Formal Analysis of Binarized Deep Neural Networks

Nina Narodytska

Outline

1. Motivation
2. Adversarial attacks on Neural Networks
3. Verification of Neural Networks
4. Few observations on properties/networks

Motivation

Machine Learning

Vulnerability of NN

Function

Vulnerability of NN

Image

Function

Vulnerability of NN

Image

Function
Output

Vulnerability of NN

Vulnerability of NN

Vulnerability of NN

Vulnerability of NN

Adversarial attacks

[Szegedy et al.] Intriguing properties of neural networks

Untargeted adversarial examples

Given an input (X, C), an input $X^{\prime}=X+P$ is an untargeted adversarial example iff NN misclassifies X^{\prime} and P is small according to some metric.

Untargeted adversarial examples

Given an input (\mathbf{X}, \mathbf{C}), an input $X^{\prime}=X+P$ is an untargeted adversarial example iff NN misclassifies X^{\prime} and P is small according to some metric.

Untargeted adversarial examples

Given an input (\mathbf{X}, \mathbf{C}), an input $\mathbf{X}^{\prime}=\mathbf{X}+\mathbf{P}$ is an untargeted adversarial example iff NN misclassifies X^{\prime} and P is small according to some metric.

Untargeted adversarial examples

Given an input (\mathbf{X}, \mathbf{C}), an input $\mathbf{X}^{\prime}=\mathbf{X}+\mathbf{P}$ is an untargeted adversarial example iff $N N$ misclassifies X^{\prime} and P is small according to some metric.

Untargeted adversarial examples

Original image

1.Bus
2. ...

Untargeted adversarial examples

1.Bus
2. ...

Untargeted adversarial examples

1.Bus
2. ...

Untargeted adversarial examples

1.Bus

1. Ostrich
2. ...
3. Bus

Targeted adversarial examples

Given a input (X, C) and a target class T, an input $X^{\prime}=X+P$ is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Targeted adversarial examples

Given a input (X, C) and a target class \mathbf{T}, an input $X^{\prime}=X+P$ is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Targeted adversarial examples

Given a input (X, C) and a target class \mathbf{T}, an input $\mathbf{X}^{\prime}=\mathbf{X}+\mathbf{P}$ is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Targeted adversarial examples

Given a input (X, C) and a target class \mathbf{T}, an input $\mathbf{X}^{\prime}=\mathbf{X}+\mathbf{P}$ is an targeted adversarial example iff the top prediction is T and P is small according to some metric.

Targeted adversarial examples

1.Bus

1. Building
2. ...
3. Bus

Target: Building

White-box vs Black-box Attacks

White-box vs Black-box Attacks

[Goodfellow et al., Szegedy et al.]

[Papernot et al., 2016a, 2016b]

Gradient-based methods that generate adversarial images by perturbing the gradients of the loss function w.r.t. the input image

White-box vs Black-box Attacks

[Goodfellow et al., Szegedy et al.]

Gradient-based methods that generate adversarial images by perturbing the gradients of the loss function w.r.t. the input image

- More realistic and applicable model
- Challenging because of weak adversaries: no knowledge of the network architecture
- Previous attacks require 'transferability' assumption on adversarial examples
- GAN based attacks

Are NNs reliable to use in safetycritical application?

Verification of NN

Verification of NN

Verification of Neural Networks

Verification of NN

- Pulina and Tacchella 2010.

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks.

- Osbert Bastani, Yani loannou, Leonidas Lampropoulos, D. Vytiniotis, Aditya Nori, and A. Criminisi. Measuring neural net robustness with constraints
- Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An efficient SMT solver for verifying deep neural networks.
- Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural networks
- Svyatoslav Korneev, Nina Narodytska, Luca Pulina, Armando Tacchella, N. Bjorner, and M. Sagiv. Constrained image generation using binarized neural networks with decision procedures.
- Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. Verifying properties of binarized deep neural networks
- Chih-Hong Cheng, Georg Nuhrenberg, and Harald Ruess.

