Algorithms for Satisfiability beyond Resolution.

Maria Luisa Bonet
UPC, Barcelona, Spain
Oaxaca, August, 2018

Co-Authors: Sam Buss, Alexey Ignatiev, Joao Marques-Silva, Antonio Morgado.

Motivation.

- Satisfiability (SAT) is the problem of determining if there is an interpretation that satisfies a given boolean formula in conjunctive normal form.
- SAT is an NP-Complete problem, therefore we don't expect to have polynomial algorithms for it.
- SAT is very important because many other problems can be encoded as satisfiability.
- Even though SAT is NP-Complete, we can solve efficiently many hard real life problems.
- Even though an unsatisfiable formula may have a short refutation, finding it might be hard.

Motivation.

- Conflict Driven Clause Learning (CDCL) is the main technique for solving SAT
- When formulas are unsatisfiable, CDCL is equivalent to Resolution.
- Some basic problems, like pigeon-hole principle, cannot have short Resolution Refutations.
- Research on stronger proof systems, like Extended Resolution or Cutting Planes, for refuting some formulas efficiently, has failed.
- Ideas for improvements of SAT solving procedures for some hard crafted instances.

Dual-Rail Approach

- Encode the principle as a partial MaxSAT problem using the dual-rail encoding;
- then use MaxSAT.
- Advantages:

Polynomial size encodings.
We can use MaxSAT algorithms, like core-guided or minimum hitting set.
Method efficiently solves some hard problems for Resolution, like pigeon-hole.

- Topic of present work: what is the real power of dual-rail MaxSAT technique compared with other proof systems?

MaxSAT and Partial MaxSAT

- Need to give weights to clauses, weight indicating the "cost" of falsifying the clause.
- Clauses are partitioned into soft clauses and hard clauses.
- Soft clauses may be falsified and have weight 1 ; hard clauses may not be falsified and have weight T.

Definition

So Partial MaxSAT is the problem of finding an assignment that satisfies all the hard clauses and minimizes the number of falsified soft clauses.

Dual-Rail MaxSAT [Ignatiev-Morgado-MarquesSilva].

- 「 a set of hard clauses over the variables $\left\{x_{1}, \ldots, x_{N}\right\}$.
- The dual-rail encoding $\Gamma^{d r}$ of Γ, uses $2 N$ variables n_{1}, \ldots, n_{N} and p_{1}, \ldots, p_{N} in place of variables x_{i}.
- p_{i} is true if x_{i} is true, and that n_{i} is true if x_{i} is false.
- $C^{d r}$ of a clause C :
- replace (unnegated) x_{i} with $\overline{n_{i}}$, and (negated) $\overline{x_{i}}$ with $\overline{p_{i}}$.
- Example: if C is $\left\{x_{1}, \overline{x_{3}}, x_{4}\right\}$, then $C^{d r}$ is $\left\{\overline{n_{1}}, \overline{p_{3}}, \overline{n_{4}}\right\}$.
- Every literal in $C^{d r}$ is negated.
- dual rail encoding Γ^{dr} of Γ contains:

1. The hard clause C^{dr} for each $C \in \Gamma$.
2. The hard clauses $\overline{p_{i}} \vee \overline{n_{i}}$ for $1 \leq i \leq N$.
3. The soft clauses p_{i} and n_{i} for $1 \leq i \leq N$.

Dual-Rail MaxSAT approach

Lemma (Ignatiev-Morgado-Marques-Silva)

Γ is satisfiable if and only if there is an assignment that satisfies all the hard clauses of Γ^{dr}, and N of the soft ones.

Corollary

Γ is unsatisfiable iff every assignment that satisfies all hard clauses of Γ^{dr}, must falsify at least $N+1$ soft clauses.

In the context of proof systems:
Γ is unsatisfiable, if using a proof system for Partical MaxSAT, we can obtain at least $N+1$ empty clauses (\perp).

