Towards MaxSAT-Based Proof Systems

A Practical Perspective

Joao Marques-Silva

Joint work M.L. Bonet, S. Buss, A. Ignatiev and A. Morgado

University of Lisbon

Workshop on Theory and Practice of Satisfiability Solving
CMO, Oaxaca, México

August 2018

42

The SAT disruption

o Key breakthroughs in mid 90s and early 00s

2/42

The SAT disruption

o Key breakthroughs in mid 90s and early 00s

— CDCL SAT solving enabled many successes over the years
— Hundreds (thousands?) of practical applications

Noise A“aIysileJd_xi_I-BalslellIliagrmsii'1 . G
inateCoering OIS s Technology Mappin
Voo Sty Wnagenent Fauft Localation Pedigree Consistenc Fulﬁ:ytiunli)pecugmgoigﬁusn

Maximum SatisfiabilityConfigurationyeyination Analysis
Software Testlngﬁlterl}esign Switching Network Verification

Equivalence Checking Resource Constrained Scheduling

satISflahILIHE!tIM? gﬂ!?n Il]lﬂnﬁlﬂz'esPackagqu nagen_lent Syml}ﬁ&iﬁ%&ectt{ry Evaluation
Suftwarq{ym?ttylﬁggcheckingfn,'.’t!'nili’ﬁ:{'eifr{ T ek Tl
_Model Findi
Test Pattern Generation ode Pllz:]nlmgglaﬁggwmasry'ﬁtmgsd el)lesicz(gllllﬂghﬁgléilngg

Power E‘“’"““““[!ircu_it_Delay Eumputation Genome Rearrangement)
Test Suite Minimization lazy cla“se Ge“eratmn
Pseudo-Boolean Formulas

SAT solver evolution

Maximal allowed time (seconds)

2500

2000

1500

1000

500

[Source: Simon 2015]

40

T T
berkmin561 (2002)
Forklift (2003)
minisat-static (2005)
minisat (2007)
precosat (2009)
glucose (2011)
lingeling-aqw (2013)
glucose (2014)
lingeling-bag-ml (2015)
)

Ty
—X—
B0
——
497
4‘7
—A—
—A—
glucose-adapt-phase (2016) —v—

60 80 100 120 140 160 180 200
Number of solved problems (over the 300 benchs from 2011)

220

3/42

SAT can make the difference — axiom pinpointing

10*

EL*SAT

S : ; :
1072 107! 10° 10! 10 103 10*
EL2MUS

e Instances: £L£T medical ontologies

/42

How significant is SAT solving?

/42

How significant is SAT solving?

Comm. ACM 2010

On P, NP, and

Computational Complexity

Today’s SAT
solvers, which enjoy wide industrial
usage, routinely solve SAT instances
with over one million variables. How
can a scary NP-complete problem be
so easy? What is going on?

The answer is that one must read
complexity-theoretic claims carefully.
Classical NP-completeness theory is
about worst-case complexity.

My point here
is not to criticize complexity theory. It
is a beautiful theory that has yielded
deep insights over the last 50 years,
as well as posed fundamental, tan-
talizing problems, such as the P vs.
NP problem. But an important role
of theory is to shed light on practice,
and there we have large gaps. We
need, I believe, a richer and broader
complexity theory, a theory that would
explain both the difficulty and the
easiness of problems like SAT. More
theory, please!

MosheY. Vardi, EDITOR-IN-CHIEF

Comm. ACM 2010

On P, NP, and

How significant is SAT solving? And SAT oracles?

Computational Complexity

Today’s SAT
solvers, which enjoy wide industrial
usage, routinely solve SAT instances
with over one million variables. How
can a scary NP-complete problem be
so easy? What is going on?

The answer is that one must read
complexity-theoretic claims carefully.
Classical NP-completeness theory is
about worst-case complexity.

When you have a big hammer, look for nails!

© M. Vardi

My point here
is not to criticize complexity theory. It
is a beautiful theory that has yielded
deep insights over the last 50 years,
as well as posed fundamental, tan-
talizing problems, such as the P vs.
NP problem. But an important role
of theory is to shed light on practice,
and there we have large gaps. We
need, I believe, a richer and broader
complexity theory, a theory that would
explain both the difficulty and the
easiness of problems like SAT. More
theory, please!

MosheY. Vardi, EDITOR-IN-CHIEF

© Comm. ACM 2010

5

42

SAT is ubiquitous in problem solving

MBD
Eager SMT

Planning

Encodings

B&B
Search

Enumeratiol

Problem solving

Embeddings OPT SAT
with SAT =

Lazy SMT

MaxSAT

Oracles

Enumeratiol

Backbones

6/42

SAT is ubiquitous in problem solving

MBD
B&B

Eager SMT Search

Planning Enumeratiol

Problem solving
with SAT

Encodings

Embeddings OPT SAT

Lazy SMT

MaxSAT

Oracles

SAT is the oracles’ oracle:
Min. Mod- MaxSAT, QBF, LCG,

els

Backbones #SAT, SMT, ASP, FOL, ...

Enumeratiol

6/42

What is Maximum Satisfiability (MaxSAT)?

X6 V X —Xp V X2 —x2 V X1 X1
—Xe V Xg X6 V —1Xg X2 V X4 —Xg V X5
x7 V Xz —x7 V Xs x5 V X3 X3

7/42

What is Maximum Satisfiability (MaxSAT)?

X6 V Xo —Xp V X2 —X2 V X1 X1
—Xe V Xg X6 V —1Xg X2 V X4 —X4 V X5
x7 V X5 —x7 V Xg =x5 V X3 X3

e Given unsatisfiable formula

/42

What is Maximum Satisfiability (MaxSAT)?