Maximum resilience of artificial neural networks.

- Chih-Hong Cheng, Georg Nuhrenberg, and Harald Ruess. Verification of binarized neural networks.
- Rudiger Ehlers.

Formal verification of piece-wise linear feed-forward neural networks.

- Matteo Fischetti and Jason Jo.

Deep neural networks as 0-1 mixed integer linear programs: A feasibility study.

- Vincent Tjeng and Russ Tedrake.

Verifying neural networks with mixed integer programming

Verification of NN

- Pulina and Tacchella 2010.

An Abstraction-Refinement Approach to Verification of Artificial Neural Networks.

- Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, D. Vytiniotis, Aditya Nori, and A. Criminisi. Measuring neural net robustness with constraints
- Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An efficient SMT solver for verifying deep neural networks.
- Xiaol

- Svyat imag
- Nina dimensionality of perturbations)
- Chih

Maxi

- Chih-Hong Cheng, Georg Nuhrenberg, and Harald Ruess.

Verification of binarized neural networks.

- Rudiger Ehlers.

Formal verification of piece-wise linear feed-forward neural networks.

- Matteo Fischetti and Jason Jo.

Deep neural networks as 0-1 mixed integer linear programs: A feasibility study.

- Vincent Tjeng and Russ Tedrake.

Verifying neural networks with mixed integer programming

Verification of NN

Core Techniques	Workable Layer Types	Running Time on ACAS Xu	Computational Complexity	Applicable to State- of-the-art Networks?	Maximal No. of Layers in Tested DNNs	
SHERLOCK	MILP + Local Search	ReLu	No experiment	NP w.r.t. neuron no.	No (~ 6845 neurons)	6
Reluplex	SMT + LP	ReLu	$\mathrm{O}\left(10^{\wedge} 4\right)-\mathrm{O}\left(10^{\wedge} 6\right)$	NP w.r.t. neuron no.	No (~ 300 neurons $)$	6
Planet	SAT + LP	ReLu, maxpooling	$\mathrm{O}\left(10^{\wedge} 3\right)$	NP w.r.t. neuron no.	No (~ 300 neurons)	6
MIP	MIP	ReLu, maxpooling	$\mathrm{O}\left(10^{\wedge} 3\right)$	NP w.r.t. neuron no.	No (~ 300 neurons $)$	6
BaB	MIP + BaB	ReLu, maxpooling	$\mathrm{O}\left(10^{\wedge} 2\right)$	NP w.r.t. neuron no.	No (~ 300 neurons)	6
DeepGO (this paper)	GO + Lipschitz Continuty	Layer with Lipschitz Continuty (Sigmod, Tanh, max-pooling, ReLu, etc)	$\mathrm{O}\left(10^{\wedge} 2\right)$	NP w.r.t. changed input dimensions	Yes (millions of	neurons)

Figure 8: A high-level comparison with state-of-the-art methods: SHERLOCK [10], Reluplex [7], Planet [26], MIP [11, 9] and BaB [12].

IJCAI'18:
Reachability Analysis of Deep Neural Networks with Provable Guarantees
Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska

Verification of NN

	Core Techniques	Workable Layer Types	Running Time on ACAS Xu	Computational Complexity	Applicable to State-of-the-art Networks?	Maximal No. of Layers in rested DNNs
SHERLOCK	MILP + Local Search	ReLu	No experiment	NP w.r.t. neuron no	No (~6845 neurons)	6
Reluplex	SMT + LP	ReLu	$\mathrm{O}\left(10^{\wedge} 4\right)-\mathrm{O}\left(10^{\wedge} 6\right)$	NP w.r.t. neuron no	No (300 neurons)	6
Planet	SAT + LP	ReLu, maxpooling	$\mathrm{O}\left(10^{\wedge} 3\right)$	NP w.r.t. neuron no	No (300 neurons)	6
MIP	MIP	ReLu, maxpooling	O(10^3)	NP w.r.t. neuron no	No (~ 300 neurons)	6
BaB	$\mathrm{MIP}+\mathrm{BaB}$	ReLu, maxpooling	$\mathrm{O}\left(10^{\wedge} 2\right)$	NP w.r.t. neuron no	No (~300 neurons)	6
DeepGO (this paper)	GO + Lipschitz Continuty	Layer with Lipschitz Continuty (Sigmod, Tanh, max-pooling, ReLu, etc)	O(10^2)	NP w.r.t. changed input dimensions	Yes (millions of neurons)	19

Figure 8: A high-level comparison with state-of-the-art methods: SHERLOCK [10], Reluplex [7], Planet [26], MIP [11, 9] and BaB [12].

IJCAI'18:
Reachability Analysis of Deep Neural Networks with Provable Guarantees
Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska

Neural Networks

Neural Networks

[Alfredo Canziani, Adam Paszke, Eugenio Culurciello An Analysis of Deep Neural Network Models for Practical Applications]

Binarized Neural Networks

Why Binarized Neural Networks

- special class of NN, where most parameters are binary $\{-1,1\}$
- allows fast binary matrix multiplication (7x speed up on a GPU).
- produces smaller size models as most parameters are binary

Binarized neural networks
634 * 2016
I Hubara, M Courbariaux, D Soudry, R El-Yaniv, Y Bengio
Advances in Neural Information Processing Systems, 4107-4115

Advances in neural information processing systems, 3123-3131

Binarized Building Block

Binarized Building Block

A block can be encoded as SAT

Binarized Building Block

SAT-based approach to adversarial examples

Verifying Properties of Binarized Deep Neural Networks
N.Narodytska, with S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, T. Walsh

Bus

Boolean encoding

Step 1

Step 2

Boolean encoding

Step 1

Step 2

Block-wise BNN encoding

Block-wise BNN encoding

Block-wise BNN encoding

$$
X_{-1 / 1}^{X_{1}}
$$

$$
X_{-1 / 1}
$$

$$
b, g, h \in \mathbb{R}
$$

A is a binary matrix

Block

Block-wise BNN encoding

Block

Block-wise BNN encoding

Block-wise BNN encoding

Block

Block-wise BNN encoding

Block

Block-wise BNN encoding

Block

Block-wise BNN encoding

Block-wise BNN encoding

Block-wise BNN encoding

Block

Block-wise BNN encoding

Block-wise BNN encoding

Boolean encoding

Step 1
Step 2

Boolean encoding

Step 1

Step 2

Boolean encoding

Step 1

Step 2

Boolean encoding

Step 1

Step 2

Boolean encoding

Step 1

Step 2

Boolean encoding

$$
\begin{gathered}
S A T_{N N}(X+P, o) \\
S A T_{A d}(P, b u s, o)
\end{gathered}
$$

Search procedure

Search procedure

$$
\operatorname{Init}(P) \wedge S A T_{B}(X+P, y) \wedge S A T_{B}(y, z) \wedge S A T_{B}(z, o) \wedge A d(o)
$$

Search procedure

$$
\operatorname{Init}(P) \wedge S A T_{B}(X+P, y) \wedge S A T_{B}(y, z) \wedge S A T_{B}(z, o) \wedge A d(o)
$$

Search procedure

$$
\operatorname{Init}(P) \wedge S A T_{B}(X+P, y) \wedge S A T_{B}(y, z) \wedge S A T_{B}(z, o) \wedge A d(o)
$$