MaxSAT Inference Rule. [Larrosa-Heras,

Bonet-Levy-Manya]
(Partial) MaxSAT rule, replaces two clauses by a different set of clauses.
A clause may be used only once as a hypothesis of an inference.

$$
\begin{array}{cccc}
\begin{array}{cc}
(x \vee A, 1) \\
(\bar{x} \vee B, \top)
\end{array} & (x \vee A, 1) & & (x \vee A, \top) \\
\cline { 1 - 1 }(A \vee B, 1) & \frac{(\bar{x} \vee B, 1)}{(A \vee B, 1)} & & \frac{(\bar{x} \vee B, \top)}{(A \vee B, \top)} \\
(x \vee A \vee \bar{B}, 1) & (x \vee A \vee \bar{B}, 1) & & (x \vee A, \top) \\
(\bar{x} \vee B, \top) & (\bar{x} \vee \bar{A} \vee B, 1) & & (\bar{x} \vee B, \top)
\end{array}
$$

$x \vee A \vee \bar{B}$, where $A=a_{1} \vee \cdots \vee a_{s}, B=b_{1} \vee \cdots \vee b_{t}$ and $t>0$, is

$$
\begin{align*}
& x \vee a_{1} \vee \cdots \vee a_{s} \vee \bar{b}_{1} \\
& x \vee a_{1} \vee \cdots \vee a_{s} \vee b_{1} \vee \bar{b}_{2} \tag{1}\\
& \cdots \\
& x \vee a_{1} \vee \cdots \vee a_{s} \vee b_{1} \vee \cdots \vee b_{t-1} \vee \overline{b_{t}}
\end{align*}
$$

Example

Consider the unsatisfiable set of clauses: $\overline{x_{1}} \vee x_{2}, x_{1}$ and $\overline{x_{2}}$.
The dual rail encoding has the five hard clauses

$$
\overline{p_{1}} \vee \overline{n_{2}} \quad \overline{n_{1}} \quad \overline{p_{2}} \quad \overline{p_{1}} \vee \overline{n_{1}} \quad \overline{p_{2}} \vee \overline{n_{2}},
$$

plus the four soft unit clauses

$$
\begin{array}{llll}
p_{1} & n_{1} & p_{2} & n_{2} .
\end{array}
$$

Since there are two variables, a dual-rail MaxSAT refutation must derive a multiset containing three copies of the empty clause \perp.

$$
\begin{array}{cccc}
\left(\overline{n_{1}}, \top\right) & \left(\overline{p_{2}}, \top\right) & \left(p_{1}, 1\right) & \\
\left(n_{1}, 1\right) & \left(p_{2}, 1\right) & \frac{\left(\overline{p_{1}} \vee \overline{n_{2}}, \top\right)}{\left(\overline{n_{2}}, 1\right)} & \left(\overline{n_{2}}, 1\right) \\
\cline { 1 - 1 }(\perp, 1) & (\perp, 1) & \left(p_{1} \vee n_{2}, 1\right) & \frac{\left(n_{2}, 1\right)}{(\perp, 1)} \\
\left(\overline{n_{1}}, \top\right) & \left(\overline{p_{2}}, \top\right) & \left(\overline{p_{1}} \vee \overline{n_{2}}, \top\right) &
\end{array}
$$

Core-guided Algorithm for MaxSAT

1. Input: $F=S \cup H$, soft clauses S and hard clauses H
2. $\left(R, F_{W}, \lambda\right) \rightarrow(\varnothing, S \cup H, 0)$
3. while true do
4.

$(s t, C, A) \rightarrow \operatorname{SAT}\left(F_{W}\right)$
5. if $s t$ then return λ, A
6. $\quad \lambda \rightarrow \lambda+1$
7. \quad for $c \in C \cap S$ do
8. $R \rightarrow R \cup\{r\} / / r$ is a fresh variable $S \rightarrow S \backslash\{c\}$
10.

$$
H \rightarrow H \cup\{c \cup\{r\}\}
$$

11.

$$
F_{W} \rightarrow S \cup H \cup C N F\left(\sum_{r \in R} r \leq \lambda\right)
$$

Relevant Proof Systems

A Frege system is a textbook-style proof system, usually defined to have modus ponens as its only rule of inference.

An $A C^{0}$-Frege proof is a Frege proof with a constant upper bound on the depth of formulas appearing in the Frege proof.
$A C^{0}$-Frege+PHP is constant depth Frege augmented with the schematic pigeonhole principle.

The Cutting Planes system is a pseudo-Boolean propositional proof system, with variables taking on $0 / 1$ values. The lines of a cutting planes proof are inequalities of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \geq a_{n+1}
$$

where the a_{i} 's are integers. Logical axioms are $x_{i} \geq 0$ and $-x_{i} \geq-1$; rules are addition, multiplication by a integer, and a special division rule.

