
Towards MaxSAT-Based Proof Systems
A Practical Perspective

Joao Marques-Silva

Joint work M.L. Bonet, S. Buss, A. Ignatiev and A. Morgado

University of Lisbon

Workshop on Theory and Practice of Satisfiability Solving

CMO, Oaxaca, México

August 2018

1 / 42

The SAT disruption

• Key breakthroughs in mid 90s and early 00s

– CDCL SAT solving enabled many successes over the years
– Hundreds (thousands?) of practical applications

2 / 42

The SAT disruption

• Key breakthroughs in mid 90s and early 00s

– CDCL SAT solving enabled many successes over the years
– Hundreds (thousands?) of practical applications

2 / 42

SAT solver evolution
[Source: Simon 2015]

��

����

�����

�����

�����

�����

��� ��� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��
�
���
�
�
�

�
���

�
�
��
�
�
�
�
�
�
�

���

�����������������
���������������

���������������������
��������������

���������������
��������������

��������������������
��������������

�����������������������
��������������������������

3 / 42

SAT can make the difference – axiom pinpointing

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L

+
SA

T

3600 sec. timeout

36
00

se
c.

tim
eo

ut

• Instances: EL+ medical ontologies

4 / 42

How significant is SAT solving?

5 / 42

How significant is SAT solving?

When you have a big hammer, look for nails!

c© Comm. ACM 2010 5 / 42

How significant is SAT solving? And SAT oracles?

When you have a big hammer, look for nails!

c© Comm. ACM 2010c© M. Vardi 5 / 42

SAT is ubiquitous in problem solving

Problem solving
with SAT

Embeddings

PBO
B&B
Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

MaxSAT

MCS

MUS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

6 / 42

SAT is ubiquitous in problem solving

Problem solving
with SAT

Embeddings

PBO
B&B
Search

Enumeration

OPT SAT

Lazy SMT

LCG

Oracles

MaxSAT

MCS

MUS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

MBD

Eager SMT

Planning

BMC

SAT is the oracles’ oracle:

MaxSAT, QBF, LCG,

#SAT, SMT, ASP, FOL, ...

6 / 42

What is Maximum Satisfiability (MaxSAT)?

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest satisfiable subset of clauses

• Many practical applications [e.g. SZGN17]

7 / 42

What is Maximum Satisfiability (MaxSAT)?

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest satisfiable subset of clauses

• Many practical applications [e.g. SZGN17]

7 / 42

What is Maximum Satisfiability (MaxSAT)?

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest satisfiable subset of clauses

• Many practical applications [e.g. SZGN17]

7 / 42

What is Maximum Satisfiability (MaxSAT)?

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest satisfiable subset of clauses

MaxSAT Variants
Hard Clauses?

No Yes

Weights?
No Plain Partial

Yes Weighted Weighted Partial

• Many practical applications [e.g. SZGN17]

7 / 42

Many MaxSAT approaches

MaxSAT
Algorithms

Branch
& Bound

Iterative

Core
Guided

Iterative
MHS

Model
Guided

No unit prop;
No cl. learning

All cls relaxed

Relax cls given
unsat cores

Iterative
MHS & SAT

Relax cls given
models

• For practical (industrial) instances: core-guided & MHS
approaches are the most effective [MaxSAT17]

8 / 42

MaxSAT (r)evolution – unweighted instances 2008-2017

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

Number of problems solved

Evolution of Unweighted MaxSAT Solvers

Open-WBO (2015)
Open-WBO (2017)

MaxHS (2017)
maxino (2015)
MaxHS (2016)

eva (2014)
Open-WBO (2014)

QMaxSAT (2013)
PM2 (2010)

MSUnCore (2013)
PWBO (2012)

QMaxSAT (2011)
QMaxSAT (2010)

SAT4J (2009)
IncWMaxSatz (2008)

Source: [MaxSAT 2017 organizers]

9 / 42

MaxSAT (r)evolution – weighted instances 2008-2017

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

Number of problems solved

Evolution of Weighted MaxSAT Solvers

MaxHS (2017)
MaxHS (2016)
maxino (2017)

QMaxSAT (2017)
MSCG (2015)
maxino (2015)

QMaxSAT (2014)
eva (2014)

MaxHS (2013)
WPM2 (2013)
WPM1 (2012)

WBO (2010)
WPM1 (2011)

IncWMaxSatz (2008)
SAT4J (2009)

Source: [MaxSAT 2017 organizers]

10 / 42

What about in 2018?