X6 V Xo —Xp V X2 —X2 V X1 X1
—Xe V Xg X6 V —1Xg X2 V X4 —Xg V X5
x7 V X5 —x7 V Xg =x5 V X3 X3

e Given unsatisfiable formula, find largest satisfiable subset of clauses

What is Maximum Satisfiability (MaxSAT)?

X6 V Xo —Xp V X2
—Xe V Xg X6 V —1Xg
x7 V X5 —x7 V Xg

=x2 V X1 X1
X2 V Xg X4 V Xs
=x5 V X3 X3

e Given unsatisfiable formula, find largest satisfiable subset of clauses

. Hard Clauses?
MaxSAT Variants
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

e Many practical applications

[e.g. SZGN17]

/42

Many MaxSAT approaches

B No unit prop;
& Bound No cl. learning
Relax cls given Model _
models Guided i All cls relaxed
MaxSAT
Algorithms
Iterative Iterative Core Relax cls given
MHS & SAT MHS Guided unsat cores

e For practical (industrial) instances: core-guided & MHS
approaches are the most effective [MaxSAT17]

/42

MaxSAT (r)evolution — unweighted instances 2008-2017

Evolution of Unweighted MaxSAT Solvers
1800 o T v o
Open-WBO (2015) & & ° & x
Open-WBO (2017) © o ¥ © ¢ ”
1600 | MaxHS (2017) O © P 8 N
maxino (2015) v o v oe x 2
MaxHS (2016) o g)
1400 | eva(2014) © F B S@ E
o [o] X
Open-WBO (2014) x © i ° sz
QMaxSAT @013) o & l o 2 o8
PM2 (2010) P s =
1200 - MSUnCore (2013) © _ s | 1
o) PWBO (2012) v © 8
g QMaxSAT (2011) o v & g £
8 100l OMaxSAT (2010) § L o R
3 SAT4J (2009) o o v & ° I8
£ IncWMaxSatz (2008) ¢ o v 2 &
g 8§ ' v 9 § X o §
E 800 [- o J g X § 1
S & 8
? v
[9) o v 2
§ ; "\“ .
g]
§ ’
300 400 500 600 700

100

200

Number of problems solved

Source: [MaxSAT 2017 organizers|

9/

42

MaxSAT (r)evolution — weighted instances 2008-2017

Evolution of Weighted MaxSAT Solvers
1800 T Te T 'y T

MaxHS (2017)
MaxHS (2016)
1600 [~ maxino (2017)
QMaxSAT (2017)
MSCG (2015)
1400 | maxino (2015)
QMaxSAT (2014)

eva (2014)
MaxHS (2013)
1200 - WPM2 (2013)
WPM1 (2012)
WBO (2010)
1000 | WPML1 (2011)
IncWMaxSatz (2008)
SAT4J (2009)

[
<
el

°
b

“«

R

0Oe@eEADPOXOMOO

800

CPU Time (in seconds)

600

400

200

0 100 200 300 400 500
Number of problems solved

Source: [MaxSAT 2017 organizers|
10/42

What about in 20187

11/42

What about in 20187 — complete tracks

Source: [MaxSAT 2017 organizers

]
|
|

‘ Unweighted H Weighted

‘ Solver ‘ #Solved ‘ Time (Avg) H Solver ‘ #Solved ‘ Time (Avg)
RC2-B 421 126.32 RC2-B 421 256.02
RC2-A 416 138.98 RC2-A 416 267.55
maxino 405 137.50 MaxHS 390 274.87
MaxHS 386 178.06 Pacose 390 348.98

Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

11/42

What about in 20187 — complete tracks

Source: [MaxSAT 2017 organizers

‘ Unweighted H Weighted
‘ Solver ‘ #Solved ‘ Time (Avg) H Solver ‘ #Solved ‘ Time (Avg)
RC2-B 421 126.32 RC2-B 421 256.02
RC2-A 416 138.98 RC2-A 416 267.55
maxino 405 137.50 MaxHS 390 274.87
MaxHS 386 178.06 Pacose 390 348.98
Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

]
|
|

e Note: RC2 is a variant of a 2014 algorithm, with some practical

optimizations

— Core-guided, based on lower-bound refinement
— Exploits soft cardinality constraints

— Inspired by OLL algorithm, first used in ASP optimization

[FM06,MSP07]

[MDMS14]

[AKMS12]

11/42

What about in 20187 — complete tracks

Source: [MaxSAT 2017 organizers

‘ Unweighted H Weighted
‘ Solver ‘ #Solved ‘ Time (Avg) H Solver ‘ #Solved ‘ Time (Avg)
RC2-B 421 126.32 RC2-B 421 256.02
RC2-A 416 138.98 RC2-A 416 267.55
maxino 405 137.50 MaxHS 390 274.87
MaxHS 386 178.06 Pacose 390 348.98
Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

]
|
|

e Note: RC2 is a variant of a 2014 algorithm, with some practical

optimizations, and implemented with PySAT

— Core-guided, based on lower-bound refinement
— Exploits soft cardinality constraints

— Inspired by OLL algorithm, first used in ASP optimization

[FM06,MSP07]

[MDMS14]

[AKMS12]

11/42

Outline

MaxSAT Solving

12/42

Outline

MaxSAT Solving
Core Guided with MSU3 — Example

13 /42

MSU3 core-guided algorithm

(M.-S.&Planes,CoRR'07)

X6 V Xo —Xg V Xo X2 V X1 X1
—Xg V Xg Xe V —1Xg X2 V Xy X4 V Xg
x7 V X5 —x7 V Xs —X5 V X3 —X3

Example CNF formula

14 /42

MSU3 core-guided algorithm

(M.-S.&Planes,CoRR'07)

X6 V Xo —Xg V Xo —x2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xy x4 V Xg
x7 V X5 —x7 V Xs —x5 V X3 —1X3

