Towards MaxSAT-Based Proof Systems A Practical Perspective

Joao Marques-Silva

Joint work M.L. Bonet, S. Buss, A. Ignatiev and A. Morgado

University of Lisbon

Workshop on Theory and Practice of Satisfiability Solving CMO, Oaxaca, México

August 2018

The SAT disruption

- Key breakthroughs in mid 90s and early 00s

The SAT disruption

- Key breakthroughs in mid 90s and early 00s
- CDCL SAT solving enabled many successes over the years
- Hundreds (thousands?) of practical applications

SAT solver evolution

[Source: Simon 2015]

SAT can make the difference - axiom pinpointing

- Instances: $\mathcal{E L}{ }^{+}$medical ontologies

How significant is SAT solving?

How significant is SAT solving?

On P, NP, and Computational Complexity

My point here is not to criticize complexity theory. It is a beautiful theory that has yielded
Today's SAT solvers, which enjoy wide industrial usage, routinely solve SAT instances with over one million variables. How can a scary NP-complete problem be so easy? What is going on?

The answer is that one must read complexity-theoretic claims carefully. Classical NP-completeness theory is about worst-case complexity. deep insights over the last 50 years, as well as posed fundamental, tantalizing problems, such as the \mathbf{P} vs. NP problem. But an important role of theory is to shed light on practice, and there we have large gaps. We need, I believe, a richer and broader complexity theory, a theory that would explain both the difficulty and the easiness of problems like SAT. More theory, please!

Moshe Y. Vardi, EDITOR-IN-CHIEF

How significant is SAT solving? And SAT oracles?

Comm. ACM 2010

D01:10.1145/1839676.1839677

On P, NP, and Computational Complexity

My point here is not to criticize complexity theory. It is a beautiful theory that has yielded
Today's SAT solvers, which enjoy wide industrial usage, routinely solve SAT instances with over one million variables. How can a scary NP-complete problem be so easy? What is going on?

The answer is that one must read complexity-theoretic claims carefully. Classical NP-completeness theory is about worst-case complexity.

SAT is ubiquitous in problem solving

SAT is ubiquitous in problem solving

What is Maximum Satisfiability (MaxSAT)?

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

What is Maximum Satisfiability (MaxSAT)?

$$
\neg x_{6} \vee x_{8}
$$

$$
\begin{aligned}
& \neg x_{6} \vee x_{2} \\
& x_{6} \vee \neg x_{8} \\
& \neg x_{7} \vee x_{5}
\end{aligned}
$$

$$
\neg x_{2} \vee x_{1}
$$

$$
\neg x_{1}
$$

$$
x_{2} \vee x_{4}
$$

$$
\neg x_{5} \vee x_{3}
$$

- Given unsatisfiable formula

What is Maximum Satisfiability (MaxSAT)?

$x_{6} \vee x_{2}$	$\neg x_{6} \vee x_{2}$	$\neg x_{2} \vee x_{1}$	$\neg x_{1}$
$\neg x_{6} \vee x_{8}$	$x_{6} \vee \neg x_{8}$	$x_{2} \vee x_{4}$	$\neg x_{4} \vee x_{5}$
$x_{7} \vee x_{5}$	$\neg x_{7} \vee x_{5}$	$\neg x_{5} \vee x_{3}$	$\neg x_{3}$

- Given unsatisfiable formula, find largest satisfiable subset of clauses

What is Maximum Satisfiability (MaxSAT)?

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

- Given unsatisfiable formula, find largest satisfiable subset of clauses

MaxSAT Variants	Hard Clauses?		
	No	Yes	
Weights?	No	Plain	Partial
	Yes	Weighted	Weighted Partial

- Many practical applications

Many MaxSAT approaches

- For practical (industrial) instances: core-guided \& MHS approaches are the most effective

MaxSAT (r)evolution - unweighted instances 2008-2017

Evolution of Unweighted MaxSAT Solvers

MaxSAT (r)evolution - weighted instances 2008-2017

Evolution of Weighted MaxSAT Solvers

Source: [MaxSAT 2017 organizers]

What about in $2018 ?$

What about in 2018? - complete tracks

Source: [MaxSAT 2017 organizers]

Unweighted			Weighted		
Solver	\#Solved	Time (Avg)	Solver	\#Solved	Time (Avg)
RC2-B	421	126.32	RC2-B	421	256.02
RC2-A	416	138.98	RC2-A	416	267.55
maxino	405	137.50	MaxHS	390	274.87
MaxHS	386	178.06	Pacose	390	348.98
Open-WBO-Gluc	382	171.54	QMaxSAT	381	320.78

What about in 2018? - complete tracks

Source: [MaxSAT 2017 organizers]

Unweighted			Weighted		
Solver	\#Solved	Time (Avg)	Solver	\#Solved	Time (Avg)
RC2-B	421	126.32	RC2-B	421	256.02
RC2-A	416	138.98	RC2-A	416	267.55
maxino	405	137.50	MaxHS	390	274.87
MaxHS	386	178.06	Pacose	390	348.98
Open-WBO-Gluc	382	171.54	QMaxSAT	381	320.78

