CIRCULAR (YET SOUND) PROOFS

Albert Atserias
Universitat Politècnica de Catalunya Barcelona

Joint work with
Massimo Lauria
Tree Resolution
Regular Resolution
General Resolution

Circular Resolution
 NEW!

Inference rules

Standard rules:

$$
\frac{C \vee X \quad D \vee \bar{X}}{C \vee D}
$$

$$
\frac{C}{C \vee D}
$$

$$
\overline{X \vee \bar{X}}
$$

Inference rules

Standard rules:

$$
\frac{C \vee X \quad D \vee \bar{X}}{C \vee D}
$$

$$
\frac{C}{C \vee D}
$$

$$
X \vee \bar{X}
$$

Symmetric rules:

Graphical representation of proofs

Circular arguments

Want: $E, F \vdash A$

Circular arguments

Want: $\quad E, F \vdash A$

Circular arguments

Want: $\quad E, F \vdash A$

Circular arguments

Want: $\quad E, F \vdash A$

Circular arguments

Want: $\quad E, F \vdash A$

Circular arguments

Want: $\quad E, F \vdash A$

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

...???...

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

...???...

Circular arguments

Want: $\quad E, F \vdash A$
Subgoal: $\quad E, F \vdash G$

...???...

Circular Pre-proofs

Definition: A pre-proof is a pair (Π, B) where:

- Π is an ordinary proof $C_{1}, C_{2}, \ldots, C_{m}$,
- B is a set of backedges; i.e. pairs (i, j) s.t. $j<i$ and $C_{j}=C_{i}$.

Circular Pre-proofs

Definition: A pre-proof is a pair (Π, B) where:

- Π is an ordinary proof $C_{1}, C_{2}, \ldots, C_{m}$,
- B is a set of backedges; i.e. pairs (i, j) s.t. $j<i$ and $C_{j}=C_{i}$.

Example:

$$
\Pi^{\prime}:\left(\Pi=\left(B_{1}, A_{1}, B_{1}, A_{2}, A_{3}\right), B=\{(3,1)\}\right)
$$

Some terminology and notation

$$
\Pi^{\prime}:\left(\left(C_{1}, C_{2}, \ldots, C_{m}\right), B\right)
$$

Terminology and notation:

- $G(\Pi)$: the graph representation of Π.
- $N^{+}(u)$: the set of out-neighbours of u.
- $N^{-}(u)$: the set of in-neighbours of u.
- F : the set of formula vertices (the squares) of $G(\Pi)$.
- I : the set of inference vertices (the circles) of $G(\Pi)$.

Some terminology and notation

$$
\Pi^{\prime}:\left(\left(C_{1}, C_{2}, \ldots, C_{m}\right), B\right)
$$

Terminology and notation:

- $G(\Pi)$: the graph representation of Π.
- $N^{+}(u)$: the set of out-neighbours of u.
- $N^{-}(u)$: the set of in-neighbours of u.
- F : the set of formula vertices (the squares) of $G(\Pi)$.
- I : the set of inference vertices (the circles) of $G(\Pi)$.

Observe:

- $u \in F$ implies $N^{-}(u) \subseteq I$ and $N^{+}(u) \subseteq I$.
- $u \in I$ implies $N^{-}(u) \subseteq F$ and $N^{+}(u) \subseteq F$.

Severe unsoundness of pre-proofs

Flow assignments and balance

$$
\Pi^{\prime}:\left(\left(C_{1}, C_{2}, \ldots, C_{m}\right), B\right)
$$

More terminology and notation:

Flow assignments and balance

$$
\Pi^{\prime}:\left(\left(C_{1}, C_{2}, \ldots, C_{m}\right), B\right)
$$

More terminology and notation:

- a flow assignment is a mapping $W: I \rightarrow \mathbb{R}^{+}$.

Flow assignments and balance

$$
\Pi^{\prime}:\left(\left(C_{1}, C_{2}, \ldots, C_{m}\right), B\right)
$$

More terminology and notation:

- a flow assignment is a mapping $W: I \rightarrow \mathbb{R}^{+}$.
- $W^{-}(u):=\sum_{v \in N^{-}(u)} W(u)$ for $u \in F$; the in-flow of u.
- $W^{+}(u):=\sum_{v \in N^{+}(u)} W(u)$ for $u \in F$; the out-flow of u.
- $B(u):=W^{-}(u)-W^{+}(u)$ for $u \in F$; the balance of $u \in F$.

