Quiver moduli	Hall algebras	The perverse filtration	Symmetry	Integrality	Applications

Cohomological Hall algebras for quiver with potential

Sven Meinhardt (jointly with Ben Davison)

Oaxaca

November 3, 2018

Quiver moduli Hall algebras The perverse filtration Symmetry Integrality Applications Moduli of quiver representations

Quiver $Q = (Q_0, Q_1, h, t)$, dimension vector $d = (d_v)_{v \in Q_0} \in \mathbb{N}^{Q_0}$

$$\mathsf{Rep}_d(Q) := \prod_{Q_1 \ni \alpha: v \to w} \mathsf{Mat}_{d_w \times d_v}(\mathbb{C}) \cong \prod_{Q_1 \ni \alpha: v \to w} \mathsf{Hom}_{\mathbb{C}}(\mathbb{C}^{d_v}, \mathbb{C}^{d_w})$$

with action of $G_d:=\prod_{v\in Q_0}\operatorname{GL}_{d_v}(\mathbb{C})$ by simultaneous conjugation.

Potential W = linear combination of cycles in Q (up to cyclic order)

 $\rightsquigarrow \partial W/\partial \alpha = \mathbf{0}$ relations for representations

Quiver moduli Hall algebras The perverse filtration Symmetry Integrality Applications Example Given Q, consider the quiver Q^{ex} with $Q_0^{ex} = Q_0$ and $Q_1^{ex} = Q_1 \sqcup Q_1^* \sqcup Q_0$ α with potential $W^{ex} = \sum_{v \in Q_0} \omega_v \Big(\sum_{\alpha: w \to v} \alpha \alpha^* - \sum_{\alpha: v \to w} \alpha^* \alpha \Big).$ Hence

$$\frac{\partial W^{ex}}{\partial \omega_{v}} = \sum_{\alpha: w \to v} \alpha \alpha^{*} - \sum_{\alpha: v \to w} \alpha^{*} \alpha,$$

$$\frac{\partial W^{ex}}{\partial \alpha^{*}} = \omega_{h(\alpha)} \alpha - \alpha \omega_{t(\alpha)},$$

$$\frac{\partial W^{ex}}{\partial \alpha} = \alpha^{*} \omega_{t(\alpha^{*})} - \omega_{h(\alpha^{*})} \alpha^{*}.$$

Quiver moduli	Hall algebras	The perverse filtration	Symmetry	Integrality	Applications

Question: Why are relations induced by potentials good?

• There is a G_d -invariant function $\operatorname{Tr}_d(W) : \operatorname{Rep}_d(Q) \longrightarrow \mathbb{C}$ such that $\operatorname{Crit}(\operatorname{Tr}_d(W))$ is the space of representations satisfying the relations $\partial W / \partial \alpha = 0$ for all $\alpha \in Q_1$.

• There exists a perverse sheaf of vanishing cycles $\phi_{\operatorname{Tr}_d(W)}$ on $\operatorname{Crit}(\operatorname{Tr}_d(W))$ measuring the singularities of the fibers of $\operatorname{Tr}_d(W)$.

Stability conditions:

For $(\xi_v)_{v \in Q_0} \in \mathbb{H}^{Q_0}_+$ we get a stability condition σ with central charge $Z(M) = \sum_{v \in Q_0} \xi_v \cdot \dim M_v$ and standard t-structure. Let $\operatorname{Rep}_d^{st} \subset \operatorname{Rep}_d^{st}(Q) \subset \operatorname{Rep}_d(Q)$ be the open subsets of σ -stable and σ -semistable representations.

Absolute cohomological Hall algebra

Fix a "phase" $\vartheta \in (0, \pi)$ and introduce the shorthand $\Gamma_{\vartheta} := \{ 0 \neq d \in \mathbb{N}^{Q_0} \mid \arg(\sum_{v \in Q_0} \xi_v \cdot d_v) = \vartheta \} \cup \{ 0 \}$

Definition

We define the absolute cohomological Hall algebra

$$\boldsymbol{HA}^*_{\vartheta}(Q,W,\sigma) := \bigoplus_{d \in \Gamma_{\vartheta}} \bigoplus_{i \in \mathbb{Z}} \mathsf{H}^i_{\mathcal{G}_d} \,\Big(\operatorname{\mathsf{Rep}}^{ss}_d(Q), \phi_{\mathsf{Tr}_d(W)} \Big).$$

by taking the G_d -equivariant cohomology. The product is induced by a correspondence diagram.

Notice:

The absolute Hall algebra $HA^*_{\vartheta}(Q, W, \sigma) = \bigoplus_{d \in \Gamma_{\vartheta}} HA^*_d(Q, W, \sigma)$ is a bi-graded vector space.