- Note: RC2 is a variant of a 2014 algorithm, with some practical optimizations
- Core-guided, based on lower-bound refinement
[FM06,MSP07]
- Exploits soft cardinality constraints
- Inspired by OLL algorithm, first used in ASP optimization

What about in 2018? - complete tracks

Source: [MaxSAT 2017 organizers]

Unweighted			Weighted		
Solver	\#Solved	Time (Avg)	Solver	\#Solved	Time (Avg)
RC2-B	421	126.32	RC2-B	421	256.02
RC2-A	416	138.98	RC2-A	416	267.55
maxino	405	137.50	MaxHS	390	274.87
MaxHS	386	178.06	Pacose	390	348.98
Open-WBO-Gluc	382	171.54	QMaxSAT	381	320.78

- Note: RC2 is a variant of a 2014 algorithm, with some practical optimizations, and implemented with PySAT
- Core-guided, based on lower-bound refinement
[FM06,MSP07]
- Exploits soft cardinality constraints
- Inspired by OLL algorithm, first used in ASP optimization [AKMS12]

Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time

Outline

MaxSAT Solving
 Core Guided with MSU3 - Example
 Core Guided with RC2 - Example
 MaxHS - Example
 MaxHS - Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

MSU3 core-guided algorithm

$$
\begin{array}{lllc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

MSU3 core-guided algorithm

$$
\begin{array}{ll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5}
\end{array}
$$

Formula is UNSAT; OPT $\leq|\varphi|-1$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{6} r_{i} \leq 1 & & &
\end{array}
$$

Add relaxation variables and AtMost $k, k=1$, constraint

MSU3 core-guided algorithm

Formula is (again) UNSAT; OPT $\leq|\varphi|-2$; Get unsat core

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

Add new relaxation variables and update AtMost k, $\mathrm{k}=2$, constraint

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

Instance is now SAT

MSU3 core-guided algorithm

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

MSU3 core-guided algorithm

Builds on FM06 seminal work ...

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
\sum_{i=1}^{10} r_{i} \leq 2 & & &
\end{array}
$$

MaxSAT solu ion is $|\varphi|-\mathcal{I}=12-2=10$

AtMostk/PB
constraints used

Relaxed soft clauses
become hard

MSU3 core-guided algorithm

Builds on FM06 seminal work ...

MSU3 core-guided algorithm

Builds on FM06 seminal work ...

$$
\begin{array}{llll}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4}
\end{array}
$$

MaxSAT solu ion is $|\varphi|-\mathcal{I}=, 2-2=10$

AtMostk/PB
constraints used

Some clauses not relaxed

Relaxed soft clauses
become hard

Outline

MaxSAT Solving
Core Guided with MSU3 - Example
Core Guided with RC2 - Example MaxHS - Example
MaxHS - Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

Soft cardinality constraints

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} & \neg x_{1} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} & \neg x_{4} \vee x_{5} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} & \neg x_{3}
\end{array}
$$

Example CNF formula

Soft cardinality constraints

Formula is UNSAT; OPT $\leq|\varphi|-1$; Get unsat core

Soft cardinality constraints

$$
\begin{array}{llll}
x_{6} \vee x_{2} & \neg x_{6} \vee x_{2} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} & \neg x_{7} \vee x_{5} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
S_{1} \leq 1 & & &
\end{array}
$$

Aux sums: $\quad S_{1}=\sum_{i=1}^{6} r_{i} ;$
Add relaxation variables and AtMost1 constraint

Soft cardinality constraints

Aux sums: $\quad S_{1}=\sum_{i=1}^{6} r_{i} ;$
Formula is (again) UNSAT; OPT $\leq|\varphi|-2$; Get unsat core

Soft cardinality constraints

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
S_{1} \leq 2 & S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right) \leq 1 & &
\end{array}
$$

Aux sums: $\quad S_{1}=\sum_{i=1}^{6} r_{i} ; \quad S_{2}^{\prime}=\sum_{i=7}^{10} r_{i} ; \quad S_{2}=S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right)$
Add new relaxation variables $\left(S_{2}^{\prime}\right)$, update AtMostk constraint and add new AtMost1 constraint

Soft cardinality constraints

$$
\begin{array}{lcll}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
& & & S_{1} \geq 2 \rightarrow S_{2}^{\prime}=0 \\
S_{1} \leq 2 & S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right) \leq 1 & & S_{1} \leq 1 \rightarrow S_{2}^{\prime} \leq 1
\end{array}
$$

Aux sums: $\quad S_{1}=\sum_{i=1}^{6} r_{i} ; \quad S_{2}^{\prime}=\sum_{i=7}^{10} r_{i} ; \quad S_{2}=S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right)$
Add new relaxation variables $\left(S_{2}^{\prime}\right)$, update AtMostk constraint and add new AtMost1 constraint

Soft cardinality constraints

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
S_{1} \leq 2 & S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right) \leq 1 & &
\end{array}
$$

Aux sums: $\quad S_{1}=\sum_{i=1}^{6} r_{i} ; \quad S_{2}^{\prime}=\sum_{i=7}^{10} r_{i} ; \quad S_{2}=S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right)$
Instance is now SAT