Flow assignments and balance

$$
\Pi^{\prime}:\left(\left(C_{1}, C_{2}, \ldots, C_{m}\right), B\right)
$$

More terminology and notation:

- a flow assignment is a mapping $W: I \rightarrow \mathbb{R}^{+}$.
- $W^{-}(u):=\sum_{v \in N^{-}(u)} W(u)$ for $u \in F$; the in-flow of u.
- $W^{+}(u):=\sum_{v \in N^{+}(u)} W(u)$ for $u \in F$; the out-flow of u.
- $B(u):=W^{-}(u)-W^{+}(u)$ for $u \in F$; the balance of $u \in F$.
- if $B(u)<0$, then C_{u} is called a hypothesis.
- if $B(u)>0$, then C_{u} is called a conclusion.

Circular Proofs

Definition: A circular proof of A from A_{1}, \ldots, A_{m} is a pre-proof for which there exists a flow-assignment such that, for each formula vertex $u \in F$, the following hold:

1. $B(u)<0$ if $C_{u} \in\left\{A_{1}, \ldots, A_{m}\right\}$,
2. $B(u) \geq 0$ if $C_{u} \notin\left\{A_{1}, \ldots, A_{m}\right\}$,
3. $B(u)>0$ if $C_{u}=A$.

Circular Proofs

Definition: A circular proof of A from A_{1}, \ldots, A_{m} is a pre-proof for which there exists a flow-assignment such that, for each formula vertex $u \in F$, the following hold:

1. $B(u)<0$ if $C_{u} \in\left\{A_{1}, \ldots, A_{m}\right\}$,
2. $B(u) \geq 0$ if $C_{u} \notin\left\{A_{1}, \ldots, A_{m}\right\}$,
3. $B(u)>0$ if $C_{u}=A$.

Notes:

- efficient verification: linear programming techniques,
- weights may be assumed small rationals: by LP techniques,
- and even small integers: by flow techniques,

The examples again

Want: $\quad E, F \vdash A$

The examples again

Want: $\quad E, F \vdash A$

The examples again

Soundness

Theorem:
If there is a circular proof of A from A_{1}, \ldots, A_{m}, then every assignment that satisfies A_{1}, \ldots, A_{m} also satisfies A.

1st proof of soundness: by example

$$
E, F \vdash A \quad \Longrightarrow \quad E, F \models A
$$

Poly-size circular resolution proof of PHP

Theorem:
PHP_{n}^{n+1} has poly-size circular resolution refutations.

Proof of PHP

Proof of PHP

Proof of PHP

Proof of PHP: weaken and clean for hole 1

Next question

WHAT IS CIRCULAR RESOLUTION?

Sherali-Adams proofs on Boolean variables

Variables:

$$
X_{1}, \ldots, X_{n} \text { and } \overline{X_{1}}, \ldots, \overline{X_{n}}
$$

Axioms:

$$
\begin{array}{lll}
X_{i} \geq 0 & X_{i}^{2}-X_{i} \geq 0 & X_{i}+\overline{X_{i}}-1 \geq 0 \\
1-X_{i} \geq 0 & -X_{i}+X_{i}^{2} \geq 0 & 1-X_{i}-\overline{X_{i}} \geq 0
\end{array}
$$

SA Proofs: A refutation of $P_{1} \geq 0, \ldots, P_{m} \geq 0$ (including the axioms) is a polynomial identity of the form

$$
\sum_{j=1}^{m} P_{j} Q_{j}+Q_{0}=-1
$$

where each Q_{i} has the form

$$
\sum_{j \in K} c_{j}^{2} \prod_{i \in I_{j}} X_{i} \prod_{i \in J_{j}} \overline{X_{i}}
$$

Monomial size: max number monomials in $P_{i} Q_{i}$ and Q_{0}.