Search procedure

Search procedure

$$
G(\ldots, y) \cap V(y, \ldots)
$$

Search procedure

$$
G(\ldots, y) \cap V(y, \ldots)
$$

Craig interpolants

Search procedure

$$
G(\ldots, y) \cap V(y, \ldots)
$$

Craig interpolants

Search procedure

$$
G(\ldots, y) \wedge \quad V(y, \ldots)
$$

Solve $(G(y)) \quad \xrightarrow{\hat{y}}$

Search procedure

$$
G(\ldots, y)
$$

Search procedure

$G(\ldots, y)$

$$
\begin{aligned}
& \operatorname{Solve}(G(y)) \quad \xrightarrow{\hat{y}} \quad \operatorname{Solve}(V(y), y=\hat{y}) \\
& G(y)=G(y) \wedge \neg I(y) \stackrel{I(y)}{\rightleftarrows} \quad \stackrel{\text { Compute }(I(y))}{\text { returnP }}
\end{aligned}
$$

Search procedure

$G(\ldots, y)$

$$
\begin{aligned}
& \text { Solve (} G(y) \text {) } \\
& \text { Solve }(V(y), y=\hat{y})
\end{aligned}
$$

Experiments

vmware

Experiments

Dataset: MNIST, MNIST-ROT, MNIST-BACK Network: BNN with FC layers
Problem: Untargeted adversarial examples
Encodings: SAT, ILP, CEG-SAT

+ few simplifications, e.g. un-normalized and binarized inputs

Experiments

Dataset: MNIST, MNIST-ROT, MNIST-BACK Network: BNN with FC layers Problem: Untargeted adversarial examples Encodings: SAT, ILP, CEG-SAT + few simplifications, e.g. un-normalized and binarized inputs

Experiments

Dataset: MNIST, MNIST-ROT, MNIST-BACK Network: BNN with FC layers
Problem: Untargeted adversarial examples
Encodings: SAT, ILP, CEG-SAT

+ few simplifications, e.g. un-normalized and binarized inputs

Vary:

- the value of maximum perturbation ε

Untargeted adversarial examples

Input: (4, 4)

Untargeted adversarial examples

Input: (4, 4)

Goal:

Untargeted adversarial examples

Input: $(4,4)$

Goal:

Adversarial $X^{\prime}=4+P$,

Untargeted adversarial examples

Input: (4, 4)

Goal:

Adversarial $X^{\prime}=4+P$, $\max \left(P_{1} \ldots P_{n}\right)<\varepsilon$

Untargeted adversarial examples

Input: (4, 4)
Goal:
Adversarial $X^{\prime}=4+P$, $\max \left(\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}\right)<\varepsilon$

MNIST

	Solved instances (out of 200)									Certifiably ϵ-robust		
	MNIST			MNIST-rot			MNIST-back-image					
	SAT	ILP	CEG									
	\#solved (t)	\#	\#	\#								
$\epsilon=1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138
$\epsilon=3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21
$\epsilon=5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	-	4

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

MNIST

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

MNIST-ROT

	Solved instances (out of 200)									Certifiably ϵ-robust		
							MNIST-back-image					
	SAT	ILP	CEG									
	\#solved (t)	\#	\#	\#								
$\epsilon=1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138
$\epsilon=3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21
$\epsilon=5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	-	4

Table 2: Results onivinisi, initit-iot andiMNIST-back-image datasets.

MNIST-BACK

	Solved instances (out of 200)						MNIST-back-imag			Certifiably ϵ-robust		
	MNIST			MNIST-rot								
	SAT	ILP	CEG									
	\#solved (t)	\#	\#	\#								
$\epsilon=1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138
$\epsilon=3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21
$\epsilon=5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	-	4

