P}$ is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Given a input (\mathbf{X}, \mathbf{C}) and a target class \mathbf{T} , an input $\mathbf{X'=X+P}$ is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Original image

Perturbation

Perturbed image

1.Bus 2. ...

Building
 Bus

Target: Building

White-box vs Black-box Attacks

[Goodfellow et al., Szegedy et al.]

[Papernot et al., 2016a, 2016b]

White-box vs Black-box Attacks

[Goodfellow et al., Szegedy et al.]

Gradient-based methods that generate adversarial images by perturbing the gradients of the loss function w.r.t. the input image

[Papernot et al., 2016a, 2016b]

White-box vs Black-box Attacks

[Goodfellow et al., Szegedy et al.]

Gradient-based methods that generate adversarial images by perturbing the gradients of the loss function w.r.t. the input image

[Papernot et al., 2016a, 2016b]

- More realistic and applicable model
- Challenging because of weak adversaries: no knowledge of the network architecture
- Previous attacks require 'transferability' assumption on adversarial examples
- GAN based attacks

Are NNs reliable to use in safetycritical application?

Verification of Neural Networks

• Pulina and Tacchella 2010.

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks.

- Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, D. Vytiniotis, Aditya Nori, and A. Criminisi. *Measuring neural net robustness with constraints*
- Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. *Reluplex: An efficient SMT solver for verifying deep neural networks.*
- Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. *Safety verification of deep neural networks*
- Svyatoslav Korneev, Nina Narodytska, Luca Pulina, Armando Tacchella, N. Bjorner, and M. Sagiv. *Constrained image generation using binarized neural networks with decision procedures*.
- Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. *Verifying properties of binarized deep neural networks*
- Chih-Hong Cheng, Georg Nuhrenberg, and Harald Ruess. *Maximum resilience of artificial neural networks.*
- Chih-Hong Cheng, Georg Nuhrenberg, and Harald Ruess. *Verification of binarized neural networks*.
- Rudiger Ehlers.

Formal verification of piece-wise linear feed-forward neural networks.

• Matteo Fischetti and Jason Jo.

Deep neural networks as 0-1 mixed integer linear programs: A feasibility study.

Vincent Tjeng and Russ Tedrake.
 Verifying neural networks with mixed integer programming

- Pulina and Tacchella 2010. An Abstraction-Refinement Approach to Verification of Artificial Neural Networks.
- Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, D. Vytiniotis, Aditya Nori, and A. Criminisi. *Measuring neural net robustness with constraints*
- Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. *Reluplex: An efficient SMT solver for verifying deep neural networks.*

•	Xiaov		1
•	Safety	 Scalability (size of the network, 	
•	Svyat		nstrainea
	imag	dimensionality of perturbations)	
•	Nina		ying
	prop		
٠	Chih-		
	Maxi		

- Chih-Hong Cheng, Georg Nuhrenberg, and Harald Ruess. *Verification of binarized neural networks*.
- Rudiger Ehlers.
 Formal verification of piece-wise linear feed-forward neural networks.
- Matteo Fischetti and Jason Jo.

Deep neural networks as 0-1 mixed integer linear programs: A feasibility study.

Vincent Tjeng and Russ Tedrake.
 Verifying neural networks with mixed integer programming

	Core Techniques	Workable Layer Types	Running Time on ACAS Xu	Computational Complexity	Applicable to State- of-the-art Networks?	Maximal No. of Layers in Tested DNNs
SHERLOCK	MILP + Local Search	ReLu	No experiment	NP w.r.t. neuron no.	No (~6845 neurons)	6
Reluplex	SMT + LP	ReLu	O(10 ⁴)-O(10 ⁶)	NP w.r.t. neuron no.	No (~ 300 neurons)	6
Planet	SAT + LP	ReLu, maxpooling	O(10^3)	NP w.r.t. neuron no.	No (~ 300 neurons)	6
MIP	MIP	ReLu, maxpooling	O(10^3)	NP w.r.t. neuron no.	No (~ 300 neurons)	6
BaB	MIP + BaB	ReLu, maxpooling	O(10^2)	NP w.r.t. neuron no.	No (~ 300 neurons)	6
DeepGO (this paper)	GO + Lipschitz Continuty	Layer with Lipschitz Continuty (Sigmod, Tanh, max-pooling, ReLu, etc)	O(10^2)	NP w.r.t. changed input dimensions	Yes (millions of neurons)	19

Figure 8: A high-level comparison with state-of-the-art methods: SHERLOCK [10], Reluplex [7], Planet [26], MIP [11, 9] and BaB [12].