Soft cardinality constraints

$$
\begin{array}{cccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6} \\
S_{1} \leq 2 & S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right) \leq 1 & &
\end{array}
$$

Aux sums: $\quad S_{1}=\sum_{i=1}^{6} r_{i} ; \quad S_{2}^{\prime}=\sum_{i=7}^{10} r_{i} ; \quad S_{2}=S_{2}^{\prime}+\neg\left(S_{1} \leq 1\right)$
MaxSAT solution is $|\varphi|-\mathcal{I}=12-2=10$

Soft cardinality constraints

Builds on other algorithms: FM06, MSP07, ...

$$
\begin{array}{lccc}
x_{6} \vee x_{2} \vee r_{7} & \neg x_{6} \vee x_{2} \vee r_{8} & \neg x_{2} \vee x_{1} \vee r_{1} & \neg x_{1} \vee r_{2} \\
\neg x_{6} \vee x_{8} & x_{6} \vee \neg x_{8} & x_{2} \vee x_{4} \vee r_{3} & \neg x_{4} \vee x_{5} \vee r_{4} \\
x_{7} \vee x_{5} \vee r_{9} & \neg x_{7} \vee x_{5} \vee r_{10} & \neg x_{5} \vee x_{3} \vee r_{5} & \neg x_{3} \vee r_{6}
\end{array}
$$

Aux sums: $\quad S_{1}=\sum_{i=1}^{6} r_{i} ; \quad-_{2}^{\prime}=\sum_{i=7}^{10} r_{i} ; \quad S_{2}=S_{2}^{\prime}+\neg\left(\leq_{1} \leq 1\right)$
MaxSAT so ution is $|\varphi|-\mathcal{I}=12-2=10$

Only AtMostk
constraints used

Sums reused with \neq RHSs

Relaxed soft clauses become hard

Outline

MaxSAT Solving
Core Guided with MSU3 - Example Core Guided with RC2 - Example
MaxHS - Example
MaxHS - Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of \mathcal{K} :

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of \mathcal{K} : \emptyset

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of $\mathcal{K}: \emptyset$
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$?

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of $\mathcal{K}: \emptyset$
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\emptyset
\end{gathered}
$$

- Find MHS of $\mathcal{K}: \emptyset$
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{gathered}
$$

- Find MHS of $\mathcal{K}: \emptyset$
- $\operatorname{SAT}(\mathcal{F} \backslash \emptyset)$? No
- Core of $\mathcal{F}:\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Update \mathcal{K}

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} :

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$?

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{aligned}
& c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
& C_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
& c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
& \mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}\right\}
\end{aligned}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} :

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$?

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \quad c_{3}=\neg x_{2} \vee x_{1} \quad c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} \quad c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{array}{cccc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\}\right\}
\end{array}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1} \\
c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{1}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{1}, c_{9}\right\}\right)$? No
- Core of $\mathcal{F}:\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}$. Update \mathcal{K}

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1} \\
c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} :

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1} \\
c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{gathered}
c_{1}=x_{6} \vee x_{2} \quad c_{2}=\neg x_{6} \vee x_{2} \\
c_{5}=\neg x_{6} \vee x_{8}=\neg x_{2} \vee x_{1} \\
c_{6}=x_{6} \vee \neg x_{8} \quad c_{7}=x_{2} \vee x_{4} \quad c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} \quad c_{10}=\neg x_{7} \vee x_{5} \quad c_{11}=\neg x_{5} \vee x_{3} \quad c_{12}=\neg x_{3} \\
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
\end{gathered}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$?

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{array}{lllc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3}
\end{array}
$$

$$
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes, e.g. $x_{1}=x_{2}=1, x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=x_{8}=0$

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{array}{lllc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3}
\end{array}
$$

$$
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes, e.g. $x_{1}=x_{2}=1, x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=x_{8}=0$
- Terminate \& return 2

MaxSAT with Minimum Hitting Sets (MHS)

$$
\begin{array}{lllc}
c_{1}=x_{6} \vee x_{2} & c_{2}=\neg x_{6} \vee x_{2} & c_{3}=\neg x_{2} \vee x_{1} & c_{4}=\neg x_{1} \\
c_{5}=\neg x_{6} \vee x_{8} & c_{6}=x_{6} \vee \neg x_{8} & c_{7}=x_{2} \vee x_{4} & c_{8}=\neg x_{4} \vee x_{5} \\
c_{9}=x_{7} \vee x_{5} & c_{10}=\neg x_{7} \vee x_{5} & c_{11}=\neg x_{5} \vee x_{3} & c_{12}=\neg x_{3}
\end{array}
$$

$$
\mathcal{K}=\left\{\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\},\left\{c_{9}, c_{10}, c_{11}, c_{12}\right\},\left\{c_{3}, c_{4}, c_{7}, c_{8}, c_{11}, c_{12}\right\}\right\}
$$

- Find MHS of \mathcal{K} : E.g. $\left\{c_{4}, c_{9}\right\}$
- $\operatorname{SAT}\left(\mathcal{F} \backslash\left\{c_{4}, c_{9}\right\}\right)$? Yes, e.g. $x_{1}=x_{2}=1, x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=x_{8}=0$
- Terminate \& return?