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

MNIST-BACK

	Solved instances (out of 200)									Certifiably ϵ-robust		
	MNIST			MNIST-rot			MNIST-back-ima e					
	SAT	ILP	CEG									
	\#solved (t)	\#	\#	\#								
$\epsilon=1$	180 (77.3)	130 (31.5)	171 (34.1)	179 (57.4)	125 (10.9)	197 (13.5)	191 (18.3)	143 (40.8)	191 (12.8)	138	96	138
$\epsilon=3$	187 (77.6)	148 (29.0)	181 (35.1)	193 (61.5)	155 (9.3)	198 (13.7)	107 (43.8)	67 (52.7)	119 (44.6)	20	5	21
$\epsilon=5$	191 (79.5)	165 (29.1)	188 (36.3)	196(62.7)	170(11.3)	198(13.7)	104 (48.8)	70 (53.8)	116 (47.4)	3	-	4

Table 2: Results on MNIST, MNIST-rot and MNIST-back-image datasets.

vmware

Few observations on properties

Few observations on properties

- Most papers focus on robustness property

Few observations on properties

- Most papers focus on robustness property
- Network equivalence
- Invertibility of the network

Why robustness property?

$$
\begin{aligned}
& y_{1}=1 \times \max \left(0,10 \times x_{1}+x_{2}\right) \\
& y_{2}=2 \times \max \left(0,-5 \times x_{1}+x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \in[0.9,1] \\
& x_{2} \in[-1,1] \\
& y_{i}>1, i=1,2
\end{aligned}
$$

Why robustness property?

$$
\begin{aligned}
y_{1}= & 1 \times \max \left(0,10 \times x_{1}+x_{2}\right) \\
y_{2}= & 2 \times \max _{\circ}\left(0,-5 \times x_{1}+x_{2}\right) \\
& x_{1} \in[0.9,1] \\
& x_{2} \in[-1,1] \\
& y_{i}>1, i=1,2
\end{aligned}
$$

Why robustness property?

$$
\begin{aligned}
y_{1}= & 1 \times \max \left(0,10 \times x_{1}+x_{2}\right) \\
y_{2}= & 2 \times \max \left(0,-5 \times x_{1}+x_{2}\right) \\
& \begin{array}{l}
x_{1} \in[0.9,1] \\
\\
x_{2} \in[-1,1] \\
\\
y_{i}>1, i=1,2
\end{array}
\end{aligned}
$$

Why robustness property?

$$
y_{1}=1 \times \max \left(0,10 \times x_{1}+x_{2}\right)
$$

$$
\begin{aligned}
& x_{1} \in[0.9,1] \\
& x_{2} \in[-1,1] \\
& y_{i}>1, i=1,2
\end{aligned}
$$

Why robustness property?

$$
y_{1}=1 \times \quad\left(10 \times x_{1}+x_{2}\right)
$$

$$
\begin{aligned}
& x_{1} \in[0.9,1] \\
& x_{2} \in[-1,1] \\
& y_{i}>1, i=1,2
\end{aligned}
$$

Few observations on properties

- Most papers focus on robustness property
- Network equivalence
- Invertibility of the network

Few observations on networks

Few observations on networks

- Most papers focus on classification problems
- Generative adversarial networks
- Reinforcement learning

Summary

Summary

- Scalability remains the main issue
- We need to look beyond robustness

Verification of Neural Networks is an emerging exciting area!

Thanks!

High-level structure

Linear transform Non-linear transform

High-level structure

Network formula

$$
\begin{aligned}
& y_{1}=c_{1} \operatorname{Relu}\left(a_{1,1} x_{1}+a_{1,2} x_{2}\right) \\
& y_{2}=c_{2} \operatorname{Relu}\left(a_{2,1} x_{1}+a_{2,2} x_{2}\right)
\end{aligned}
$$

Decision (robustness) problem

$$
\begin{aligned}
y_{1}= & c_{1} \operatorname{Rel} u\left(a_{1,1} x_{1}+a_{1,2} x_{2}\right) \\
y_{2}= & c_{2} \operatorname{Relu}\left(a_{2,1} x_{1}+a_{2,2} x_{2}\right) \\
& x_{i} \in\left[w_{1}, w_{2}\right], i=1,2 \\
& y_{i}>q, i=1,2
\end{aligned}
$$