The Pigeonhole principle

There is no $1-1$ function from $[n+1]$ to $[n]$.
Set of clauses:

$$
\begin{array}{ll}
\bigvee_{\mathbf{j}=\mathbf{1}}^{\mathbf{n}} \mathbf{x}_{\mathbf{i}, \mathbf{j}} & \text { for } i \in[n+1] \\
\overline{\mathbf{x}_{\mathbf{i}, \mathbf{j}}} \vee \overline{\mathbf{x}_{\mathbf{k}, \mathbf{j}}} & \text { for distinct } i, k \in[n+1]
\end{array}
$$

[Cook-Reckhow] Polynomial size extended Frege proofs of PHP ${ }_{n}^{n+1}$.
[Buss'87] Polynomial size Frege proofs of $P H P_{n}^{n+1}$.
[Haken'85] Resolution requires exponential size refutations of PHP ${ }_{n}^{n+1}$.

Polynomial size Cutting Planes refutations of $P H P_{n}^{n+1}$.

Translation of the PHP to the dual-rail Language.

The dual-rail encoding, $\left(P H P_{n}^{n+1}\right)^{d r}$ of $P H P_{n}^{n+1}$. Hard clauses:

$$
\begin{array}{ll}
\bigvee_{\mathbf{j}=\mathbf{1}}^{\mathbf{n}} \overline{\mathbf{n}_{\mathbf{i}, \mathbf{j}}} & \text { for } i \in[n+1] \\
\overline{\mathbf{p}_{\mathbf{i}, \mathbf{j}}} \vee \overline{\mathbf{p}_{\mathbf{k}, \mathbf{j}}} & \text { for } j \in[n] \text { and } \\
& \text { distinct } i, k \in[n+1] .
\end{array}
$$

Soft clauses are:
Unit clauses $\mathbf{n}_{\mathbf{i}, \mathbf{j}}$ and $\mathbf{p}_{\mathbf{i}, \mathbf{j}}$ for all $i \in[n+1]$ and $j \in[n]$.
[Ignatiev-Morgado-MarquesSilva] Polynonial sequence of Partial MaxSAT resolution steps to obtain $(n+1) n+1$ soft empty clauses \perp.
[Bonet-Levy-Manya] MaxSAT rule requires exponential number of steps to show one clause cannot be satisfied, when using usual encoding.

Relationship of dual-rail MaxSAT and Resolution

Theorem
The core-guided MaxSAT algorithm with the dual-rail encoding simulates Resolution.

Theorem
Multiple dual rail MaxSAT simulates tree-like Resolution.

Theorem
Weighted dual rail MaxSAT simulates general Resolution.

Dual-rail Core-guided MaxSAT simulation of Resolution

Substitute $\left\{p_{i}, n_{i}\right\}$ soft, by $\left.\left\{p_{i} \vee a_{i_{1}}, n_{i} \vee a_{i_{2}}, a_{i_{1}}+a_{i_{2}} \leq 1\right)\right\}$ hard, $a_{i_{1}}$ and $a_{i_{2}}$ new variables.

For every i, we have $p_{i} \vee n_{i}$.
$C \vee \neg n_{i} \overbrace{i}^{n_{i} \vee p_{i}}$
Now we have all clauses with p_{i} vars.
Follow resolution refutation.

Dual-rail MaxSAT simulation of Resolution

$$
\begin{array}{ccc}
\left(p_{i}, w_{i}\right) & & \left(C \vee \overline{n_{i}}, \top\right) \\
\frac{\left(\overline{p_{i}} \vee \overline{n_{i}}, \top\right)}{\left(\overline{n_{i}}, w_{i}\right)} & \left(\overline{n_{i}}, w_{i}\right) & \tag{array}\\
\left(p_{i} \vee n_{i}, w_{i}\right) & & \left(n_{i}, w_{i}\right) \\
\left(\overline{p_{i}} \vee \overline{n_{i}}, \top\right) & & \frac{\left(p_{i} \vee n_{i}, w_{i}\right)}{\left(C \vee w_{i}\right)}
\end{array}
$$

We used soft clauses n_{i} and p_{i}, and obtained soft \perp and $p_{i} \vee n_{i}$. Soft clauses n_{i} and p_{i} will have considerable weight initially, $p_{i} \vee n_{i}$ will have weight to eliminate n_{i} variables, weights will be used to account for several uses of a clause in the refutation.