Possibly many MHSes, with one SAT oracle call for each MHS!

Outline

MaxSAT Solving
Core Guided with MSU3 - Example
Core Guided with RC2 - Example
MaxHS - Example
MaxHS - Algorithm

Horn MaxSAT

PHP Refutations in Polynomial Time

The MaxHS algorithm

The MaxHS algorithm

Worst-case exponential iterations!
But effective in practice!

Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time

Recap Horn MaxSAT

- What is Horn MaxSAT?
- All soft clauses are Horn
- Most often, unit soft clauses
- All hard clauses are Horn

Recap Horn MaxSAT

- What is Horn MaxSAT?
- All soft clauses are Horn
- Most often, unit soft clauses
- All hard clauses are Horn
- How hard is Horn MaxSAT?
- Horn MaxSAT is NP-hard
- Decision K-HornSAT is NP-complete
- By definition, any problem in NP is reducible to K-HornSAT
- But...

Why use Horn MaxSAT?

- Practical perspective:
- MaxSAT with MHSes is very efficient in practice
- For Horn MaxSAT, we can replace SAT call (worst-case exponential) with LTUR call (worst-case linear)

Why use Horn MaxSAT?

- Practical perspective:
- MaxSAT with MHSes is very efficient in practice
- For Horn MaxSAT, we can replace SAT call (worst-case exponential) with LTUR call (worst-case linear)
- Theoretical perspective:
- Reducing SAT to Horn MaxSAT \& applying a MaxSAT algorithm yields new proof system(s)
- MaxSAT resolution
- Core-guided algorithm(s)
- MaxHS-like algorithms
- Reducing PHP to SAT and then to Horn MaxSAT admits polynomial time refutations for some MaxSAT algorithms

A Horn MaxHS algorithm

A Horn MaxHS algorithm

Worst-case exponential iterations!

What can we solve with Horn MaxSAT?

SAT \leq_{p} Horn MaxSAT
CSP \leq_{P} Horn MaxSAT
PHP \leq_{p} Horn MaxSAT
MaxClique \leq_{p} Horn MaxSAT
MinHS \leq_{p} Horn MaxSAT
$\operatorname{MinDS} \leq_{P}$ Horn MaxSAT
and so CSP, ASP, SMT*, ... direct, besides CSP \leq_{P} SAT direct, besides PHP \leq_{p} SAT and so MinVC, MaxIS and so MaxSP

What can we solve with Horn MaxSAT?

SAT \leq_{P} Horn MaxSAT
CSP \leq_{P} Horn MaxSAT
PHP \leq_{p} Horn MaxSAT
MaxClique \leq_{p} Horn MaxSAT
MinHS \leq_{P} Horn MaxSAT
MinDS \leq_{p} Horn MaxSAT
and so CSP, ASP, SMT*, ... direct, besides CSP \leq_{P} SAT direct, besides PHP \leq_{p} SAT and so MinVC, MaxIS
and so MaxSP

- Most encodings of cardinality constraints are Horn
- Sequential counters; totalizers; sorting networks; (pairwise) (cardinality networks); bitwise (for AtMost1)

What can we solve with Horn MaxSAT?

SAT \leq_{P} Horn MaxSAT
CSP \leq_{p} Horn MaxSAT
PHP \leq_{p} Horn MaxSAT
MaxClique $\leq p$ Horn MaxSAT
MinHS \leq_{p} Horn MaxSAT
MinDS $\leq p$ Horn MaxSAT
and so CSP, ASP, SMT*, ... direct, besides CSP \leq_{P} SAT direct, besides PHP \leq_{p} SAT and so MinVC, MaxIS
and so MaxSP

- Most encodings of cardinality constraints are Horn
- Sequential counters; totalizers; sorting networks; (pairwise) (cardinality networks); bitwise (for AtMost1)
- Some encodings of pseudo-Boolean constraints are Horn
- Local polynomial watchdog (LPW)

What can we solve with Horn MaxSAT?

SAT \leq_{p} Horn MaxSAT
CSP \leq_{P} Horn MaxSAT
PHP \leq_{P} Horn MaxSAT
MaxClique \leq_{p} Horn MaxSAT
MinHS \leq_{p} Horn MaxSAT
MinDS \leq_{P} Horn MaxSAT

and so CSP, ASP, SMT*, ... direct, besides CSP \leq_{P} SAT direct, besides PHP \leq_{p} SAT and so MinVC, MaxIS
and so MaxSP

- Most encodings of cardinality constraints are Horn
- Sequential counters; totalizers; sorting networks; (pairwise) (cardinality networks); bitwise (for AtMost1)
- Some encodings of pseudo-Boolean constraints are Horn
- Local polynomial watchdog (LPW)

Knapsack \leq_{P} Horn MaxSAT

What can we solve with Horn MaxSAT?

