Monotone theories

Slavko Moconja University of Wrocław, Institute of Mathematics

Joint work with Predrag Tanović

QE for coloured orders

Theorem (Simon)

The theory of a linearly ordered structure (M, \leq, P_i, R_j) , where all \emptyset -definable unary sets and all \emptyset -definable monotone relations are named, eliminates quantifiers.

Definition

▶ A relation $R \subseteq A \times B$ between linear orders $(A, <_A)$ and $(B, <_B)$ is *monotone* if: $a' <_A a \ R \ b <_B b' \implies a' \ R \ b'$.

Equivalently, $(R(A, b) | b \in B)$ is an increasing sequence of initial parts of *A*.

- A formula φ(x, y) is <-monotone if it defines a monotone relation between (𝔅, <) and (𝔅, <).</p>
- By a *um*<-*formula* we mean a Boolean combination of unary and <-monotone formulae.</p>

Monotone theories

We introduce monotone theories as theories of linear orders in which every binary definable set has simple geometric description.

Definition

- An ω-saturated structure M = (M,...) is *monotone* if there is an *L*-definable linear order < on M such that for all A ⊆ M every L_A-formula in two free variables is equivalent to an L_A-um_<-formula. In this case we say M is monotone with respect to <.</p>
- A complete theory is *monotone* if it has an ω-saturated monotone model.

Weakly quasi-o-minimal theories

Weakly quasi-o-minimal theories are generalization of both weakly o-minimal and quasi-o-minimal theories.

Definition (Kudaĭbergenov)

A theory *T* is *weakly quasi-o-minimal* with respect to an *L*-definable linear order < if every definable subset of any model of *T* is a finite Boolean combination of convex sets and *L*-definable sets.

A theory is *weakly quasi-o-minimal* if it is weakly quasi-o-minimal with respect to some *L*-definable linear order.

Characterisation of weak quasi-o-minimality

Fact

The following are equivalent:

- (1) *T* is weakly quasi-o-minimal with respect to <;
- (2) for every $p \in S_1(T)$ and definable (with parameters) $D \subseteq \mathfrak{C}$, D has finitely many <-convex components on $p(\mathfrak{C})$.

Each of the convex components of *D* is relatively definable by an instance of <-convex formula, or by a Boolean combination of instances of two <-initial formulae. By compactness, *D* is definable by a Boolean combination of unary *L*-formulae and instances of <-initial formulae (using same parameters).

Definition

A formula $\phi(x, \bar{y})$ is: *<-convex* (*<-initial*) if $\phi(\mathfrak{C}, \bar{a})$ is *<*-convex (*<*-initial part of \mathfrak{C}) for every $\bar{a} \in \mathfrak{C}$.

Monotone \implies weakly quasi-o-minimal

Proposition

If T is monotone with respect to <, then it is weakly quasi-o-minimal with respect to <.

Outline of the proof.

Check (2) by induction on the number of parameters used in the definition of *D*.

The converse

Theorem

The converse is also true, i.e. T is monotone with respect to < iff it is weakly quasi-o-minimal with respect to <.

Theorem

A theory is weakly quasi-o-minimal with respect to some L-definable linear order iff it is weakly quasi-o-minimal with respect to every L-definable linear order.

Corollary

Monotone = weakly quasi-o-minimal.

Proof strategy

- Weak quasi-o-minimality is preserved under naming parameters, so it suffices to show that every *L*-formula φ(x, y) is equivalent to an *L*-um_<-formula.
- Every formula φ(x, y) is equivalent to a Boolean combination of unary and <-initial *L*-formulae, hence it suffices to prove that every <-initial formula φ(x, y) is equivalent to an *L*-um<-formula.
- ► Every <-initial formula $\phi(x, y)$ defines a total preorder by $y_1 \preccurlyeq y_2$ iff $\phi(\mathfrak{C}, y_1) \subseteq \phi(\mathfrak{C}, y_2)$.

Observation: $\phi(x, y)$ defines a monotone relation between $(\mathfrak{C}, <)$ and $(\mathfrak{C}, \preccurlyeq)$.

Definable linear orders

Definition

Let *E* be a <-convex equivalence relation. Define $x <_E y$ by:

$$(E(x,y) \land y < x) \lor (\neg E(x,y) \land x < y).$$

The relation $<_E$ is a linear order, and if < and E are definable, then $<_E$ is definable too.