IJCAI'18:

Reachability Analysis of Deep Neural Networks with Provable Guarantees Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska

vmware[®]

2

	Core Techniques	Workable Layer Types	Running Time on ACAS Xu	Computational Complexity	Applicable to State- of-the-art Networks?	Maximal No. of Layers in Fested DNNs
SHERLOCK	MILP + Local Search	ReLu	No experiment	NP w.r.t. neuron no	No (~6845 neurons)	6
Reluplex	SMT + LP	ReLu	O(10 ⁴)-O(10 ⁶)	NP w.r.t. neuron no	No (~ 300 neurons)	6
Planet	SAT + LP	ReLu, maxpooling	O(10^3)	NP w.r.t. neuron no	No (~ 300 neurons)	6
MIP	MIP	ReLu, maxpooling	O(10^3)	NP w.r.t. neuron no	No (~ 300 neurons)	6
BaB	MIP + BaB	ReLu, maxpooling	O(10^2)	NP w.r.t. neuron no	No (~ 300 neurons)	6
DeepGO (this paper)	GO + Lipschitz Continuty	Layer with Lipschitz Continuty (Sigmod, Tanh, max-pooling, ReLu, etc)	O(10^2)	NP w.r.t. changed input dimensions	Yes (millions of neurons)	19

Figure 8: A high-level comparison with state-of-the-art methods: SHERLOCK [10], Reluplex [7], Planet [26], MIP [11, 9] and BaB [12].

IJCAI'18:

Reachability Analysis of Deep Neural Networks with Provable Guarantees Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska

2
Neural Networks

Neural Networks

[Alfredo Canziani, Adam Paszke, Eugenio Culurciello An Analysis of Deep Neural Network Models for Practical Applications]

vmware[®]

Binarized Neural Networks

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio

Why Binarized Neural Networks

- special class of NN, where most parameters are binary {-1,1}
- allows fast binary matrix multiplication (7x speed up on a GPU).
- produces smaller size models as most parameters are binary

Binarized neural networks 634 2016 I Hubara, M Courbariaux, D Soudry, R EI-Yaniv, Y Bengio Advances in Neural Information Processing Systems, 4107-4115 634 2016 Binaryconnect: Training deep neural networks with binary weights during propagations 483 2015 M Courbariaux, Y Bengio, JP David Advances in neural information processing systems, 3123-3131 2015

Binarized Building Block

Binarized Building Block

A block can be encoded as SAT

Binarized Building Block

MWare[®]

SAT-based approach to adversarial examples

Verifying Properties of Binarized Deep Neural Networks N.Narodytska, with S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, T. Walsh MWare^a

Bus

Not Bus

- Adversarial goal
- Constraints on perturbation

Step 1

Step 2

Adversarial goal
Constraints on perturbation

Step 1

Step 2

Step 1

Step 2

Step 1

Adversarial goal

 Constraints on perturbation

Step 2

Boolean encoding

Boolean encoding

 $SAT_{NN}(X+P,o)$

 $SAT_{Ad}(P, bus, o)$

MWare[®]

 $G(\ldots, y) \cap V(y, \ldots)$

vmware[®]

$$G(\ldots,y)\cap V(y,\ldots)$$

Craig interpolants

$$G(\ldots,y)\cap V(y,\ldots)$$

Craig interpolants

Dataset: MNIST, MNIST-ROT, MNIST-BACK Network: BNN with FC layers Problem: Untargeted adversarial examples Encodings: SAT, ILP, CEG-SAT + few simplifications, e.g. un-normalized and binarized inputs

Dataset: MNIST, MNIST-ROT, MNIST-BACK Network: BNN with FC layers Problem: Untargeted adversarial examples Encodings: SAT, ILP, CEG-SAT + few simplifications, e.g. un-normalized and binarized inputs

Dataset: MNIST, MNIST-ROT, MNIST-BACK Network: BNN with FC layers Problem: Untargeted adversarial examples Encodings: SAT, ILP, CEG-SAT + few simplifications, e.g. un-normalized and binarized inputs

Vary:

• the value of maximum perturbation ε

Input: (4, 4)

Input: (4, 4)

Goal:

Input: (4,4)