SAT \leq_{p} Horn MaxSAT
CSP \leq_{p} Horn MaxSAT
PHP \leq_{P} Horn MaxSAT
MaxClique \leq_{p} Horn MaxSAT
MinHS \leq_{p} Horn MaxSAT
MinDS \leq_{p} Horn MaxSAT

Outline

MaxSAT Solving

Horn MaxSAT
Dual Rail Encoding

PHP Refutations in Polynomial Time

SAT reduces to Horn MaxSAT

$$
\mathcal{F} \triangleq\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

SAT reduces to Horn MaxSAT

$$
\mathcal{F} \triangleq\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- For each x_{i}, create new variables $p_{i}\left(\right.$ for $\left.x_{i}=1\right)$ and $n_{i}\left(\right.$ for $\left.x_{i}=0\right)$
- p_{i} and n_{i} cannot both be assigned 1 :
- Add hard clause ($\left.\neg p_{i} \vee \neg n_{i}\right)$

SAT reduces to Horn MaxSAT

$$
\mathcal{F} \triangleq\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- For each x_{i}, create new variables $p_{i}\left(\right.$ for $\left.x_{i}=1\right)$ and $n_{i}\left(\right.$ for $\left.x_{i}=0\right)$
- p_{i} and n_{i} cannot both be assigned 1 :
- Add hard clause ($\left.\neg p_{i} \vee \neg n_{i}\right)$
- Reencode original clauses (as hard clauses):
- Literal x_{i} replaced by $\neg n_{i}$
- Literal $\neg x_{i}$ replaced by $\neg p_{i}$
- Goal is to assign value 1 to each variable, if possible:
- Add soft clauses $\left(p_{i}\right)$ and $\left(n_{i}\right)$

SAT reduces to Horn MaxSAT

$$
\mathcal{F} \triangleq\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- For each x_{i}, create new variables $p_{i}\left(\right.$ for $\left.x_{i}=1\right)$ and $n_{i}\left(\right.$ for $\left.x_{i}=0\right)$
- p_{i} and n_{i} cannot both be assigned 1 :
- Add hard clause ($\left.\neg p_{i} \vee \neg n_{i}\right)$
- Reencode original clauses (as hard clauses):
- Literal x_{i} replaced by $\neg n_{i}$
- Literal $\neg x_{i}$ replaced by $\neg p_{i}$
- Goal is to assign value 1 to each variable, if possible:
- Add soft clauses $\left(p_{i}\right)$ and $\left(n_{i}\right)$
- All clauses are Horn

SAT reduces to Horn MaxSAT

$$
\mathcal{F} \triangleq\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- For each x_{i}, create new variables $p_{i}\left(\right.$ for $\left.x_{i}=1\right)$ and $n_{i}\left(\right.$ for $\left.x_{i}=0\right)$
- p_{i} and n_{i} cannot both be assigned 1:
- Add hard clause ($\left.\neg p_{i} \vee \neg n_{i}\right)$
- Reencode original clauses (as hard clauses):
- Literal x_{i} replaced by $\neg n_{i}$
- Literal $\neg x_{i}$ replaced by $\neg p_{i}$
- Goal is to assign value 1 to each variable, if possible:
- Add soft clauses $\left(p_{i}\right)$ and $\left(n_{i}\right)$
- All clauses are Horn
- Original formula is satisfiable iff Horn MaxSAT formula can satisfy n soft clauses (and the hard clauses)
- I.e., satisfying n soft clauses represents assignment to the n variables consistent with the original clauses !

SAT reduces to Horn MaxSAT (Cont.)

$$
\mathcal{F} \triangleq\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- Example:
- New variables: $p_{1}, p_{2}, p_{3}, n_{1}, n_{2}, n_{3}$
- Filter impossible assignments:

$$
\left\{\left(\neg p_{1} \vee \neg n_{1}\right),\left(\neg p_{2} \vee \neg n_{2}\right),\left(\neg p_{3} \vee \neg n_{3}\right)\right\}
$$

- Original clauses reencoded: $\left(\neg n_{1} \vee \neg p_{2} \vee \neg n_{3}\right) \wedge\left(\neg n_{2} \vee \neg n_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{3}\right)$
- Soft clauses: $\left\{\left(p_{1}\right),\left(p_{2}\right),\left(p_{3}\right),\left(n_{1}\right),\left(n_{2}\right),\left(n_{3}\right)\right\}$

SAT reduces to Horn MaxSAT (Cont.)

$$
\mathcal{F} \triangleq\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3}\right)
$$

- Example:
- New variables: $p_{1}, p_{2}, p_{3}, n_{1}, n_{2}, n_{3}$
- Filter impossible assignments:

$$
\left\{\left(\neg p_{1} \vee \neg n_{1}\right),\left(\neg p_{2} \vee \neg n_{2}\right),\left(\neg p_{3} \vee \neg n_{3}\right)\right\}
$$

- Original clauses reencoded:

$$
\left(\neg n_{1} \vee \neg p_{2} \vee \neg n_{3}\right) \wedge\left(\neg n_{2} \vee \neg n_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{3}\right)
$$

- Soft clauses: $\left\{\left(p_{1}\right),\left(p_{2}\right),\left(p_{3}\right),\left(n_{1}\right),\left(n_{2}\right),\left(n_{3}\right)\right\}$
- Encoding is a variant of the dual-rail encoding, used since the mid 80s

