A Principal Curve Approach to Three-Dimensional Chromatin Configuration Reconstruction

Mark Segal

Center for Bioinformatics \& Molecular Biostatistics UCSF Divisions of Bioinformatics \& Biostatistics

Center for
Bioinformatics
BIRS 2018, Oaxaca
\& Molecular
Biostatistics

Importance of 3D Conformation

- Gene regulation:
- co-localization of co-expressed genes into transcription factories
- positioning of distal control elements
- Translocations / gene fusions:
- 20% of human cancer morbidity
- 3D structure "probably pivotal"

Observing / Inferring 3D Structure

- Challenging at even modest resolutions:
- genomes are highly condensed
- genomes are dynamic, variable
- traditional assays are low throughput and low resolution (FISH coarse)
- Recently devised suite of Chromatin Conformation Capture techniques has

3C / 4C / 5C / Hi-C / TCC

Cut with restriction enzyme

Fill ends and mark with biotin

Purify and shear DNA; Sequence using pull down biotin paired-ends

Performed using large $-\sim 10^{6}-$ cell populations

Output: Contact / Interaction Maps

Also inter-chromosomal maps. Resolution determined by binning.

From Contacts to 3D Structure

- Objective: given contact matrix C, obtain a 3D structure (or an ensemble thereof) the between-loci pairwise distances of which recapitulate corresponding contact counts.
- Many reconstruction algorithms advanced.
- Despite assumptions, uncertainties added value derives from inferring 3D architecture:
- In part derives from super-posing genome attributes on the reconstruction.

3D P. falciparum : Overlaid Expression

3D S. cerevisiae : Overlaid ChIP-Seq

swi6_minbeads25_box18
3 regions from 3 chromosomes

| chrII: $251 \mathrm{kB}-252 \mathrm{kB}$ | (3 beads) |
| :--- | :--- | :--- |
| chrVIII: $114 \mathrm{kB}-124 \mathrm{kB}$ | (21 beads) |
| chrXIII: $259 \mathrm{kB}-270 \mathrm{kB}$ | (21 beads) |

Can demonstrate expressiontelomere distance gradient. But what about detecting focal regions : 3D hotspots?

Generally utilize two steps:

- convert C into a distance matrix D that captures expected pairwise distances
- differing assumptions; $D \propto C^{-\alpha} ; \quad \alpha>0$
- sometimes interplay with second step
- learn / estimate 3D structure from D
- multi-dimensional scaling (MDS) criteria
- weights, non-metric, constraints, ...
- algorithms include SA, IPO, SDE, MM...

Distances to 3D Structure

- Minimize objective function that places (as much as possible) interacting loci at their expected distance apart (MDS):
$\min _{\left\{x_{i}, x_{j} \in R^{3}\right\}} \sum_{\left\{i, j \mid D_{i j}<\infty\right\}} \omega_{i j} \cdot\left(\left\|x_{i}-x_{j}\right\|-D_{i j}\right)^{2}$
- Penalty: $\tau \quad \sum\left\|x_{i}-x_{j}\right\|^{2}$

$$
\left\{i, j \mid D_{i j}=\infty\right\}
$$

- Non-interacting loci cannot be too close

Constraints and Contiguity

- Many biological constraints can be imposed:
- Yeast: centromere clustering, 1 um sphere.
- Constraints are difficult to specify; cell-type, resolution specific; increase compute burden.
- Malaria: adjacent 10kb loci within 91nm; Yeast: adjacent 10kb loci > 30nm.
- Indirect way of imposing contiguity.
- Here we directly prescribe that the solution, per chromosome, is a 1D smooth curve.

Principal Curves

Principal Curve Metric Scaling

Goal: 1D curve f in R^{3} with inner products between n points on f approximating $C_{n \times n}$.
$f(\lambda)$: vector fn with 3 components; $\lambda 1 \mathrm{D}$ index. Genomic coordinates

Want coordinate functions to be smooth wrt λ so we represent each using a spline basis:
$f_{i j}(\lambda)=\sum_{k=1}^{K} h_{i k}(\lambda) \theta_{k j}, j=1,2,3 ; i=1, \ldots, n$ where K is the number of knots \sim spline $d f$.
$F=H \Theta$ where Θ is $K \times 3$ matrix of coefficients.
WLOG assume H is orthonormal.
Metric scaling problem: $\min _{\Theta}\left\|C-H \Theta \Theta^{T} H^{T}\right\|_{F}^{2}$.
This is equivalent to $\min _{\Theta}\left\|H^{T} C H-\Theta \Theta^{T}\right\|_{F}^{2}$
which is solved by eigen-decomposition of $H^{T} C H$.

Df $=\mathbf{6 2 5}$ R-squared $=\mathbf{0 . 7 8}$

Df $=150$ R-squared $=\mathbf{0 . 7 6}$

IMR90 // Chromosome 20 //100kb // Primary Series

Determining Degrees-of-Freedom

Determining Degrees-of-Freedom

Broken-line / segmented regression: knot / elbow identification

Assessing Reconstruction Accuracy

- Challenging in view of absence of gold standards
- reproducibility assessment based on replicates from differing RE digests
- Use of FISH: compare inter-probe distances
- exceedingly limited due to probe sparsity
- Multiplexed FISH affords new possibilities

Standard FISH: 1Mb Resolution

Park, Lin Biometrics (2016)

Standard FISH: 1Mb Resolution

(c)

FISH, PRAM, PAM, ShRec3D

Multiplex FISH: 100kb Resolution

Chr21

Multiplex FISH Assessments

- Crucial is existence of numerous replicates
- provides natural referent distribution of (R)MSD distances
- necessary in absence of thresholds (as per protein folding) or theoretic models
- For IMR90 cells have 111, 120, and 151 replicates for chromosomes 20, 21 and 22.
- Here evaluate 3D reconstruction obtained via PCMS algorithm using IMR90 Hi-C data.

chr21 // 50kb

Alternate algorithm — HSA: primary, replicate, combined

Future Work

- Degrees-of-freedom via cross-validation.
- Alternate bases (e.g. wavelets) or partitioning methods to capture hierarchical chromatin organization.
- Alternate transformations of C.
- Single-cell Hi-C.

Acknowledgements

- Trevor Hastie
- Elena Tuzhilina

R01GM109457