Formula is UNSAT; OPT < || — 1; Get unsat core

14 /42

MSU3 core-guided algorithm

(M.-S.&Planes,CoRR'07)

X6 V Xo —Xg V Xo X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V

X7 V Xg —x7 V Xz x5 V x3Vrs —x3Vrg
Z?:l ri<1

Add relaxation variables and AtMostk, k = 1, constraint

14 /42

MSU3 core-guided algorithm

(M.-S.&Planes,CoRR'07)

@2 —Xg V Xo —x2 Vx1Vn —x1Vh
=X V Xg Xe V —Xg X2 V x4Vr3 =Xq V X5V 1y

—x7 V Xg x5 V X3Vrs —x3Vrg

Formula is (again) UNSAT; OPT < || — 2; Get unsat core

14 /42

MSU3 core-guided algorithm

(M.-S.&Planes,CoRR'07)

Xe V X0V ry —Xg V Xo\Vrg X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V
X7V X5Vrg —x7VXxsVro x5V X3Vrs —x3Vrg
<2

Add new relaxation variables and update AtMostk, k=2, constraint

14 /42

MSU3 core-guided algorithm

(M.-S.&Planes,CoRR'07)

Xe V X0V re —Xg V XoVrg —xo V x1Vn —x1Vr

—Xg V Xg Xe V —Xg X2 V x4V 13 =X V X5Vig
X7 V X5V g X7V XxsVrg X5V X3Vry —x3Vrg
2}21 ri <2

Instance is now SAT

14 /42

MSU3 core-guided algorithm

(M.-S.&Planes,CoRR'07)

Xe V X0V ry —Xg V Xo\Vrg X2V x1Vn —x1Vr

—Xg V Xg Xe V —1Xg Xo V X4V 13 —Xg4 V X5V
X7V X5Vrg —x7VXxsVro x5V X3Vrs —x3Vrg
<2

MaxSAT solution is |p| —Z =12 —2 =10

14 /42

MSU3 core-guided algorithm

Builds on FM06 seminal work ...

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg Xo V X4V 13

x7 V x5V rg —x7VXxsVrg X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z =12 —2 =10

AtMostk/PB
constraints used

(M.-S.&Planes,CoRR'07)

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard

14 /42

MSU3 core-guided algorithm

Builds on FM06 seminal work ...

Xe V X0V ry —Xg V Xo\Vrg —x2 VXx1Vn
—Xg V Xg Xe V —1Xg X2 V x4V r3
x7 V x5V rg —x7VXxsVrig X5V X3Vrs

2}21 ri <2

MaxSAT solution is |p| —Z = 12 —2 =10

AtMostk/PB Some clauses

constraints used not relaxed

(M.-S.&Planes,CoRR'07)

—x1Vh

—Xg4 V X5V

—x3Vrg

Relaxed soft clauses

become hard

14 /42

MSU3 core-guided algorithm
(M.-S.&Planes, CoRR'07)

Builds on FM06 seminal work ...

Xe V X0V ry —Xg V Xo\Vrg X2V x1Vn —x1Vr
—Xg V Xg Xe V —1Xg X2 V X4V 13 —Xg4 V X5V
X7\ Note: # of SAT oracle calls "V rg
grows linear with solution cost!
<2

MaxSAT solution is |p| —Z = 12 —2 =10

AtMostk/PB Some clauses Relaxed soft clauses

constraints used not relaxed become hard

14 /42

Outline

MaxSAT Solving

Core Guided with RC2 — Example

15 /42

Soft cardinality constraints

(Morgado, Dodaro&M.-S.,CP'14)

Xe V Xo —Xg V X —x2 V X1 X1
G V Xg X6 V —Xg X2 V Xg —Xg V X5
x7 V X5 —x7 V Xz —x5 V X3 X3

Example CNF formula

16 /42

Soft cardinality constraints

(Morgado, Dodaro&M.-S.,CP'14)

Xe V Xo —Xg V X X2 V X1 X1
—Xe V Xg X6 V —1Xg Xo V Xg —Xa V Xz
x7 V X5 —x7 V Xz X5 V X3 —X3

Formula is UNSAT; OPT < || — 1; Get unsat core

16 /42

Soft cardinality constraints

(Morgado, Dodaro&M.-S.,CP'14)

Xe V Xo —Xg V X X VXx1Vn —x1Vh
G vV X8 X6 V X8 Xo V X4\/r3 x4 V X5\/I’4
X7 vV X5 X7 \Y X5 X5 V X3\/r5 _|X3\/r6
5 <1

Aux sums: S; =% r

Add relaxation variables and AtMostl constraint

16 /42

Soft cardinality constraints

(Morgado, Dodaro&M.-S.,CP'14)

_|X1\/I’2

@2 —X6 V X —Xp VX1V

X6 vV X8 X6 V X8 Xo V X4\/r3 x4 V X5\/r4

X7 V X5 —x7 V Xz x5 V X3Vrs —x3Vrg

Aux sums: S; =% r

Formula is (again) UNSAT; OPT < || — 2; Get unsat core

16 /42

Soft cardinality constraints

(Morgado, Dodaro&M.-S.,CP'14)

Xe V X0V =X V XoVrg —x2 VX1V —x1Vr
—Xp V Xg X6 V X8 Xo V X4\/I’3 —xg V X5\/r4
x7 V x5V rg =x7 V x5V o —x5 V x3Vrs —x3\Vrg

5 <2 SS+-(5<1)<1

Aux sums: S = Z?:l ri h= 2}27 ri S5=5+-(5<1)

Add new relaxation variables (S5), update AtMostk constraint and add
new AtMostl constraint