• Note: RC2 is a variant of a 2014 algorithm, with some practical
optimizations

– Core-guided, based on lower-bound refinement [FM06,MSP07]

– Exploits soft cardinality constraints [MDMS14]

– Inspired by OLL algorithm, first used in ASP optimization [AKMS12]

11 / 42

What about in 2018? – complete tracks

Source: [MaxSAT 2017 organizers]

Unweighted Weighted

Solver #Solved Time (Avg) Solver #Solved Time (Avg)

RC2-B 421 126.32 RC2-B 421 256.02

RC2-A 416 138.98 RC2-A 416 267.55

maxino 405 137.50 MaxHS 390 274.87

MaxHS 386 178.06 Pacose 390 348.98

Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

• Note: RC2 is a variant of a 2014 algorithm, with some practical
optimizations

– Core-guided, based on lower-bound refinement [FM06,MSP07]

– Exploits soft cardinality constraints [MDMS14]

– Inspired by OLL algorithm, first used in ASP optimization [AKMS12]

11 / 42

What about in 2018? – complete tracks

Source: [MaxSAT 2017 organizers]

Unweighted Weighted

Solver #Solved Time (Avg) Solver #Solved Time (Avg)

RC2-B 421 126.32 RC2-B 421 256.02

RC2-A 416 138.98 RC2-A 416 267.55

maxino 405 137.50 MaxHS 390 274.87

MaxHS 386 178.06 Pacose 390 348.98

Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

• Note: RC2 is a variant of a 2014 algorithm, with some practical
optimizations

– Core-guided, based on lower-bound refinement [FM06,MSP07]

– Exploits soft cardinality constraints [MDMS14]

– Inspired by OLL algorithm, first used in ASP optimization [AKMS12]

11 / 42

What about in 2018? – complete tracks

Source: [MaxSAT 2017 organizers]

Unweighted Weighted

Solver #Solved Time (Avg) Solver #Solved Time (Avg)

RC2-B 421 126.32 RC2-B 421 256.02

RC2-A 416 138.98 RC2-A 416 267.55

maxino 405 137.50 MaxHS 390 274.87

MaxHS 386 178.06 Pacose 390 348.98

Open-WBO-Gluc 382 171.54 QMaxSAT 381 320.78

• Note: RC2 is a variant of a 2014 algorithm, with some practical
optimizations, and implemented with PySAT

– Core-guided, based on lower-bound refinement [FM06,MSP07]

– Exploits soft cardinality constraints [MDMS14]

– Inspired by OLL algorithm, first used in ASP optimization [AKMS12]

11 / 42

Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time

12 / 42

Outline

MaxSAT Solving
Core Guided with MSU3 – Example
Core Guided with RC2 – Example
MaxHS – Example
MaxHS – Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

13 / 42

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Add relaxation variables and AtMostk , k = 1, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6∑6
i=1 ri ≤ 1

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Add new relaxation variables and update AtMostk , k=2, constraint

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

Instance is now SAT

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

MSU3 core-guided algorithm

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6∑10
i=1 ri ≤ 2

MaxSAT solution is |ϕ| − I = 12− 2 = 10

AtMostk/PB

constraints used

Relaxed soft clauses

become hard

Builds on FM06 seminal work ...

Some clauses

not relaxed

Note: # of SAT oracle calls
grows linear with solution cost!

(M.-S.&Planes,CoRR’07)

14 / 42

Outline

MaxSAT Solving
Core Guided with MSU3 – Example
Core Guided with RC2 – Example
MaxHS – Example
MaxHS – Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

15 / 42

Soft cardinality constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 1

Aux sums: S1 =
∑6

i=1 ri ;

Add relaxation variables and AtMost1 constraint

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 1

Aux sums: S1 =
∑6

i=1 ri ;

Formula is (again) UNSAT; OPT ≤ |ϕ| − 2; Get unsat core

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

Add new relaxation variables (S ′2), update AtMostk constraint and add
new AtMost1 constraint

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

Add new relaxation variables (S ′2), update AtMostk constraint and add
new AtMost1 constraint

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

Instance is now SAT

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

MaxSAT solution is |ϕ| − I = 12− 2 = 10

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Soft cardinality constraints

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1 ¬x1∨r2

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r9 ¬x7 ∨ x5∨r10 ¬x5 ∨ x3∨r5 ¬x3∨r6

S1 ≤ 2 S ′
2 + ¬(S1 ≤ 1) ≤ 1

Aux sums: S1 =
∑6

i=1 ri ; S ′2 =
∑10

i=7 ri ; S2 = S ′2 + ¬(S1 ≤ 1)

MaxSAT solution is |ϕ| − I = 12− 2 = 10

S1 ≥ 2→ S ′2 = 0

S1 ≤ 1→ S ′2 ≤ 1

Only AtMostk

constraints used

Relaxed soft clauses

become hard

Sums reused

with 6= RHSs

Builds on other algorithms: FM06, MSP07, ...