Pigeonhole formulas - propositional encoding PHP_{m}^{m+1}

- Variables:
$-x_{i j}=1$ iff the $i^{\text {th }}$ pigeon is placed in the $j^{\text {th }}$ hole, $1 \leq i \leq m+1$, $1 \leq j \leq m$

Pigeonhole formulas - propositional encoding PHP_{m}^{m+1}

- Variables:
$-x_{i j}=1$ iff the $i^{\text {th }}$ pigeon is placed in the $j^{\text {th }}$ hole, $1 \leq i \leq m+1$, $1 \leq j \leq m$
- Constraints:
- Each pigeon must be placed in at least one hole, and each hole must not have more than one pigeon

$$
\bigwedge_{i=1}^{m+1} \operatorname{AtLeast} 1\left(x_{i 1}, \ldots, x_{i m}\right) \wedge \bigwedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1 j}\right)
$$

Pigeonhole formulas - propositional encoding PHP_{m}^{m+1}

- Variables:
$-x_{i j}=1$ iff the $i^{\text {th }}$ pigeon is placed in the $j^{\text {th }}$ hole, $1 \leq i \leq m+1$, $1 \leq j \leq m$
- Constraints:
- Each pigeon must be placed in at least one hole, and each hole must not have more than one pigeon

$$
\bigwedge_{i=1}^{m+1} \operatorname{AtLeast1}\left(x_{i 1}, \ldots, x_{i m}\right) \wedge \bigwedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1 j}\right)
$$

- Example encoding, with pairwise encoding for AtMost1 constraint:

Constraint

$$
\begin{array}{cc}
\wedge_{i=1}^{m+1} \operatorname{AtLeast} 1\left(x_{i 1}, \ldots, x_{i m}\right) & \left(x_{i 1} \vee \ldots \vee x_{i m}\right) \\
\wedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1 j}\right) & \wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg x_{r j} \vee \neg x_{s j}\right)
\end{array}
$$

Clause(s)

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$
- AtLeast1 constraints encoded as $\mathcal{L}_{i}, 1 \leq i \leq m+1$
- AtMost1 constraints encoded as $\mathcal{M}_{j}, 1 \leq j \leq m$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left.\left\{\begin{array}{l}
\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right), \\
\quad\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right),
\end{array}\right\} .\left\{\begin{array}{l}
\end{array}\right), \ldots, m_{m}\right)
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$
- AtLeast1 constraints encoded as $\mathcal{L}_{i}, 1 \leq i \leq m+1$
- AtMost1 constraints encoded as $\mathcal{M}_{j}, 1 \leq j \leq m$
- Full reduction of PHP to Horn MaxSAT

$$
\langle\mathcal{H}, \mathcal{S}\rangle=\left\langle\wedge_{i=1}^{m+1} \mathcal{L}_{i} \wedge \wedge_{j=1}^{m} \mathcal{M}_{j} \wedge \mathcal{P}, \mathcal{S}\right\rangle
$$

PHP as Horn MaxSAT

- New variables $n_{i j}$ and $p_{i j}$, for each $x_{i j}, 1 \leq i \leq m+1,1 \leq j \leq m$
- The soft clauses \mathcal{S}, with $|\mathcal{S}|=2 m(m+1)$, are given by

$$
\begin{aligned}
& \left\{\left(n_{11}\right), \ldots,\left(n_{1 m}\right), \ldots,\left(n_{m+11}\right), \ldots,\left(n_{m+1 m}\right)\right. \text {, } \\
& \left.\left(p_{11}\right), \ldots,\left(p_{1 m}\right), \ldots,\left(p_{m+11}\right), \ldots,\left(p_{m+1 m}\right)\right\}
\end{aligned}
$$

- Clauses in $\mathcal{P}: \mathcal{P}=\left\{\left(\neg n_{i j} \vee \neg p_{i j}\right) \mid 1 \leq i \leq m+1,1 \leq j \leq m\right\}$
- AtLeast1 constraints encoded as $\mathcal{L}_{i}, 1 \leq i \leq m+1$
- AtMost1 constraints encoded as $\mathcal{M}_{j}, 1 \leq j \leq m$
- Full reduction of PHP to Horn MaxSAT

$$
\langle\mathcal{H}, \mathcal{S}\rangle=\left\langle\wedge_{i=1}^{m+1} \mathcal{L}_{i} \wedge \wedge_{j=1}^{m} \mathcal{M}_{j} \wedge \mathcal{P}, \mathcal{S}\right\rangle
$$

- No more than $m(m+1)$ clauses can be satisfied, due to \mathcal{P}
- PHP_{m}^{m+1} is satisfiable iff there exists an assignment that satisfies the hard clauses \mathcal{H} and $m(m+1)$ soft clauses from \mathcal{S}

PHP as Horn MaxSAT II

- Clauses in each \mathcal{L}_{i} and in each \mathcal{M}_{j}, with pairwise encoding