16 /42

Soft cardinality constraints

Xg V X2V ry —Xe V x2Vrg
X6 V Xg X6 V —Xg
x7 V x5V rg =x7 V x5V o

5 <2 SS+-(51<1)<1

Aux sums: S; = Z?:l ri; b=

10 .
i=7 li

—x2 VX1V

X2 \Y X4\/I’3

—x5 V x3Vrs

(Morgado, Dodaro&M.-S.,CP'14)

_\Xl\/r2

—xg V X5\/r4

—x3\Vrg

$1>2—+5=0
S$<1-+5<1

S = 5§+ﬂ(51 < 1)

Add new relaxation variables (S5), update AtMostk constraint and add

new AtMostl constraint

16 /42

Soft cardinality constraints

(Morgado, Dodaro&M.-S.,CP'14)

X6 V xoVry —Xp \/szrg —x2 VX1V —x1Vr
—Xp V Xg X6 V —Xg Xo V X4\/l’3 —xg V X5VI’4
x7 V X5V rg —x7 V X5V o x5 V x3Vrs —x3Vrg

51 <2 S5+-(5<1)<1

Auxsums: S =% r; S5=1"0rn; SHS=S+-(5<1)

Instance is now SAT

16 /42

Soft cardinality constraints

(Morgado, Dodaro&M.-S.,CP'14)

Xe V X0V =X V XoVrg —x2 VX1V —x1Vr
—Xp V Xg X6 V X8 Xo V X4\/r3 —xg V X5\/r4
x7 V x5V rg =x7 V x5V o —x5 V x3Vrs —x3\Vrg

5 <2 SS+-(5<1)<1

Auxsums: S; =% i S5=1 1 S =S+-(5<1)
MaxSAT solution is |p| —Z =12 —2 =10

16 /42

Soft cardinality constraints
(Morgado,Dodaro&M.-S.,CP'14)

Builds on other algorithms: FM06, MSPO07, ...

Xe V X0V =X V XoVrg —x2 VX1V —x1Vr
—Xp V Xg X6 V X8 Xo V X4\/I’3 —xg V X5\/r4
x7 V x5V rg =x7 V x5V o —x5 V x3Vrs —x3\Vrg

5 <2 SS+-(5<1)<1

Auxsums: | S =0 =311 SS=S+-(5<1)
MaxSAT so ution is |p| —Z =12- 2 =10

Only AtMostk Sums reused Relaxed soft clauses
constraints used with # RHSs become hard

16 /42

Outline

MaxSAT Solving

MaxHS — Example

17 /42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1

Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz

Co = x7 V Xg Clo="Xx7VXs Ci1= X5V X3 Clp = X3
K=0

e Find MHS of K:

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1

Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz

Co = x7 V Xg Clo="Xx7VXs Ci1= X5V X3 Clp = X3
K=0

e Find MHS of K: ()

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1

Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz

Co = x7 V Xg Clo="Xx7VXs Ci1= X5V X3 Clp = X3
K=0

e Find MHS of K: ()
o SAT(F\ 0)?

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1

Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz

Co = x7 V Xg Clo="Xx7VXs Ci1= X5V X3 Clp = X3
K=0

e Find MHS of K: ()
e SAT(F\0)? No

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1

Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz

Co = x7 V Xg Clo="Xx7VXs Ci1= X5V X3 Clp = X3
K=0

e Find MHS of K: ()
e SAT(F\0)? No

® Core of F: {c1, 2, 3,4}

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a,c ca al}
® Find MHS of K:

e SAT(F\0)? No
e Core of F: {c1, @, c3,c}. Update K

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{c,c c a}}

e Find MHS of K:

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{c,c c a}}

® Find MHS of K: E.g. {c1}

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a, a a}}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})?

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a, a a}}

e Find MHS of K: E.g. {c1}
e SAT(F\{a})? No

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a,c,ca,al}
® Find MHS of K: E.g. {c1}

e SAT(F\{a})? No

e Core of F: {co, ci0, 11, C12}

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K ={{c,c,c,a}l,{c,cuo, c, c2}}
® Find MHS of K: E.g. {c1}

e SAT(F\{a})? No
® Core of F: {co, ci0, c11, ci2}. Update K

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K ={{a,c,c,a},{c,co,al,ca}}

e Find MHS of K:

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K ={{a,c,c,a},{c,co,al,ca}}

e Find MHS of K: E.g. {c1. 0}

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K ={{a,c,c,a},{c,co,al,ca}}

e Find MHS of K: E.g. {c1. 0}
e SAT(F\{c,})?

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V X5
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K ={{c,c,c,a}l,{c,cuo, c, c2}}

e Find MHS of K: E.g. {c1. 0}
e SAT(F\ {c,®})? No

18/42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V X5
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K ={{c,c,c,a}l,{c,cuo, c, c2}}

e Find MHS of K: E.g. {c1. 0}
e SAT(F\ {c,®})? No

e Core of F: {c3, s, c7, s, C11, C12}

18/42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V Xz
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a,c,a,a},{c,co,ci,c},{c,a,c, e al,ca}}

e Find MHS of K: E.g. {c1. 0}
e SAT(F\ {c,®})? No

e Core of F: {c3, a4, 7, cs, C11, c12}. Update K

18/ 42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V X5
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a,a,a,a}l,{cw, co, a1, a2}, {c,a,c, ¢, a1, a2}

e Find MHS of K:

18/42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V X5
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a,a,a,a}l,{cw, co, a1, a2}, {c,a,c, ¢, a1, a2}

e Find MHS of K: E.g. {cs. o}

18/42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

1L =X V X2 G = X5 V X2 3= VX Cqp = —1X1
Cs = —Xg V Xg Ce = X V —1Xg 7 =x2V Xy cg = x4 V X5
Co = X7V X5 Clo="x7VXs Ci1="XVX3 Ci2 = 7X3

K={{a,a,a,a}l,{cw, co, a1, a2}, {c,a,c, ¢, a1, a2}

e Find MHS of K: E.g. {cs. o}
e SAT(F\{a,w})?