(Morgado,Dodaro&M.-S.,CP’14)

16 / 42

Outline

MaxSAT Solving
Core Guided with MSU3 – Example
Core Guided with RC2 – Example
MaxHS – Example
MaxHS – Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

17 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K:

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅

• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)?

• Core of F : {c1, c2, c3, c4}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = ∅

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: ∅
• SAT(F \ ∅)? No

• Core of F : {c1, c2, c3, c4}. Update K

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K:

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}

• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})?

• Core of F : {c9, c10, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1}
• SAT(F \ {c1})? No

• Core of F : {c9, c10, c11, c12}. Update K

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K:

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}

• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})?

• Core of F : {c3, c4, c7, c8, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c1, c9}
• SAT(F \ {c1, c9})? No

• Core of F : {c3, c4, c7, c8, c11, c12}. Update K

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K:

• SAT(F \ {c4, c9})?

• Terminate & return 2

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}

• SAT(F \ {c4, c9})?

• Terminate & return 2

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})?

• Terminate & return 2

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes, e.g. x1 = x2 = 1, x3 = x4 = x5 = x6 = x7 = x8 = 0

• Terminate & return 2

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes, e.g. x1 = x2 = 1, x3 = x4 = x5 = x6 = x7 = x8 = 0

• Terminate & return 2

(Davies&Bacchus,CP’11)

18 / 42

MaxSAT with Minimum Hitting Sets (MHS)

c1 = x6 ∨ x2 c2 = ¬x6 ∨ x2 c3 = ¬x2 ∨ x1 c4 = ¬x1

c5 = ¬x6 ∨ x8 c6 = x6 ∨ ¬x8 c7 = x2 ∨ x4 c8 = ¬x4 ∨ x5

c9 = x7 ∨ x5 c10 = ¬x7 ∨ x5 c11 = ¬x5 ∨ x3 c12 = ¬x3

K = {{c1, c2, c3, c4}, {c9, c10, c11, c12}, {c3, c4, c7, c8, c11, c12}}

• Find MHS of K: E.g. {c4, c9}
• SAT(F \ {c4, c9})? Yes, e.g. x1 = x2 = 1, x3 = x4 = x5 = x6 = x7 = x8 = 0

• Terminate & return 2

Possibly many MHSes, with one
SAT oracle call for each MHS!

(Davies&Bacchus,CP’11)

18 / 42

Outline

MaxSAT Solving
Core Guided with MSU3 – Example
Core Guided with RC2 – Example
MaxHS – Example
MaxHS – Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

19 / 42

The MaxHS algorithm

T , 〈F ,S〉
H ← ∅

(st,M) ← MHS(H)

¬st?

W ← ids2cls(M)

(st,D)← SAT(F ∪ (S \W))
H ← H ∪ cls2ids(D)

¬st?

stop
F is unsat

stop
D is smallest MCS

no

yes

yes no

(Davies&Bacchus,CP’11)

20 / 42

The MaxHS algorithm

T , 〈F ,S〉
H ← ∅

(st,M) ← MHS(H)

¬st?

W ← ids2cls(M)

(st,D)← SAT(F ∪ (S \W))
H ← H ∪ cls2ids(D)

¬st?

stop
F is unsat

stop
D is smallest MCS

no

yes

yes no

Worst-case exponential iterations!

But effective in practice!

MHS oracle call!

SAT oracle call!

(Davies&Bacchus,CP’11)

20 / 42

Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time

21 / 42

Recap Horn MaxSAT

• What is Horn MaxSAT?
– All soft clauses are Horn

I Most often, unit soft clauses

– All hard clauses are Horn

• How hard is Horn MaxSAT?

– Horn MaxSAT is NP-hard [JS87]

– Decision K -HornSAT is NP-complete [JS87]

I By definition, any problem in NP is reducible to K -HornSAT

I But ...

22 / 42

Recap Horn MaxSAT

• What is Horn MaxSAT?
– All soft clauses are Horn

I Most often, unit soft clauses

– All hard clauses are Horn

• How hard is Horn MaxSAT?

– Horn MaxSAT is NP-hard [JS87]

– Decision K -HornSAT is NP-complete [JS87]

I By definition, any problem in NP is reducible to K -HornSAT
I But ...