The Parity Principle.

Given a graph with an odd number of vertices, it is not posible to have every vertex with degree one.

The propositional version of the Parity Principle, for $m \geq 1$, uses $\binom{2 m+1}{2}$ variables $x_{i, j}$, where $i \neq j$ and $x_{i, j}$ is identified with $x_{j, i}$. Meaning of $x_{i, j}$: there is an edge between vertex i and vertex j.

The Parity Principle, Parity ${ }^{2 m+1}$,
$V_{\mathbf{j} \neq \mathbf{i}} \mathbf{x}_{\mathbf{i}, \mathbf{j}} \quad$ for $i \in[2 m+1]$
$\overline{\mathbf{x}_{\mathbf{i}, \mathbf{j}}} \vee \overline{\mathbf{x}_{\mathbf{k}, \mathbf{j}}} \quad$ for i, j, k distinct members of [2m+1].

Results using the Parity Principle

Theorem
$A C^{0}$-Frege + PHP p-simulates the dual-rail MaxSAT system.
Theorem (Beame-Pitassi)
$A C^{0}$-Frege + PHP refutations of Parity require exponential size.
Corollary
MaxSAT refutations of the dual-rail encoded Parity Principle require exponential size.

Corollary

The dual rail MaxSAT proof system does not polynomially simulate $C P$.

Fact

Dual-rail minimum hitting set algorithm has short proofs of the Parity principle.

$A C^{0}$-Frege + PHP p-simulation the dual-rail MaxSAT

The Double Pigeonhole Principle

if $2 m+1$ pigeons are mapped to m holes then some hole contains at least three pigeons.

Set of clauses of $2 \mathrm{PHP}_{m}^{2 m+1}$:

$$
\begin{array}{ll}
\vee_{\mathbf{j}=\mathbf{1}}^{\mathbf{m}} \mathbf{x}_{\mathbf{i}, \mathbf{j}} & \text { for } i \in[2 m+1] \\
\overline{\mathbf{x}_{\mathbf{i}, \mathbf{j}}} \vee \overline{\mathbf{x}_{\mathbf{k}, \mathbf{j}}} \vee \overline{\mathbf{x} \ell, \mathbf{j}} & \text { for distinct } i, k, \ell \in[2 m+1] .
\end{array}
$$

Translation of the Double PHP to dual-rail

The dual-rail encoding, $\left(2 \mathrm{PHP}^{2 m+1}\right)^{d r}$, of $2 \mathrm{PHP}_{m}^{2 m+1}$. Hard clauses:

$$
\begin{array}{ll}
\bigvee_{\mathbf{j}=\mathbf{1}}^{\mathbf{m}} \overline{\mathbf{n}_{\mathbf{i}, \mathbf{j}}} & \text { for } i \in[2 m+1] \\
\overline{\mathbf{p}_{\mathbf{i}, \mathbf{j}}} \vee \overline{\mathbf{p}_{\mathbf{k}, \mathbf{j}}} \vee \overline{\mathbf{p}_{\ell, \mathbf{j}}} & \text { for } j \in[m] \text { and } \\
& \text { distinct } i, k, \ell \in[2 m+1] .
\end{array}
$$

Soft clauses are:
$\mathbf{n}_{\mathbf{i}, \mathbf{j}}$ and $\mathbf{p}_{\mathbf{i}, \mathrm{j}}$ for all $i \in[2 m+1]$ and $j \in[m]$.

Theorem
There are polynomial size MaxSAT refutations of the dual rail encoding of the $2 \mathrm{PHP}_{m}^{2 m+1}$.

Experimentation

Performance of SAT and MaxSAT solvers on $2 \mathrm{PHP}_{m}^{2 m+1}$.

Summary of Results

- dual-rail MaxSAT is strictly stronger than Resolution.
- A stronger pigeon-hole principle also has polynomial-size proofs in dual-rail MaxSAT, but requires exponential size in Resolution.
- We did experimentation with such pigeon-hole principle to back up the theoretical results.
- dual-rail MaxSAT does not simulate Cutting Planes.