18/42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = X V —Xg 7 =x2V Xy cg = x4 V Xz
Cog = X7 V X5 Clo="XxX7 VX5 Ci1="X5VX3 Cl2 = X3

K = {{c, e, c3, &}, {co, cro, c11, €12}, {c3, &, €7, c5, €11, €12} }

e Find MHS of K: E.g. {cs. o}

o SAT(F\{c,c})? Yes, eg.xi=x=1,x3=x=x5s =x =x7 = xg =0

18 /42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xg V Xg Ce = X V —Xg 7 =x2V Xy cg = x4 V Xz
Cog = X7 V X5 Clo="XxX7 VX5 Ci1="X5VX3 Cl2 = X3

K = {{c, e, c3, &}, {co, cro, c11, €12}, {c3, &, €7, c5, €11, €12} }

e Find MHS of K: E.g. {cs. o}
o SAT(F\{cs,})? Yes, eg.xi=x=1,x3=xa=x5=x6 =x7 =x3 =0

® Terminate & return 2

18 /42

MaxSAT with Minimum Hitting Sets (MHS)

(Davies&Bacchus,CP'11)

c1L =X VX2 C = X5 V X2 3= VX Cyp = X1
Cs = —Xp V Xg Ce = X V —Xg cr =XV Xq Cg = x4 V Xz
Cog = X7 V X5 Clo="X7VXs C11="XVX3 Cl2 = X3

K={{a,a,a,a}l,{cw, co, a1, a2}, {c,a,c, ¢, a1, a2}

®/Find of K: E.g. {cu, 0}
o SAT(F\ {4, })? Yes, eg.xi=x=1,x3=xa=x5=xs=x71=x3 =0

e Termmnate & returin-2

Possibly many MHSes, with one
SAT oracle call for each MHS!

18/42

Outline

MaxSAT Solving

MaxHS — Algorithm

19 /42

The MaxHS algorithm

H + H U cls2ids(D)

(Davies&Bacchus,CP'11)

T £(F,S)
H<+0

|

(st, M) < MHS(H)

!

2 yes stop
st F is unsat
lno
W « ids2cls(M)
(st, D) + SAT(FU(S\W))
yes no stop

—st? —

D is smallest MCS

20/ 42

The MaxHS algorithm

Worst-case exponential iterations!

But effective in practice!

H + H U cls2ids(D)

(Davies&Bacchus,CP'11)
T £ (F,S)
H<0

l MHS oracle call!
(st, M) < MHS()

!

et? yes stop
: F is unsat
lno
‘ (
< ios2cl-B) SAT oracle call!

(st, D) ¢ SAT(F (o \ W))

yes no stop

—st? —

D is smallest MCS

20/ 42

Outline

Horn MaxSAT

21/42

Recap Horn MaxSAT

e What is Horn MaxSAT?
— All soft clauses are Horn
» Most often, unit soft clauses
— All hard clauses are Horn

22 /42

Recap Horn MaxSAT

e What is Horn MaxSAT?
— All soft clauses are Horn
» Most often, unit soft clauses
— All hard clauses are Horn

e How hard is Horn MaxSAT?
— Horn MaxSAT is NP-hard [Js87]
— Decision K-HornSAT is NP-complete [J587]

» By definition, any problem in NP is reducible to K-HornSAT
» But ...

22/42

Why use Horn MaxSAT?

e Practical perspective:

— MaxSAT with MHSes is very efficient in practice

— For Horn MaxSAT, we can replace SAT call (worst-case
exponential) with LTUR call (worst-case linear)

23 /42

Why use Horn MaxSAT?

e Practical perspective:

— MaxSAT with MHSes is very efficient in practice

— For Horn MaxSAT, we can replace SAT call (worst-case
exponential) with LTUR call (worst-case linear)

e Theoretical perspective:
— Reducing SAT to Horn MaxSAT & applying a MaxSAT algorithm
yields new proof system(s)
» MaxSAT resolution
» Core-guided algorithm(s)
» MaxHS-like algorithms
> ooo
— Reducing PHP to SAT and then to Horn MaxSAT admits
polynomial time refutations for some MaxSAT algorithms

23 /42

A Horn MaxHS algorithm

H + H U cls2ids(D)

T £(F,S)
H<+—0

|

(st, M) « MHS(H)

et? yes stop
: F is unsat

lno

W « ids2cls(M)
(st,D) - LTUR(F U (S \W))

|

yes no stop

—st? —— .
st? D is smallest MCS

24 /42

A Horn MaxHS algorithm

Worst-case exponential iterations!

24/ 42

What can we solve with Horn MaxSAT?

SAT <p Horn MaxSAT

CSP <p Horn MaxSAT

PHP <p Horn MaxSAT
MaxClique <p Horn MaxSAT
MinHS <p Horn MaxSAT
MinDS <p Horn MaxSAT

[IMMS17,MSIM17]

and so CSP, ASP, SMT*, ...
direct, besides CSP <p SAT
direct, besides PHP <p SAT
and so MinVC, MaxIS

and so MaxSP

25 /42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT <p Horn MaxSAT and so CSP, ASP, SMT*, ...
CSP <p Horn MaxSAT direct, besides CSP <p SAT
PHP <p Horn MaxSAT direct, besides PHP <p SAT
MaxClique <p Horn MaxSAT and so MinVC, MaxIS
MinHS <p Horn MaxSAT and so MaxSP

MinDS <p Horn MaxSAT

Most encodings of cardinality constraints are Horn

— Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06, ANORC11,.