22 / 42

Why use Horn MaxSAT?

• Practical perspective:

– MaxSAT with MHSes is very efficient in practice

– For Horn MaxSAT, we can replace SAT call (worst-case
exponential) with LTUR call (worst-case linear)

• Theoretical perspective:
– Reducing SAT to Horn MaxSAT & applying a MaxSAT algorithm

yields new proof system(s)

I MaxSAT resolution
I Core-guided algorithm(s)
I MaxHS-like algorithms
I ...

– Reducing PHP to SAT and then to Horn MaxSAT admits
polynomial time refutations for some MaxSAT algorithms

23 / 42

Why use Horn MaxSAT?

• Practical perspective:

– MaxSAT with MHSes is very efficient in practice

– For Horn MaxSAT, we can replace SAT call (worst-case
exponential) with LTUR call (worst-case linear)

• Theoretical perspective:
– Reducing SAT to Horn MaxSAT & applying a MaxSAT algorithm

yields new proof system(s)

I MaxSAT resolution
I Core-guided algorithm(s)
I MaxHS-like algorithms
I ...

– Reducing PHP to SAT and then to Horn MaxSAT admits
polynomial time refutations for some MaxSAT algorithms

23 / 42

A Horn MaxHS algorithm

T , 〈F ,S〉
H ← ∅

(st,M) ← MHS(H)

¬st?

W ← ids2cls(M)

(st,D)← LTUR(F ∪ (S \W))
H ← H ∪ cls2ids(D)

¬st?

stop
F is unsat

stop
D is smallest MCS

no

yes

yes no

24 / 42

A Horn MaxHS algorithm

T , 〈F ,S〉
H ← ∅

(st,M) ← MHS(H)

¬st?

W ← ids2cls(M)

(st,D)← LTUR(F ∪ (S \W))
H ← H ∪ cls2ids(D)

¬st?

stop
F is unsat

stop
D is smallest MCS

no

yes

yes no

Worst-case exponential iterations!

MHS oracle call!

LTUR runs in

linear time!

24 / 42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT ≤P Horn MaxSAT and so CSP, ASP, SMT*, ...

CSP ≤P Horn MaxSAT direct, besides CSP ≤P SAT

PHP ≤P Horn MaxSAT direct, besides PHP ≤P SAT

MaxClique ≤P Horn MaxSAT and so MinVC, MaxIS

MinHS ≤P Horn MaxSAT and so MaxSP

MinDS ≤P Horn MaxSAT

• Most encodings of cardinality constraints are Horn

– Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06,ANORC11,...]

• Some encodings of pseudo-Boolean constraints are Horn

– Local polynomial watchdog (LPW) [BBR09]

• Horn MaxSAT: enables general-purpose problem solving

25 / 42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT ≤P Horn MaxSAT and so CSP, ASP, SMT*, ...

CSP ≤P Horn MaxSAT direct, besides CSP ≤P SAT

PHP ≤P Horn MaxSAT direct, besides PHP ≤P SAT

MaxClique ≤P Horn MaxSAT and so MinVC, MaxIS

MinHS ≤P Horn MaxSAT and so MaxSP

MinDS ≤P Horn MaxSAT

• Most encodings of cardinality constraints are Horn

– Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06,ANORC11,...]

• Some encodings of pseudo-Boolean constraints are Horn

– Local polynomial watchdog (LPW) [BBR09]

• Horn MaxSAT: enables general-purpose problem solving

25 / 42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT ≤P Horn MaxSAT and so CSP, ASP, SMT*, ...

CSP ≤P Horn MaxSAT direct, besides CSP ≤P SAT

PHP ≤P Horn MaxSAT direct, besides PHP ≤P SAT

MaxClique ≤P Horn MaxSAT and so MinVC, MaxIS

MinHS ≤P Horn MaxSAT and so MaxSP

MinDS ≤P Horn MaxSAT

• Most encodings of cardinality constraints are Horn

– Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06,ANORC11,...]

• Some encodings of pseudo-Boolean constraints are Horn

– Local polynomial watchdog (LPW) [BBR09]

• Horn MaxSAT: enables general-purpose problem solving

25 / 42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT ≤P Horn MaxSAT and so CSP, ASP, SMT*, ...

CSP ≤P Horn MaxSAT direct, besides CSP ≤P SAT

PHP ≤P Horn MaxSAT direct, besides PHP ≤P SAT

MaxClique ≤P Horn MaxSAT and so MinVC, MaxIS

MinHS ≤P Horn MaxSAT and so MaxSP

MinDS ≤P Horn MaxSAT

• Most encodings of cardinality constraints are Horn

– Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06,ANORC11,...]

