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The SAT disruption

• Key breakthroughs in mid 90s and early 00s

– CDCL SAT solving enabled many successes over the years
– Hundreds (thousands?) of practical applications
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SAT solver evolution
[Source: Simon 2015]
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SAT can make the difference – axiom pinpointing
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• Instances: EL+ medical ontologies
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How significant is SAT solving?
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When you have a big hammer, look for nails!
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How significant is SAT solving? And SAT oracles?

When you have a big hammer, look for nails!

c© Comm. ACM 2010c© M. Vardi 5 / 42



SAT is ubiquitous in problem solving

Problem solving
with SAT
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Backbones

Enumeration
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MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:

MaxSAT, QBF, LCG,

#SAT, SMT, ASP, FOL, ...
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What is Maximum Satisfiability (MaxSAT)?

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest satisfiable subset of clauses

• Many practical applications [e.g. SZGN17]
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x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest satisfiable subset of clauses

MaxSAT Variants
Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Many practical applications [e.g. SZGN17]
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Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & MHS
approaches are the most effective [MaxSAT17]
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MaxSAT (r)evolution – unweighted instances 2008-2017
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What about in 2018?

• Note: RC2 is a variant of a 2014 algorithm, with some practical
optimizations

– Core-guided, based on lower-bound refinement [FM06,MSP07]

– Exploits soft cardinality constraints [MDMS14]

– Inspired by OLL algorithm, first used in ASP optimization [AKMS12]
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What about in 2018? – complete tracks

Source: [MaxSAT 2017 organizers]

Unweighted Weighted

Solver #Solved Time (Avg) Solver #Solved Time (Avg)

RC2-B 421 126.32 RC2-B 421 256.02

RC2-A 416 138.98 RC2-A 416 267.55

maxino 405 137.50 MaxHS 390 274.87

MaxHS 386 178.06 Pacose 390 348.98

Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

• Note: RC2 is a variant of a 2014 algorithm, with some practical
optimizations

– Core-guided, based on lower-bound refinement [FM06,MSP07]

– Exploits soft cardinality constraints [MDMS14]

– Inspired by OLL algorithm, first used in ASP optimization [AKMS12]
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maxino 405 137.50 MaxHS 390 274.87

MaxHS 386 178.06 Pacose 390 348.98

Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

• Note: RC2 is a variant of a 2014 algorithm, with some practical
optimizations, and implemented with PySAT

– Core-guided, based on lower-bound refinement [FM06,MSP07]

– Exploits soft cardinality constraints [MDMS14]

– Inspired by OLL algorithm, first used in ASP optimization [AKMS12]
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Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time

12 / 42



Outline

MaxSAT Solving
Core Guided with MSU3 – Example
Core Guided with RC2 – Example
MaxHS – Example
MaxHS – Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time
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MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)
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Outline

MaxSAT Solving
Core Guided with MSU3 – Example
Core Guided with RC2 – Example
MaxHS – Example
MaxHS – Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time
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Soft cardinality constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)
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MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3
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The MaxHS algorithm

T , 〈F ,S〉
H ← ∅

(st,M) ← MHS(H)

¬st?

W ← ids2cls(M)

(st,D)← SAT(F ∪ (S \W))
H ← H ∪ cls2ids(D)

¬st?

stop
F is unsat

stop
D is smallest MCS

no

yes

yes no

(Davies&Bacchus,CP’11)
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Worst-case exponential iterations!

But effective in practice!

MHS oracle call!

SAT oracle call!

(Davies&Bacchus,CP’11)
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Recap Horn MaxSAT

• What is Horn MaxSAT?
– All soft clauses are Horn

I Most often, unit soft clauses

– All hard clauses are Horn

• How hard is Horn MaxSAT?

– Horn MaxSAT is NP-hard [JS87]

– Decision K -HornSAT is NP-complete [JS87]

I By definition, any problem in NP is reducible to K -HornSAT

I But ...
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Why use Horn MaxSAT?

• Practical perspective:

– MaxSAT with MHSes is very efficient in practice

– For Horn MaxSAT, we can replace SAT call (worst-case
exponential) with LTUR call (worst-case linear)

• Theoretical perspective:
– Reducing SAT to Horn MaxSAT & applying a MaxSAT algorithm

yields new proof system(s)

I MaxSAT resolution
I Core-guided algorithm(s)
I MaxHS-like algorithms
I ...

– Reducing PHP to SAT and then to Horn MaxSAT admits
polynomial time refutations for some MaxSAT algorithms
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A Horn MaxHS algorithm

T , 〈F ,S〉
H ← ∅

(st,M) ← MHS(H)

¬st?

W ← ids2cls(M)

(st,D)← LTUR(F ∪ (S \W))
H ← H ∪ cls2ids(D)

¬st?

stop
F is unsat

stop
D is smallest MCS

no

yes

yes no
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Worst-case exponential iterations!

MHS oracle call!

LTUR runs in

linear time!
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What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT ≤P Horn MaxSAT and so CSP, ASP, SMT*, ...

CSP ≤P Horn MaxSAT direct, besides CSP ≤P SAT

PHP ≤P Horn MaxSAT direct, besides PHP ≤P SAT

MaxClique ≤P Horn MaxSAT and so MinVC, MaxIS

MinHS ≤P Horn MaxSAT and so MaxSP

MinDS ≤P Horn MaxSAT

• Most encodings of cardinality constraints are Horn

– Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06,ANORC11,...]