]

25 /42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT <p Horn MaxSAT and so CSP, ASP, SMT*, ...
CSP <p Horn MaxSAT direct, besides CSP <p SAT
PHP <p Horn MaxSAT direct, besides PHP <p SAT
MaxClique <p Horn MaxSAT and so MinVC, MaxIS
MinHS <p Horn MaxSAT and so MaxSP

MinDS <p Horn MaxSAT

e Most encodings of cardinality constraints are Horn

— Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06, ANORC1,..]

e Some encodings of pseudo-Boolean constraints are Horn
— Local polynomial watchdog (LPW) [BBROY]

25 /42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT <p Horn MaxSAT and so CSP, ASP, SMT*, ...
CSP <p Horn MaxSAT direct, besides CSP <p SAT
PHP <p Horn MaxSAT direct, besides PHP <p SAT
MaxClique <p Horn MaxSAT and so MinVC, MaxIS
MinHS <p Horn MaxSAT and so MaxSP

MinDS <p Horn MaxSAT

e Most encodings of cardinality constraints are Horn

— Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06, ANORC1,..]

e Some encodings of pseudo-Boolean constraints are Horn
— Local polynomial watchdog (LPW) [BBROY]
Knapsack <p Horn MaxSAT

25 /42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT <p Horn MaxSAT and so CSP, ASP, SMT*, ...
CSP <p Horn MaxSAT direct, besides CSP <p SAT
PHP <p Horn MaxSAT direct, besides PHP <p SAT
MaxClique <p Horn MaxSAT and so MinVC, MaxIS
MinHS <p Horn MaxSAT and so MaxSP

MinDS <p Horn MaxSAT

e Most encodings of cardinality constraints are Horn

— Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06, ANORC1,..]

e Some encodings of pseudo-Boolean constraints are Horn
— Local polynomial watchdog (LPW) [BBROY]
Knapsack <p Horn MaxSAT

¢ Horn MaxSAT: enables general-purpose problem solving
25 /42

Outline

Horn MaxSAT
Dual Rail Encoding

26 /42

SAT reduces to Horn MaxSAT

F £ (X1 V —xo V X3) A (X2 V X3) A (—\Xl V ﬂX3)

27 /42

SAT reduces to Horn MaxSAT

F £ (X1 V —xo V X3) A (X2 V X3) A (—\Xl V ﬁX3)

e For each x;, create new variables p; (for x; = 1) and n; (for x; = 0)
e p; and n; cannot both be assigned 1:
— Add hard clause (—p; V —n;)

27 /42

SAT reduces to Horn MaxSAT

F £ (X1 V —xo V X3) VAN (X2 V X3) A\ (—\Xl V ﬁX3)

For each x;, create new variables p; (for x; = 1) and n; (for x; = 0)

p;i and n; cannot both be assigned 1:
— Add hard clause (—p; V —n;)
Reencode original clauses (as hard clauses):

— Literal x; replaced by —n;
— Literal —x; replaced by —p;

Goal is to assign value 1 to each variable, if possible:
— Add soft clauses (p;) and (n;)

27 /42

SAT reduces to Horn MaxSAT

F £ (X1 V —xo V X3) VAN (X2 V X3) A\ (—\Xl V ﬁX3)

For each x;, create new variables p; (for x; = 1) and n; (for x; = 0)

p;i and n; cannot both be assigned 1:
— Add hard clause (—p; V —n;)
Reencode original clauses (as hard clauses):

— Literal x; replaced by —n;
— Literal —x; replaced by —p;

Goal is to assign value 1 to each variable, if possible:
— Add soft clauses (p;) and (n;)

All clauses are Horn

27 /42

SAT reduces to Horn MaxSAT

F £ (X1 V —xo V X3) VAN (X2 V X3) A\ (—\Xl V ﬁX3)

For each x;, create new variables p; (for x; = 1) and n; (for x; = 0)

p;i and n; cannot both be assigned 1:
— Add hard clause (—p; V —n;)
Reencode original clauses (as hard clauses):

— Literal x; replaced by —n;
— Literal —x; replaced by —p;

Goal is to assign value 1 to each variable, if possible:
— Add soft clauses (p;) and (n;)

All clauses are Horn

Original formula is satisfiable iff Horn MaxSAT formula can satisfy
n soft clauses (and the hard clauses)
— l.e., satisfying 1 soft clauses represents assignment to the n

variables consistent with the original clauses !
27 /42

SAT reduces to Horn MaxSAT (Cont.)

F £ (X1 V —xo V X3) A (XQ V X3) A (—\Xl V —|X3)

e Example:
— New variables: pi, po. p3, n1, no, N3
— Filter impossible assignments:
{(=p1 V =), (=p2 V =), (=p3 V —n3)}
— Original clauses reencoded:
(= vV =p2 Vans) A (2o Vo) A (—pr V —ps)

— Soft clauses: {(p1), (p2), (p3), (m), (n2), (n3)}

28 /42

SAT reduces to Horn MaxSAT (Cont.)