Original Constraint	Encoded To	Clauses
$\wedge_{i=1}^{m+1}$ AtLeast1 $\left(x_{i 1}, \ldots, x_{i m}\right)$	\mathcal{L}_{i}	$\left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right)$
$\wedge_{j=1}^{m}$ AtMost1 $\left(x_{1 j}, \ldots, x_{m+1, j}\right)$	\mathcal{M}_{j}	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r j} \vee \neg p_{s j}\right)$

PHP as Horn MaxSAT II

- Clauses in each \mathcal{L}_{i} and in each \mathcal{M}_{j}, with pairwise encoding Original Constraint Encoded To Clauses

$$
\begin{array}{ccc}
\wedge_{i=1}^{m+1} \operatorname{AtLeast1}\left(x_{i 1}, \ldots, x_{i m}\right) & \mathcal{L}_{i} & \left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right) \\
\wedge_{j=1}^{m} \operatorname{AtMost1}\left(x_{1 j}, \ldots, x_{m+1, j}\right) & \mathcal{M}_{j} & \wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r j} \vee \neg p_{s j}\right)
\end{array}
$$

- Note: constraints with key structural properties:

Constraint	Variables
\mathcal{L}_{i}	$\left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right)$
\mathcal{L}_{k}	$\left(\neg n_{k 1} \vee \ldots \vee \neg n_{k m}\right)$
\mathcal{M}_{j}	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r j} \vee \neg p_{s j}\right)$
\mathcal{M}_{l}	$\wedge_{r=2}^{m+1} \wedge_{s=1}^{r-1}\left(\neg p_{r l} \vee \neg p_{s l}\right)$

- Variables in each \mathcal{L}_{i} disjoint from any other \mathcal{L}_{k} and $\mathcal{M}_{j}, k \neq i$
- Variables in each \mathcal{M}_{j} disjoint from any other $\mathcal{M}_{l}, I \neq j$

Outline

MaxSAT Solving

Horn MaxSAT

PHP Refutations in Polynomial Time

Some results from our SAT'17 paper

Claim 1

Core-guided MaxSAT (e.g. MSU3) produces a lower bound on the number of falsified clauses $\geq m(m+1)+1$ in polynomial time

Claim 2

MaxSAT resolution produces a lower bound on the number of falsified clauses $\geq m(m+1)+1$ in polynomial time

Remark

Horn MaxSAT encoding enables polynomial time refutations of the unsatisfiability of PHP instances, using CDCL SAT solvers

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each \mathcal{L}_{i} and each \mathcal{M}_{j}

- Recall: each constraint disjoint from the others (but not from \mathcal{P})

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each \mathcal{L}_{i} and each \mathcal{M}_{j}

- Recall: each constraint disjoint from the others (but not from \mathcal{P})

3. Derive large enough lower bound on \# of falsified clauses:

Constr. type	\# falsified cls	\# constr	In total
\mathcal{L}_{i}	1	$i=1, \ldots, m+1$	$m+1$
\mathcal{M}_{j}	m	$j=1, \ldots, m$	$m \cdot m$
			$m(m+1)+1$

Proof of claim 1 - outline

1. Assume MSU3 MaxSAT algorithm

- Note: Suffices to analyze disjoint sets separately

2. Relate soft clauses with each \mathcal{L}_{i} and each \mathcal{M}_{j}

- Recall: each constraint disjoint from the others (but not from \mathcal{P})

3. Derive large enough lower bound on \# of falsified clauses:

Constr. type	\# falsified cls	\# constr	In total
\mathcal{L}_{i}	1	$i=1, \ldots, m+1$	$m+1$
\mathcal{M}_{j}	m	$j=1, \ldots, m$	$m \cdot m$
			$m(m+1)+1$

4. Each increase in the value of the lower bound obtained by unit propagation (UP)

- In total: polynomial number of (linear time) UP runs

Proof of claim 1 - unit propagation steps I

Constr	Hard cls	Soft cls	Relaxed clauses	Updated AtMostk constr	$\begin{aligned} & \text { LB } \\ & \text { incr } \end{aligned}$
\mathcal{L}_{i}	$\left(\neg n_{i 1} \vee \ldots \vee \neg n_{i m}\right)$	$\left(n_{i 1}\right), \ldots,\left(n_{i m}\right)$	$\begin{aligned} & \left(s_{i l} \vee n_{i 1}\right), \\ & 1 \leq I \leq m \end{aligned}$	$\sum_{l=1}^{m} s_{i l} \leq 1$	1
\mathcal{M}_{j}	$\left(\neg p_{1 j} \vee \neg p_{2 j}\right)$	$\left(p_{1 j}\right),\left(p_{2 j}\right)$	$\begin{aligned} & \left(r_{1 j} \vee p_{1 j}\right), \\ & \left(r_{2 j} \vee p_{2 j}\right) \end{aligned}$	$\sum_{l=1}^{2} r_{l j} \leq 1$	1
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{1 j} \vee \neg p_{3 j}\right), \\ \left(\neg p_{2 j} \vee \neg p_{3 j}\right), \\ \left(r_{1 j} \vee p_{1 j}\right), \\ \left(r_{2 j} \vee p_{2 j}\right), \\ \sum_{l=1}^{2} r_{l j} \leq 1 \end{gathered}$	$\left(p_{3 j}\right)$	$\left(r_{3 j} \vee p_{3 j}\right)$	$\sum_{l=1}^{3} r_{l j} \leq 2$	1
.					
\mathcal{M}_{j}	$\begin{gathered} \left(\neg p_{1 j} \vee \neg p_{m+1 j}\right), \ldots \\ \left(\neg p_{m j} \vee \neg p_{m+1 j}\right), \\ \left(r_{1 j} \vee p_{1 j}\right), \ldots, \\ \left(r_{m j} \vee p_{m j}\right), \\ \sum_{l=1}^{m} r_{l j} \leq m-1 \end{gathered}$	$\left(p_{m+1 j}\right)$	$\left(r_{m+1 j} \vee p_{m+1 j}\right)$	$\sum_{l=1}^{m+1} r_{l j} \leq m$	1