Goal:

Adversarial X' = 4' + P,

Input: (4,4)

Goal:

Adversarial X' = $4 + P_n$ max(P₁... P_n) < ϵ

Input: (4,4)

Goal:

Adversarial X' =
$$4 + P$$
,
max(P₁..., P_n) < ϵ
BinBlock 2 BinBlock o
BinBlock d

MNIST

				Solved	instances (out	of 200)				Certi	fiably ϵ -r	obust
	MNIST			MNIST-rot			MNIST-back-image					
	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG
	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#	#	#				
$\epsilon = 1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138
$\epsilon = 3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21
$\epsilon = 5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	_	4

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

MNIST

				Solved instances (out of 200)							Certifiably ϵ -robust		
		MNIST		MNIST-rot			MNIST-back-image						
	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG	
	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#	#	#	
$\epsilon = 1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138	
$\epsilon = 3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21	
$\epsilon = 5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	_	4	

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

MNIST-ROT

				Solved instances (out of 200)						Certifiably ϵ -robust		
		MNIST		MNIST-rot			MNIST-back-image					
	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG
	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#	#	#
$\epsilon = 1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138
$\epsilon = 3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21
$\epsilon = 5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	_	4

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

MNIST-BACK

				Solved				Certifiably ϵ -robust				
	MNIST			MNIST-rot								
	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG
	#solved (t)	#solved (t)	#	#	#							
$\epsilon = 1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138
$\epsilon = 3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21
$\epsilon = 5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	_	4

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

MNIST-BACK

	Solved instances (out of 200)										Certifiably ϵ -robust			
	MNIST			MNIST-rot				e						
	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG	SAT	ILP	CEG		
	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#solved (t)	#	#	#		
$\epsilon = 1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138		
$\epsilon = 3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21		
$\epsilon = 5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	-	4		

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

vmware[®]

Few observations on properties

Few observations on properties

Most papers focus on robustness property

Few observations on properties

- Most papers focus on robustness property
- Network equivalence
- Invertibility of the network

$$y_1 = 1 \times max(0, 10 \times x_1 + x_2)$$

 $y_2 = 2 \times max(0, -5 \times x_1 + x_2)$

$$x_1 \in [0.9, 1]$$

 $x_2 \in [-1, 1]$
 $y_i > 1, i = 1, 2$

$$y_1 = 1 \times \max(0, 10 \times x_1 + x_2)$$
$$y_2 = 2 \times \max(0, -5 \times x_1 + x_2)$$

$$x_1 \in [0.9, 1]$$

 $x_2 \in [-1, 1]$
 $y_i > 1, i = 1, 2$

$$y_{1} = 1 \times \max(0, 10 \times x_{1} + x_{2})$$

$$y_{2} = 2 \times \max(0, -5 \times x_{1} + x_{2})$$

$$x_1 \in [0.9, 1] \\ x_2 \in [-1, 1] \\ y_i > 1, i = 1, 2$$

$$y_1 = 1 \times \max(0, 10 \times x_1 + x_2)$$

$$x_1 \in [0.9, 1]$$

 $x_2 \in [-1, 1]$
 $y_i > 1, i = 1, 2$

$$y_1 = 1 \times (10 \times x_1 + x_2)$$

$$x_1 \in [0.9, 1]$$

 $x_2 \in [-1, 1]$
 $y_i > 1, i = 1, 2$

Few observations on properties

- Most papers focus on robustness property
- Network equivalence
- Invertibility of the network

Few observations on networks

Few observations on networks

- Most papers focus on classification problems
- Generative adversarial networks
- Reinforcement learning

Summary

Summary

- Scalability remains the main issue
- We need to look beyond robustness

Verification of Neural Networks is an emerging exciting area!

Thanks!

High-level structure

Linear transform Non-linear transform

High-level structure

Network formula

$$y_1 = c_1 Relu(a_{1,1}x_1 + a_{1,2}x_2)$$

$$y_2 = c_2 Relu(a_{2,1}x_1 + a_{2,2}x_2)$$

Decision (robustness) problem

$$y_1 = c_1 Relu(a_{1,1}x_1 + a_{1,2}x_2)$$

$$y_2 = c_2 Relu(a_{2,1}x_1 + a_{2,2}x_2)$$

$$x_i \in [w_1, w_2], i = 1, 2$$

 $y_i > q, i = 1, 2$