• Some encodings of pseudo-Boolean constraints are Horn

– Local polynomial watchdog (LPW) [BBR09]

Knapsack ≤P Horn MaxSAT

• Horn MaxSAT: enables general-purpose problem solving

25 / 42

What can we solve with Horn MaxSAT?

[IMMS17,MSIM17]

SAT ≤P Horn MaxSAT and so CSP, ASP, SMT*, ...

CSP ≤P Horn MaxSAT direct, besides CSP ≤P SAT

PHP ≤P Horn MaxSAT direct, besides PHP ≤P SAT

MaxClique ≤P Horn MaxSAT and so MinVC, MaxIS

MinHS ≤P Horn MaxSAT and so MaxSP

MinDS ≤P Horn MaxSAT

• Most encodings of cardinality constraints are Horn

– Sequential counters; totalizers; sorting networks; (pairwise)
(cardinality networks); bitwise (for AtMost1) [S05,ES06,ANORC11,...]

• Some encodings of pseudo-Boolean constraints are Horn

– Local polynomial watchdog (LPW) [BBR09]

Knapsack ≤P Horn MaxSAT

• Horn MaxSAT: enables general-purpose problem solving
25 / 42

Outline

MaxSAT Solving

Horn MaxSAT
Dual Rail Encoding

PHP Refutations in Polynomial Time

26 / 42

SAT reduces to Horn MaxSAT

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• For each xi , create new variables pi (for xi = 1) and ni (for xi = 0)

• pi and ni cannot both be assigned 1:

– Add hard clause (¬pi ∨ ¬ni)
• Reencode original clauses (as hard clauses):

– Literal xi replaced by ¬ni
– Literal ¬xi replaced by ¬pi

• Goal is to assign value 1 to each variable, if possible:

– Add soft clauses (pi) and (ni)

• All clauses are Horn

• Original formula is satisfiable iff Horn MaxSAT formula can satisfy
n soft clauses (and the hard clauses)

– I.e., satisfying n soft clauses represents assignment to the n
variables consistent with the original clauses !

27 / 42

SAT reduces to Horn MaxSAT

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• For each xi , create new variables pi (for xi = 1) and ni (for xi = 0)

• pi and ni cannot both be assigned 1:

– Add hard clause (¬pi ∨ ¬ni)

• Reencode original clauses (as hard clauses):

– Literal xi replaced by ¬ni
– Literal ¬xi replaced by ¬pi

• Goal is to assign value 1 to each variable, if possible:

– Add soft clauses (pi) and (ni)

• All clauses are Horn

• Original formula is satisfiable iff Horn MaxSAT formula can satisfy
n soft clauses (and the hard clauses)

– I.e., satisfying n soft clauses represents assignment to the n
variables consistent with the original clauses !

27 / 42

SAT reduces to Horn MaxSAT

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• For each xi , create new variables pi (for xi = 1) and ni (for xi = 0)

• pi and ni cannot both be assigned 1:

– Add hard clause (¬pi ∨ ¬ni)
• Reencode original clauses (as hard clauses):

– Literal xi replaced by ¬ni
– Literal ¬xi replaced by ¬pi

• Goal is to assign value 1 to each variable, if possible:

– Add soft clauses (pi) and (ni)

• All clauses are Horn

• Original formula is satisfiable iff Horn MaxSAT formula can satisfy
n soft clauses (and the hard clauses)

– I.e., satisfying n soft clauses represents assignment to the n
variables consistent with the original clauses !

27 / 42

SAT reduces to Horn MaxSAT

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• For each xi , create new variables pi (for xi = 1) and ni (for xi = 0)

• pi and ni cannot both be assigned 1:

– Add hard clause (¬pi ∨ ¬ni)
• Reencode original clauses (as hard clauses):

– Literal xi replaced by ¬ni
– Literal ¬xi replaced by ¬pi

• Goal is to assign value 1 to each variable, if possible:

– Add soft clauses (pi) and (ni)

• All clauses are Horn

• Original formula is satisfiable iff Horn MaxSAT formula can satisfy
n soft clauses (and the hard clauses)

– I.e., satisfying n soft clauses represents assignment to the n
variables consistent with the original clauses !