Remark

If E' is <-convex equivalence relation either finer or coarser than E, then E' is <_E-convex equivalence relation. We can iterate the construction: if $\vec{E} = (E_1, ..., E_n)$ is a decreasing sequence of <-convex equivalence relations, then:

$$<_{\vec{E}} = (<_{(E_1,\dots,E_{n-1})})_{E_n}.$$

$<_{\vec{E}}$ and weak quasi-o-minimality/monotonicity

Lemma

If T is weakly quasi-o-minimal with respect to < and \vec{E} is a decreasing sequence of definable <-convex equivalence relations, then T is weakly quasi-o-minimal with respect to $<_{\vec{E}}$.

Outline of the proof.

Every <-convex subset of $p(\mathfrak{C})$ has at most three <_*E*-convex components, for a definable <-convex equivalence relation *E*, so the construction does not change the property of having finitely many convex components on $p(\mathfrak{C})$.

Lemma

If $\phi(x, y)$ defines a monotone relation between $(\mathfrak{C}, <)$ and $(D, <_{\vec{E}})$, where D is L-definable, then $\phi(x, y)$ is equivalent to an $um_{<}$ -formula.

The main technical result

Proposition

Suppose that T is weakly quasi-o-minimal with respect to <, \triangleleft is an L-definable linear order and $p \in S_1(T)$. There exists a decreasing sequence \vec{E} of <-convex equivalence relations such that \triangleleft and $<_{\vec{E}}$ agree on $p(\mathfrak{C})$.

Outline of the proof

- ▶ For $a \models p$, $a \lhd x$, $x \lhd a$ and x = a give a finite <-convex partition $\mathcal{P}_{<}$ of $p(\mathfrak{C})$.
- For consecutive <-convex parts different from {*a*} one is determined by *a* ⊲ *x* and the other by *x* ⊲ *a*.
- ▶ Let L_<(a) be the leftmost <-convex part, l_<(a) the second leftmost, R_<(a) the rightmost and r_<(a) the second rightmost.
- ▶ $L_{<}(a)$ and $R_{<}(a)$ are not determined by the same formula.
- ► There exists a definable <-convex equivalence relation E(x, y) which agrees with $L_{<}(x) < y < R_{<}(x)$ on $p(\mathfrak{C})$.
- L_{<E}(a) = L(a) ∪ r(a), R_{<E}(a) = l(a) ∪ R(a) and other components don't change, so |P_{<E}| = |P_<| 2 and we can proceed by induction.

Total preorders

If \preccurlyeq is a total preorder, denote by E_{\preccurlyeq} the equivalence relation given by $a \preccurlyeq b \land b \preccurlyeq a$.

Corollary

Suppose that *T* is weakly quasi-o-minimal with respect to <, \preccurlyeq is an *L*-definable total preorder and $p \in S_1(T)$. There exists a decreasing sequence \vec{E} of <-convex equivalence relations such that $a \preccurlyeq b$ is equivalent with $E_{\preccurlyeq}(a,b) \lor (\neg E_{\preccurlyeq}(a,b) \land a <_{\vec{E}} b)$ on $p(\mathfrak{C})$.

Independence on order

Theorem

Suppose that *T* is weakly quasi-o-minimal with respect to < and \preccurlyeq is an *L*-definable total preorder. There exist *L*-definable partition $\mathfrak{C} = D_1 \cup \ldots \cup D_n$ and decreasing sequences $\vec{E}_1, \ldots, \vec{E}_n$ of <-convex equivalence relations such that $a \preccurlyeq b$ is equivalent with $E_{\preccurlyeq}(a,b) \lor (\neg E_{\preccurlyeq}(a,b) \land a <_{\vec{E}_i} b)$ on D_i for $i = 1, \ldots, n$.

If \preccurlyeq *is a linear order, then* \prec *agrees with* $<_{\vec{E}_i}$ *on every* D_i *.*

Corollary

A theory is weakly quasi-o-minimal with respect to some L-definable linear order iff it is weakly quasi-o-minimal with respect to every L-definable linear order. Outline of the proof of monotonicity

- ► If $\phi(x, y)$ is an <-initial *L*-formula, then by $a \preccurlyeq b$ iff $\phi(\mathfrak{C}, a) \subseteq \phi(\mathfrak{C}, b)$ is defined a total preorder.
- We have an *L*-decomposition C = D₁ ∪ ... ∪ D_n and decreasing sequences of *L*-definable <-convex equivalence relation *E*₁,..., *E*_n such that a ≼ b iff E_≼(a, b) ∨ (¬E_≼(a, b) ∧ a <_{E_i} b) on D_i.
- ► This means that $\phi(x, y) \land y \in D_i$ defines a monotone relation between $(\mathfrak{C}, <)$ and $(D_i, <_{\vec{E}_i})$, for every i = 1, ..., n, so it is equivalent to an *L*-um_<-formula.
- The formula $\phi(x, y)$ is equivalent to an *L*-*um*_<-formula.