Equivalence: Circular Resolution \equiv Sherali-Adams

Multiplicative encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad-\prod_{i \in I} \overline{X_{i}} \prod_{j \in J} X_{i} \geq 0
$$

Additive encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad \sum_{i \in I} X_{i}+\sum_{j \in J} \overline{X_{i}}-1 \geq 0
$$

Theorem:
Circular Resolution \equiv_{p} Sherali-Adams.
(for both encodings)

Equivalence: Circular Resolution \equiv Sherali-Adams

Multiplicative encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad-\prod_{i \in I} \overline{X_{i}} \prod_{j \in J} X_{i} \geq 0
$$

Additive encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad \sum_{i \in I} X_{i}+\sum_{j \in J} \overline{X_{i}}-1 \geq 0
$$

Theorem:
Circular Resolution \equiv_{p} Sherali-Adams.
(for both encodings)

Proof:

Equivalence: Circular Resolution \equiv Sherali-Adams

Multiplicative encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad-\prod_{i \in I} \overline{X_{i}} \prod_{j \in J} X_{i} \geq 0
$$

Additive encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad \sum_{i \in I} X_{i}+\sum_{j \in J} \overline{X_{i}}-1 \geq 0
$$

Theorem:
Circular Resolution \equiv_{p} Sherali-Adams.
(for both encodings)

Proof:

\leq_{p} : essentially [Dantchev 2007] (reused in [ALN16]).

Equivalence: Circular Resolution \equiv Sherali-Adams

Multiplicative encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad-\prod_{i \in I} \overline{X_{i}} \prod_{j \in J} X_{i} \geq 0
$$

Additive encoding of clauses:

$$
\bigvee_{i \in I} X_{i} \vee \bigvee_{i \in J} \overline{X_{i}} \quad \mapsto \quad \sum_{i \in I} X_{i}+\sum_{j \in J} \overline{X_{i}}-1 \geq 0
$$

Theorem:
Circular Resolution \equiv_{p} Sherali-Adams.
(for both encodings)

Proof:

\leq_{p} : essentially [Dantchev 2007] (reused in [ALN16]).
\geq_{p} : a normal form result for Sherali-Adams proofs.

2nd proof of soundness: via LP

Assume: α satisfies all the hypotheses.
Define: $Z_{u}=1-\alpha\left(C_{u}\right)$ for each $u \in F$.
Note:

$$
\begin{array}{ll}
-Z_{u} \geq 0 & \text { for each axiom vertex } \\
Z_{u}+Z_{v}-Z_{w} \geq 0 & \text { for each cut vertex } \\
Z_{u}-Z_{v}-Z_{w} \geq 0 & \text { for each weakening vertex }
\end{array}
$$

Therefore:

$$
\sum_{v \in I} W(v)\left(\sum_{u \in N^{-}(v)} Z_{u}-\sum_{u \in N^{+}(v)} Z_{u}\right) \geq 0
$$

Equivalently:

$$
-\sum_{u \in F} B(u) Z_{u} \geq 0
$$

Proof of Circular Resolution \leq_{p} Sherali-Adams

Define: $M_{u}=$ "multiplicative encoding of C_{u} " for each $u \in F$. Note:

$$
\begin{aligned}
M_{u} & =-X \bar{X} & & \text { for axiom } \vdash u \\
-M_{u}-M_{v}+M_{w} & =(-X-\bar{X}+1) M_{w} & & \text { for cut } u, v \vdash w \\
-M_{u}+M_{v}+M_{w} & =(-1+X+\bar{X}) M_{u} & & \text { for weakening } u \vdash v, w
\end{aligned}
$$

Therefore:

$$
\sum_{v \in I} W(v)\left(\sum_{u \in N^{-}(v)} M_{u}-\sum_{u \in N^{+}(v)} M_{u}\right)=-\sum_{u \in F} B(u) M_{u}
$$

Now: Add positive multiples of

$$
\prod_{i} X_{i} \prod_{j} \overline{X_{j}}=-M_{u} \quad \text { for each } u \text { s.t. } C_{u} \neq 0
$$

Get: $M_{0}=-1$.

Take-home messages

1- Circular proofs are not always meaningless.
2- PHP has poly-size proofs in Circular Resolution.
3- Indeed Circular Resolution \equiv_{p} Sherali-Adams.

Acknowledgments

ERC-2014-CoG 648276 (AUTAR) EU.