27 / 42

SAT reduces to Horn MaxSAT

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• For each xi , create new variables pi (for xi = 1) and ni (for xi = 0)

• pi and ni cannot both be assigned 1:

– Add hard clause (¬pi ∨ ¬ni)
• Reencode original clauses (as hard clauses):

– Literal xi replaced by ¬ni
– Literal ¬xi replaced by ¬pi

• Goal is to assign value 1 to each variable, if possible:

– Add soft clauses (pi) and (ni)

• All clauses are Horn

• Original formula is satisfiable iff Horn MaxSAT formula can satisfy
n soft clauses (and the hard clauses)

– I.e., satisfying n soft clauses represents assignment to the n
variables consistent with the original clauses !

27 / 42

SAT reduces to Horn MaxSAT (Cont.)

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• Example:

– New variables: p1, p2, p3, n1, n2, n3

– Filter impossible assignments:
{(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2), (¬p3 ∨ ¬n3)}

– Original clauses reencoded:
(¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

– Soft clauses: {(p1), (p2), (p3), (n1), (n2), (n3)}

• Encoding is a variant of the dual-rail encoding, used since the mid
80s [BBBCS87]

28 / 42

SAT reduces to Horn MaxSAT (Cont.)

F , (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

• Example:

– New variables: p1, p2, p3, n1, n2, n3

– Filter impossible assignments:
{(¬p1 ∨ ¬n1), (¬p2 ∨ ¬n2), (¬p3 ∨ ¬n3)}

– Original clauses reencoded:
(¬n1 ∨ ¬p2 ∨ ¬n3) ∧ (¬n2 ∨ ¬n3) ∧ (¬p1 ∨ ¬p3)

– Soft clauses: {(p1), (p2), (p3), (n1), (n2), (n3)}

• Encoding is a variant of the dual-rail encoding, used since the mid
80s [BBBCS87]

28 / 42

Pigeonhole formulas – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)

29 / 42

Pigeonhole formulas – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)

29 / 42

Pigeonhole formulas – propositional encoding PHPm+1
m

• Variables:

– xij = 1 iff the i th pigeon is placed in the j th hole, 1 ≤ i ≤ m + 1,
1 ≤ j ≤ m

• Constraints:

– Each pigeon must be placed in at least one hole, and each hole
must not have more than one pigeon∧m+1

i=1 AtLeast1(xi1, . . . , xim) ∧∧m
j=1 AtMost1(x1j , . . . , xm+1 j)

• Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint Clause(s)

∧m+1
i=1 AtLeast1(xi1, . . . , xim) (xi1 ∨ . . . ∨ xim)

∧m
j=1AtMost1(x1j , . . . , xm+1 j) ∧m+1

r=2 ∧
r−1
s=1 (¬xrj ∨ ¬xsj)

29 / 42

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+11), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+11), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m + 1) soft clauses from S

30 / 42

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+11), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+11), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}

• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m + 1) soft clauses from S

30 / 42

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+11), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+11), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m + 1) soft clauses from S

30 / 42

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+11), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+11), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉

• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m + 1) soft clauses from S

30 / 42

PHP as Horn MaxSAT

• New variables nij and pij , for each xij , 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m

• The soft clauses S, with |S| = 2m(m + 1), are given by

{ (n11), . . . , (n1m), . . . , (nm+11), . . . , (nm+1m),
(p11), . . . , (p1m), . . . , (pm+11), . . . , (pm+1m) }

• Clauses in P: P = {(¬nij ∨ ¬pij) | 1 ≤ i ≤ m + 1, 1 ≤ j ≤ m}
• AtLeast1 constraints encoded as Li , 1 ≤ i ≤ m + 1

• AtMost1 constraints encoded as Mj , 1 ≤ j ≤ m

• Full reduction of PHP to Horn MaxSAT

〈H,S〉 =
〈
∧m+1
i=1 Li ∧ ∧mj=1Mj ∧ P,S

〉
• No more than m(m + 1) clauses can be satisfied, due to P
• PHPm+1

m is satisfiable iff there exists an assignment that satisfies

the hard clauses H and m(m + 1) soft clauses from S
30 / 42

PHP as Horn MaxSAT II

• Clauses in each Li and in each Mj , with pairwise encoding

Original Constraint Encoded To Clauses

∧m+1
i=1 AtLeast1(xi1, . . . , xim) Li (¬ni1 ∨ . . . ∨ ¬nim)

∧m
j=1AtMost1(x1j , . . . , xm+1,j) Mj ∧m+1

r=2 ∧
r−1
s=1 (¬prj ∨ ¬psj)

• Note: constraints with key structural properties:

– Variables in each Li disjoint from any other Lk and Mj , k 6= i

– Variables in each Mj disjoint from any other Ml , l 6= j

31 / 42

PHP as Horn MaxSAT II

• Clauses in each Li and in each Mj , with pairwise encoding

Original Constraint Encoded To Clauses

∧m+1
i=1 AtLeast1(xi1, . . . , xim) Li (¬ni1 ∨ . . . ∨ ¬nim)

∧m
j=1AtMost1(x1j , . . . , xm+1,j) Mj ∧m+1

r=2 ∧
r−1
s=1 (¬prj ∨ ¬psj)

• Note: constraints with key structural properties:

Constraint Variables

Li (¬ni1 ∨ . . . ∨ ¬nim)

Lk (¬nk1 ∨ . . . ∨ ¬nkm)

Mj ∧m+1
r=2 ∧

r−1
s=1 (¬pr j ∨ ¬psj)

Ml ∧m+1
r=2 ∧

r−1
s=1 (¬pr l ∨ ¬psl)

– Variables in each Li disjoint from any other Lk and Mj , k 6= i

– Variables in each Mj disjoint from any other Ml , l 6= j 31 / 42

Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time

32 / 42

Some results from our SAT’17 paper

Claim 1

Core-guided MaxSAT (e.g. MSU3) produces a lower bound on the
number of falsified clauses ≥m(m + 1) + 1 in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified
clauses ≥m(m + 1) + 1 in polynomial time

Remark

Horn MaxSAT encoding enables polynomial time refutations of the
unsatisfiability of PHP instances, using CDCL SAT solvers

33 / 42

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Recall: each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

34 / 42

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Recall: each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total

Li 1 i = 1, . . . ,m + 1 m + 1

Mj m j = 1, . . . ,m m ·m

m(m + 1) + 1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

34 / 42

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Recall: each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total

Li 1 i = 1, . . . ,m + 1 m + 1

Mj m j = 1, . . . ,m m ·m

m(m + 1) + 1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

34 / 42

Proof of claim 1 – outline

1. Assume MSU3 MaxSAT algorithm
– Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each Li and each Mj

– Recall: each constraint disjoint from the others (but not from P)

3. Derive large enough lower bound on # of falsified clauses:

Constr. type # falsified cls # constr In total

Li 1 i = 1, . . . ,m + 1 m + 1

Mj m j = 1, . . . ,m m ·m

m(m + 1) + 1

4. Each increase in the value of the lower bound obtained by unit
propagation (UP)

– In total: polynomial number of (linear time) UP runs

34 / 42

Proof of claim 1 – unit propagation steps I

Constr Hard cls Soft cls Relaxed clauses
Updated
AtMostk

constr

LB
incr

Li (¬ni1 ∨ . . . ∨ ¬nim) (ni1), . . . , (nim)
(sil ∨ ni1),
1 ≤ l ≤ m

∑m
l=1 sil ≤ 1 1

Mj (¬p1j ∨ ¬p2j) (p1j), (p2j)
(r1j ∨ p1j),
(r2j ∨ p2j)

∑2
l=1 rlj ≤ 1 1

Mj

(¬p1j ∨ ¬p3j),
(¬p2j ∨ ¬p3j),

(r1j ∨ p1j),
(r2j ∨ p2j),∑2
l=1 rlj ≤ 1

(p3j) (r3j ∨ p3j)
∑3

l=1 rlj ≤ 2 1

· · ·

Mj

(¬p1j∨¬pm+1j), . . .,
(¬pmj ∨ ¬pm+1j),

(r1j ∨ p1j), . . .,
(rmj ∨ pmj),∑m
l=1 rlj ≤ m − 1

(pm+1j) (rm+1j ∨ pm+1j)
∑m+1

l=1 rlj ≤ m 1

35 / 42

Proof of claim 1 – unit propagation steps II

Clauses Unit Propagation

(pk+1 j) pk+1 j = 1

(¬p1j ∨¬pk+1 j), . . . , (¬pkj ∨¬pk+1 j) p1j = . . . = pkj = 0

(r1j ∨ p1j), . . . , (rkj ∨ pkj) r1j = . . . = rkj = 1∑k
l=1 rlj ≤ k − 1

(∑k
l=1 rlj ≤ k − 1

)
`1⊥

• Key points:

– For each Li , UP raises LB by 1
– For each Mj , UP raises LB by m

– In total, UP raises LB by m(m + 1) + 1

– Thus, PHPm+1
m is unsatisfiable

36 / 42

Results on PHP instances: pw vs. sc

0 10 20 30 40 50 60
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

lp-cnf
lp-wcnf
maxhs
lmhs
mscg
eva
lgl
lmhs-nes
zres
glucose
lgl-nocard
cc-cnf
cc-opb