F £ (X1 V —xo V X3) A (XQ V X3) A (—\Xl V ﬁX3)

e Example:
— New variables: pi, po. p3, n1, no, N3
— Filter impossible assignments:
{(=p1V =m), (=p2 V =m2), (=p3 V —n3) }
— Original clauses reencoded:
(= vV =p2 Vans) A (2o Vo) A (—pr V —ps)

— Soft clauses: {(p1), (p2), (p3), (m), (n2), (n3)}

e Encoding is a variant of the dual-rail encoding, used since the mid
80s [BBBCS87]

28 /42

Pigeonhole formulas — propositional encoding PHP™ !

e Variables:

— x;j = L iff the ith pigeon is placed in the j*" hole, 1 </ < m+1,
1<j<m

29 /42

Pigeonhole formulas — propositional encoding PHP™ !

e Variables:

— x;j = L iff the ith pigeon is placed in the j*" hole, 1 </ < m+1,
1<j<m

e Constraints:

— Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon

/\,r:*il AtLeastl(x,-l, 5009 X;m) A /\jll AtMOStl(le, oo 7Xm+1j)

29 /42

Pigeonhole formulas — propositional encoding PHP™ !

e Variables:

— x;j = L iff the ith pigeon is placed in the j*" hole, 1 </ < m+1,
1<j<m

e Constraints:

— Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon

/\,r:*il AtLeastl(x,-l, 5009 X;m) A /\jll AtMOStl(le, oo 7Xm+1j)

e Example encoding, with pairwise encoding for AtMostl constraint:

Constraint Clause(s)
/\ElAtLeastl(xn, c. 7X,',r,) (X,'1 V...V X,'m)
/\jmzlAtMOStl(XU, oL ,Xm+1j) /\77:+21 /\;;11 (—\er Vv —‘ij)

29 /42

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

e The soft clauses S, with |S| = 2m(m + 1), are given by

{ (m1)y--s(mm)y-- oy (Mmt11), -+, (Nmt1m),
(P11), ceey (P1m), ceey (.Dm+1 1), ceey (Pm+1 m) }

30/ 42

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

e The soft clauses S, with |S| = 2m(m + 1), are given by

{ (m1)y--s(mm)y-- oy (Mmt11), -+, (Nmt1m),
(P11), ceey (P1m), ceey (.Dm+1 1), ceey (Pm+1 m) }

e Clauses in P: P = {(—-n;V —pj)|1 <i<m+1,1<j<m}

30/ 42

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

The soft clauses S, with |S| = 2m(m + 1), are given by

{ (nll), veey (nlm), ceny (nm+1 1), ceey (nm+1 m),
(P11), ceey (le), ceey (Pm+1 1), ceey (Pm+1 m) }

Clauses in P: P = {(—n;jV-pj)|1<i<m+1,1<j<m}

AtLeastl constraints encoded as £;,1 <i<m+1

AtMost1 constraints encoded as M;,1 < j < m

30/42

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

The soft clauses S, with |S| = 2m(m + 1), are given by

{ (nll), veey (nlm), ceny (nm+1 1), ceey (nm+1 m),
(P11)7 ceey (le), ceey (Pm+1 1), ceey (Pm+1 m) }

Clauses in P: P = {(—n;jV-pj)|1<i<m+1,1<j<m}

AtLeastl constraints encoded as £;,1 <i<m+1

AtMost1 constraints encoded as M;,1 < j < m
Full reduction of PHP to Horn MaxSAT
H,S) = <A§’;+11£,- ANPLM; AP, 8>

J

30/42

PHP as Horn MaxSAT

e New variables nj; and pj;, for each xj;, 1 </i<m+1,1<j<m

e The soft clauses S, with |S| = 2m(m + 1), are given by

{ (m1)y--s(mm)y-- oy (Mmt11), -+, (Nmt1m),
(P11), ceey (P1m), ceey (.Dm+1 1), ceey (Pm+1 m) }

e Clauses in P: P = {(—-n;V —pj)|1 <i<m+1,1<j<m}
e Atleastl constraints encoded as £;,1 </i<m+1
e AtMostl constraints encoded as M;,1 < j < m
e Full reduction of PHP to Horn MaxSAT
H,S) = <A,f’;+11£,- ANPLM; AP, 8>

j
e No more than m(m + 1) clauses can be satisfied, due to P
e PHP™ is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m+ 1) soft clauses from S .

PHP as Horn MaxSAT Il

e Clauses in each £; and in each M, with pairwise encoding

Original Constraint Encoded To Clauses
/\}EIAtLeastl(x,'l, .. ,X/m) Li (—|n;1 V...V —\n,'m)
AZ1AtMostl(xy), . . ., Xmt1,5) M, A NZL (=P V psi)

31/42

PHP as Horn MaxSAT Il

e Clauses in each £; and in each M, with pairwise encoding

Original Constraint Encoded To Clauses
/\?’jllAtLeastl(x,'l, .. ,X/m) Li (—|n;1 V...V —\n,'m)
Nj=1AtMost1(xyj, . . . , Xm+1,5) M; NS NZL (2pg V —ps)

e Note: constraints with key structural properties:

Constraint Variables
L (=nia V...V 5nim)
Ly (= V.oV ongm)
M; AT NZL (2P V ps)
M, AL NZT (=P V —ps)

— Variables in each £; disjoint from any other £, and M;, k # i

— Variables in each M; disjoint from any other M,, | # j

31/42

Outline

PHP Refutations in Polynomial Time

32/42

Some results from our SAT'17 paper

Core-guided MaxSAT (e.g. MSU3) produces a lower bound on the
number of falsified clauses > m(m + 1) + 1 in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified
clauses > m(m+ 1) + 1 in polynomial time

Remark

Horn MaxSAT encoding enables polynomial time refutations of the
unsatisfiability of PHP instances, using CDCL SAT solvers

33/42

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

34 /42

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each £; and each M;
— Recall: each constraint disjoint from the others (but not from P)

34 /42

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each £; and each M;
— Recall: each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total
1L 1 i=1,...,m+1 m+1
M; m j=1,...,m m-m

m(m+1)+1

34 /42

Proof of claim 1 — outline

1. Assume MSU3 MaxSAT algorithm

— Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each £; and each M;
— Recall: each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total
1L 1 i=1,...,m+1 m+1
M; m j=1,...,m m-m

m(m+1)+1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)
— In total: polynomial number of (linear time) UP runs