Proof of claim 1 - unit propagation steps II

Clauses	Unit Propagation
$\left(p_{k+1 j}\right)$	$p_{k+1 j}=1$
$\left(\neg p_{1 j} \vee \neg p_{k+1 j}\right), \ldots,\left(\neg p_{k j} \vee \neg p_{k+1 j}\right)$	$p_{1 j}=\ldots=p_{k j}=0$
$\left(r_{1 j} \vee p_{1 j}\right), \ldots,\left(r_{k j} \vee p_{k j}\right)$	$r_{1 j}=\ldots=r_{k j}=1$
$\sum_{l=1}^{k} r_{l j} \leq k-1$	$\left(\sum_{l=1}^{k} r_{l j} \leq k-1\right) \vdash_{1} \perp$

- Key points:
- For each \mathcal{L}_{i}, UP raises LB by 1
- For each \mathcal{M}_{j}, UP raises LB by m
- In total, UP raises LB by $m(m+1)+1$
- Thus, PHP_{m}^{m+1} is unsatisfiable

Results on PHP instances: pw vs. sc

SAT	SAT+	IHS MaxSAT		CG MaxSAT			MRes	MIP	OPB		BDD	
minisat glucose	\|g	crypto	maxhs	Imhs	$m s c g$	wbo	wpm3	eva	Ip	CC	sat4j*	zres

Effect of \mathcal{P} clauses

Some results from our AAAl'18 paper - see MLB's talk

Remark

Formalize DrMaxSAT proof system, using MaxSAT resolution

Result 1

DrMaxSAT p-simulates RES/CL

\therefore DrMaxSAT stronger proof system than RES/CL

Result 2

MaxSAT refutations of the dual-rail encoded Parity Principle require exponential size $2^{n^{\epsilon}}$ for some $\epsilon>0$
\therefore DrMaxSAT does not p-simulate CP
But, several open questions ...

Conclusions \& research directions

- Initial motivation: optimize MaxHS-like algorithms
- E.g. by exploiting Horn MaxSAT \& LTUR

Conclusions \& research directions

- Initial motivation: optimize MaxHS-like algorithms
- E.g. by exploiting Horn MaxSAT \& LTUR
- Simple reduction from SAT to Horn MaxSAT
- Many other simple reductions to Horn MaxSAT

Conclusions \& research directions

- Initial motivation: optimize MaxHS-like algorithms
- E.g. by exploiting Horn MaxSAT \& LTUR
- Simple reduction from SAT to Horn MaxSAT
- Many other simple reductions to Horn MaxSAT
- (Horn) MaxSAT solvers can solve (in polynomial time) hard instances for resolution
- If equipped with the right reduction

Conclusions \& research directions

- Initial motivation: optimize MaxHS-like algorithms
- E.g. by exploiting Horn MaxSAT \& LTUR
- Simple reduction from SAT to Horn MaxSAT
- Many other simple reductions to Horn MaxSAT
- (Horn) MaxSAT solvers can solve (in polynomial time) hard instances for resolution
- If equipped with the right reduction
- Where to go with Horn MaxSAT?
- Also, additional results about the new proof system(s)?

Conclusions \& research directions

- Initial motivation: optimize MaxHS-like algorithms
- E.g. by exploiting Horn MaxSAT \& LTUR
- Simple reduction from SAT to Horn MaxSAT
- Many other simple reductions to Horn MaxSAT
- (Horn) MaxSAT solvers can solve (in polynomial time) hard instances for resolution
- If equipped with the right reduction
- Where to go with Horn MaxSAT?
- Also, additional results about the new proof system(s)?
- Still many open questions?
- E.g. MaxHS unreasonably efficient. Why?

Questions?

Some references

- A. Ignatiev, A. Morgado, J. Marques-Silva:

On Tackling the Limits of Resolution in SAT Solving.
SAT 2017: 164-183

- J. Marques-Silva, A. Ignatiev, A. Morgado:

Horn Maximum Satisfiability:
Reductions, Algorithms and Applications.
EPIA 2017: 681-694

- M.L. Bonet, S. Buss, A. Ignatiev, J. Marques-Silva, A. Morgado: MaxSAT Resolution With the Dual Rail Encoding.
AAAI 2018: 6565-6572