• Some encodings of pseudo-Boolean constraints are Horn

– Local polynomial watchdog (LPW) [BBR09]

• Horn MaxSAT: enables general-purpose problem solving
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• Horn MaxSAT: enables general-purpose problem solving
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SAT reduces to Horn MaxSAT

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• For each xi , create new variables pi (for xi = 1) and ni (for xi = 0)

• pi and ni cannot both be assigned 1:

– Add hard clause (¬pi ∨ ¬ni )
• Reencode original clauses (as hard clauses):

– Literal xi replaced by ¬ni
– Literal ¬xi replaced by ¬pi

• Goal is to assign value 1 to each variable, if possible:

– Add soft clauses (pi ) and (ni )

• All clauses are Horn

• Original formula is satisfiable iff Horn MaxSAT formula can satisfy
n soft clauses (and the hard clauses)

– I.e., satisfying n soft clauses represents assignment to the n
variables consistent with the original clauses !
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SAT reduces to Horn MaxSAT (Cont.)

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• Example:

– New variables: p1, p2, p3, n1, n2, n3

– Filter impossible assignments:
{(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2), (¬p3 ∨ ¬n3)}

– Original clauses reencoded:
(¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

– Soft clauses: {(p1), (p2), (p3), (n1), (n2), (n3)}

• Encoding is a variant of the dual-rail encoding, used since the mid
80s [BBBCS87]
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Pigeonhole formulas – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)
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PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+11), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+11), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m + 1) soft clauses from S
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PHP as Horn MaxSAT II

• Clauses in each Li and in each Mj , with pairwise encoding

Original Constraint Encoded To Clauses

∧m+1
i=1 AtLeast1(xi1, . . . , xim) Li (¬ni1 ∨ . . . ∨ ¬nim)

∧m
j=1AtMost1(x1j , . . . , xm+1,j) Mj ∧m+1

r=2 ∧
r−1
s=1 (¬prj ∨ ¬psj)

• Note: constraints with key structural properties:

– Variables in each Li disjoint from any other Lk and Mj , k 6= i

– Variables in each Mj disjoint from any other Ml , l 6= j
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Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time
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Some results from our SAT’17 paper

Claim 1

Core-guided MaxSAT (e.g. MSU3) produces a lower bound on the
number of falsified clauses ≥m(m + 1) + 1 in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified
clauses ≥m(m + 1) + 1 in polynomial time

Remark

Horn MaxSAT encoding enables polynomial time refutations of the
unsatisfiability of PHP instances, using CDCL SAT solvers
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Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Recall: each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs
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Proof of claim 1 – unit propagation steps I

Constr Hard cls Soft cls Relaxed clauses
Updated
AtMostk

constr

LB
incr

Li (¬ni1 ∨ . . . ∨ ¬nim) (ni1), . . . , (nim)
(sil ∨ ni1),
1 ≤ l ≤ m

∑m
l=1 sil ≤ 1 1

Mj (¬p1j ∨ ¬p2j) (p1j), (p2j)
(r1j ∨ p1j),
(r2j ∨ p2j)

∑2
l=1 rlj ≤ 1 1

Mj

(¬p1j ∨ ¬p3j),
(¬p2j ∨ ¬p3j),

(r1j ∨ p1j),
(r2j ∨ p2j),∑2
l=1 rlj ≤ 1

(p3j) (r3j ∨ p3j)
∑3

l=1 rlj ≤ 2 1

· · ·

Mj

(¬p1j∨¬pm+1j), . . .,
(¬pmj ∨ ¬pm+1j),

(r1j ∨ p1j), . . .,
(rmj ∨ pmj),∑m
l=1 rlj ≤ m − 1

(pm+1j) (rm+1j ∨ pm+1j)
∑m+1

l=1 rlj ≤ m 1
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Proof of claim 1 – unit propagation steps II

Clauses Unit Propagation

(pk+1 j) pk+1 j = 1

(¬p1j ∨¬pk+1 j), . . . , (¬pkj ∨¬pk+1 j) p1j = . . . = pkj = 0

(r1j ∨ p1j), . . . , (rkj ∨ pkj) r1j = . . . = rkj = 1∑k
l=1 rlj ≤ k − 1

(∑k
l=1 rlj ≤ k − 1

)
`1⊥

• Key points:

– For each Li , UP raises LB by 1
– For each Mj , UP raises LB by m

– In total, UP raises LB by m(m + 1) + 1

– Thus, PHPm+1
m is unsatisfiable
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Results on PHP instances: pw vs. sc
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Effect of P clauses
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Some results from our AAAI’18 paper – see MLB’s talk

Remark

Formalize DrMaxSAT proof system, using MaxSAT resolution

Result 1

DrMaxSAT p-simulates RES/CL
∴ DrMaxSAT stronger proof system than RES/CL

Result 2

MaxSAT refutations of the dual-rail encoded Parity Principle require
exponential size 2n

ε
for some ε > 0

∴ DrMaxSAT does not p-simulate CP

But, several open questions ...
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Conclusions & research directions

• Initial motivation: optimize MaxHS-like algorithms
– E.g. by exploiting Horn MaxSAT & LTUR

• Simple reduction from SAT to Horn MaxSAT

– Many other simple reductions to Horn MaxSAT

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

• Where to go with Horn MaxSAT?

– Also, additional results about the new proof system(s)?

• Still many open questions?

– E.g. MaxHS unreasonably efficient. Why?
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Questions?
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