34 /42

Proof of claim 1 — unit propagation steps |

Updated LB
Constr Hard cls Soft cls Relaxed clauses AtMostk incr
constr
sy Voni1),
L; (=niy V..oV =nim) | (i), - -, (Nim) g é | Slll)n s <1 1
nj Vv pyj), 2
M —py; V Apo; i), . (! -J o<1 1
j (P1j PQJ) (PIJ) (PZJ) (f2j \/P2j) Zlfl =
(=pyj V —psj),
(P2 V —p3j), s
M; (rj v py), (p3)) (13 V p3j) P <2 1
(13 V).
> <1
(=P VPme1)s - - -
(ﬁpmj Vv ﬁpm+1j)v]
M; (rj V) (Pm+1j) (rmt1jVPmiy) | 2y m<m |1
(rmj Vv ij)y
Yt <m—1

35/42

Proof of claim 1 — unit propagation steps ||

Clauses Unit Propagation

(pk+1j) Pry1j =1

(=p1j V= Pk11j)s -+ (CPK V oPk41)) | P =--- = pKi =0

(rleplj),...,(rkj\/pkj) rlj:...:rkal

Zj;lrljfkfl (Zf:lrljgk_l)'_lj—
o Key points:

— For each £;, UP raises LB by 1
— For each M;, UP raises LB by m

— In total, UP raises LB by m(m+1)+1
— Thus, PHP7 ! is unsatisfiable

36 /42

Results on PHP instances: pw vs. sc

10° W et L e
i H
Y“Aﬁ“ H 1
I ! H
Lo H
I
e S 2 4-d L.t e
10 {g 10 i : :’)—._/
P
[
b /—HV
10! —o— Ip-cnf 10" 4--L 3 pltt
2o Y
2 —4— Ip-wenf - ol
Py k —*— maxhs Y g
£ 8 007 1
z e —— Imhs g I o
I
5 mscg 5 ‘ ;
—— eva + _._.//
10-1 -4 Igl —o— Ip-cnf —0— glucose
—)— Imhs-nes —— Ip-wenf —¥— lgl-nocard
v res —— maxhs o gl
> glucose —— Imhs —4— zres
2 .
1072 ~ 4~ Igl-nocard 1072 mscg ~0- cc-enf
—0- ce-enf —#— Imhs-nes —+= cc-opb
3 —+= cc-opb v eva
10 + 7 7 1073
0 10 20 30 40 50 60 0 10 20 30 40 50
instances instances
SAT SAT+ IHS MaxSAT CG MaxSAT MRes MIP OoPB BDD
satdj* zres

minisat glucose Igl crypto maxhs Imhs mscg wbo wpm3 eva Ip cc

37/42

Effect of P clauses

103 4
102 4
10! 4
2
g —o— mscg (no P)
S 1004 —~— maxhs H
6 —>— Imhs
—+— wbo (no P)
10-!4 mscg H
—«— eva(noP)
eva
1024 —0— Imhs-nes (no P) |
—— Imhs-nes
—>— wbo
1073 y

80 100

instances

38 /42

Some results from our AAAI'18 paper — see MLB's talk

Formalize DrMaxSAT proof system, using MaxSAT resolution

DrMaxSAT p-simulates RES/CL
.. DrMaxSAT stronger proof system than RES/CL

Result 2

MaxSAT refutations of the dual-rail encoded Parity Principle require
exponential size 2™ for some ¢ > 0

.. DrMaxSAT does not p-simulate CP

But, several open questions ...

39 /42

Conclusions & research directions

e Initial motivation: optimize MaxHS-like algorithms
— E.g. by exploiting Horn MaxSAT & LTUR

40 /42

Conclusions & research directions

e Initial motivation: optimize MaxHS-like algorithms
— E.g. by exploiting Horn MaxSAT & LTUR

e Simple reduction from SAT to Horn MaxSAT
— Many other simple reductions to Horn MaxSAT

40/ 42

Conclusions & research directions

e Initial motivation: optimize MaxHS-like algorithms
— E.g. by exploiting Horn MaxSAT & LTUR

e Simple reduction from SAT to Horn MaxSAT
— Many other simple reductions to Horn MaxSAT

¢ (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

— If equipped with the right reduction

40 /42

Conclusions & research directions

e Initial motivation: optimize MaxHS-like algorithms
— E.g. by exploiting Horn MaxSAT & LTUR

e Simple reduction from SAT to Horn MaxSAT
— Many other simple reductions to Horn MaxSAT

¢ (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

— If equipped with the right reduction

e Where to go with Horn MaxSAT?

— Also, additional results about the new proof system(s)?

40/ 42

Conclusions & research directions

e Initial motivation: optimize MaxHS-like algorithms
— E.g. by exploiting Horn MaxSAT & LTUR

Simple reduction from SAT to Horn MaxSAT
— Many other simple reductions to Horn MaxSAT

(Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

— If equipped with the right reduction

Where to go with Horn MaxSAT?

— Also, additional results about the new proof system(s)?

Still many open questions?
— E.g. MaxHS unreasonably efficient. Why?

40/ 42

Questions?

41/42

Some references

e A. Ignatiev, A. Morgado, J. Marques-Silva:
On Tackling the Limits of Resolution in SAT Solving.
SAT 2017: 164-183

e J. Marques-Silva, A. Ignatiev, A. Morgado:
Horn Maximum Satisfiability:
Reductions, Algorithms and Applications.
EPIA 2017: 681-694

e M.L. Bonet, S. Buss, A. Ignatiev, J. Marques-Silva, A. Morgado:
MaxSAT Resolution With the Dual Rail Encoding.
AAAI 2018: 6565-6572

42/42

	MaxSAT Solving
	Core Guided with MSU3 – Example
	Core Guided with RC2 – Example
	MaxHS – Example
	MaxHS – Algorithm

	Horn MaxSAT
	Dual Rail Encoding

	PHP Refutations in Polynomial Time