0 10 20 30 40 50
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

lp-cnf
lp-wcnf
maxhs
lmhs
mscg
lmhs-nes
eva

glucose
lgl-nocard
lgl
zres
cc-cnf
cc-opb

SAT SAT+ IHS MaxSAT CG MaxSAT MRes MIP OPB BDD

minisat glucose lgl crypto maxhs lmhs mscg wbo wpm3 eva lp cc sat4j∗ zres

37 / 42

Effect of P clauses

0 20 40 60 80 100
instances

10−3

10−2

10−1

100

101

102

103

C
PU

tim
e

(s
)

mscg (no P)
maxhs
lmhs
wbo (no P)
mscg
eva (no P)
eva
lmhs-nes (no P)
lmhs-nes
wbo

38 / 42

Some results from our AAAI’18 paper – see MLB’s talk

Remark

Formalize DrMaxSAT proof system, using MaxSAT resolution

Result 1

DrMaxSAT p-simulates RES/CL
∴ DrMaxSAT stronger proof system than RES/CL

Result 2

MaxSAT refutations of the dual-rail encoded Parity Principle require
exponential size 2n

ε
for some ε > 0

∴ DrMaxSAT does not p-simulate CP

But, several open questions ...

39 / 42

Conclusions & research directions

• Initial motivation: optimize MaxHS-like algorithms
– E.g. by exploiting Horn MaxSAT & LTUR

• Simple reduction from SAT to Horn MaxSAT

– Many other simple reductions to Horn MaxSAT

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

• Where to go with Horn MaxSAT?

– Also, additional results about the new proof system(s)?

• Still many open questions?

– E.g. MaxHS unreasonably efficient. Why?

40 / 42

Conclusions & research directions

• Initial motivation: optimize MaxHS-like algorithms
– E.g. by exploiting Horn MaxSAT & LTUR

• Simple reduction from SAT to Horn MaxSAT

– Many other simple reductions to Horn MaxSAT

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

• Where to go with Horn MaxSAT?

– Also, additional results about the new proof system(s)?

• Still many open questions?

– E.g. MaxHS unreasonably efficient. Why?

40 / 42

Conclusions & research directions

• Initial motivation: optimize MaxHS-like algorithms
– E.g. by exploiting Horn MaxSAT & LTUR

• Simple reduction from SAT to Horn MaxSAT

– Many other simple reductions to Horn MaxSAT

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

• Where to go with Horn MaxSAT?

– Also, additional results about the new proof system(s)?

• Still many open questions?

– E.g. MaxHS unreasonably efficient. Why?

40 / 42

Conclusions & research directions

• Initial motivation: optimize MaxHS-like algorithms
– E.g. by exploiting Horn MaxSAT & LTUR

• Simple reduction from SAT to Horn MaxSAT

– Many other simple reductions to Horn MaxSAT

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

• Where to go with Horn MaxSAT?

– Also, additional results about the new proof system(s)?

• Still many open questions?

– E.g. MaxHS unreasonably efficient. Why?

40 / 42

Conclusions & research directions

• Initial motivation: optimize MaxHS-like algorithms
– E.g. by exploiting Horn MaxSAT & LTUR

• Simple reduction from SAT to Horn MaxSAT

– Many other simple reductions to Horn MaxSAT

• (Horn) MaxSAT solvers can solve (in polynomial time) hard
instances for resolution

– If equipped with the right reduction

• Where to go with Horn MaxSAT?

– Also, additional results about the new proof system(s)?

• Still many open questions?

– E.g. MaxHS unreasonably efficient. Why?

40 / 42

Questions?

41 / 42

Some references

• A. Ignatiev, A. Morgado, J. Marques-Silva:
On Tackling the Limits of Resolution in SAT Solving.
SAT 2017: 164-183

• J. Marques-Silva, A. Ignatiev, A. Morgado:
Horn Maximum Satisfiability:
Reductions, Algorithms and Applications.
EPIA 2017: 681-694

• M.L. Bonet, S. Buss, A. Ignatiev, J. Marques-Silva, A. Morgado:
MaxSAT Resolution With the Dual Rail Encoding.
AAAI 2018: 6565-6572

42 / 42

	MaxSAT Solving
	Core Guided with MSU3 – Example
	Core Guided with RC2 – Example
	MaxHS – Example
	MaxHS – Algorithm

	Horn MaxSAT
	Dual Rail Encoding

	PHP Refutations in Polynomial Time