Quiver moduli	Hall algebras	The perverse filtration	Symmetry	Integrality	Applications
The prod	uct				

Given dimension vectors $d', d'' \in \Gamma_{\vartheta}$, consider

 $\mathsf{Rep}^{ss}_{d',d''}(Q) := ig\{(M_lpha) \in \mathsf{Rep}^{ss}_{d'+d''}(Q) \mid M_lpha ext{ upper block triagonal}ig\}$

with its action by the subgroup $G_{d',d''} \subset G_{d'+d''}$ of upper block triagonal invertible matrices. Get equivariant maps

The Hall algebra product is essentially $\pm (\pi_2)_* \circ (\pi_1 imes \pi_3)^*$

$$HA^*_{d'}(Q, W, \sigma) \otimes HA^*_{d''}(Q, W, \sigma) \longrightarrow HA^*_{d'+d''}(Q, W, \sigma).$$

Quiver moduli	Hall algebras	The perverse filtration	Symmetry	Integrality	Applications
Quantum	n groups				

Theorem (Kontsevich-Soibelman, Davison-M.)

- The absolute cohomological Hall algebra $HA^*_{\vartheta}(Q, W, \sigma)$ is associative with unit.
- The absolute cohomological Hall algebra HA^{*}_θ(Q, W, σ) has a compatible (localized) coproduct turning HA^{*}_θ(Q, W, σ) into a (localized) bi-algebra.
- The absolute cohomological Hall algebra $\mathbf{HA}^*_{\vartheta}(Q, W, \sigma)$ has a compatible increasing filtration turning $\mathbf{HA}^*_{\vartheta}(Q, W, \sigma)$ into a filtered algebra.

Question: What can we say about the structure of the absolute cohomological Hall algebra or its associated graded $\mathfrak{gr}_* HA^*_{\vartheta}(Q, W, \sigma)$?

Quiver moduli	Hall algebras	The perverse filtration	Symmetry	Integrality	Applications
Moduli sp	aces				

Theorem (King)

For all σ and all d, the subset $\operatorname{Rep}_d^{ss}(Q) \subset \operatorname{Rep}_d(Q)$ is the open subvariety of semistable points for a suitable linearization χ of the G_d -action on $\operatorname{Rep}_d^{ss}(Q)$. Moreover

 $\mathcal{M}_d^{ss}(Q) := \operatorname{\mathsf{Rep}}_d^{ss}(Q) /\!\!/_\chi G_d$

is a quasiprojective variety parameterizing σ -semistable representations up to S-equivalence.

Here, $M \sim_S M'$ if M and M' have the same stable subquotients (up to isomorphism) counted with multiplicities. $\mathcal{M}_d^{st}(Q) := \operatorname{Rep}_d^{st}(Q) /\!\!/_{\chi} \mathcal{G}_d$ is either empty or dense in $\mathcal{M}_d^{ss}(Q)$.

Relative cohomological Hall algebra

Denote by \mathfrak{q} : $\operatorname{Rep}_d^{ss}(Q) \twoheadrightarrow \mathcal{M}_d^{ss}(Q)$ the quotient map.

Definition

We define the relative cohomological Hall algebra by

$$\mathcal{HA}^*_{\vartheta}(Q,W,\sigma) := \bigoplus_{d \in \Gamma_{\vartheta}} \bigoplus_{i \in \mathbb{Z}} \mathsf{R}^i \mathfrak{q}_{G_d} (\phi_{\mathsf{Tr}_d(W)}),$$

where $R^{i}q_{G}$ is the *i*-th direct G_{d} -equivariant image with respect to the perverse t-structure on $\mathcal{M}_{d}^{ss}(Q)$.

Notice:

The relative cohomological Hall algebra $\mathcal{HA}^*_{\vartheta}(Q, W, \sigma) = \bigoplus_{d \in \Gamma_{\vartheta}} \mathcal{HA}^*_d(Q, W, \sigma)$ is a bi-graded perverse sheaf on $\mathcal{M}^{ss}_{\vartheta}(Q) := \sqcup_{d \in \Gamma_{\vartheta}} \mathcal{M}^{ss}_d(Q).$

Recall:

- $HA_d^*(Q, W, \sigma) = H_{G_d}^*(\operatorname{Rep}_d^{ss}(Q), \phi_{\operatorname{Tr}_d(W)})$ is a graded vector space.
- $\begin{array}{l} \textcircled{\begin{subarray}{ll} \label{eq:constraint} \textbf{$\mathcal{A}_d^*(Q,W,\sigma)=\mathsf{R}^*\mathfrak{q}_{G_d}(\phi_{\mathsf{Tr}_d(W)})$ graded perverse sheaf on $\mathcal{M}_d^{s}(Q)$.} \end{array} } \end{array}$

There is a "perverse" filtration on $HA_d^*(Q, W, \sigma)$ and a "perverse" Leray spectral sequence with E_2 -term

$$\mathsf{H}^{i}\left(\mathcal{M}_{d}^{ss}(Q),\mathcal{HA}_{d}^{j}(Q,W,\sigma)\right)$$

converging to $\mathfrak{gr}_j HA_d^{i+j}(Q, W, \sigma)$.

Proposition (Davison-M.)

The spectral sequence collapses at E_2 , i.e. $\forall i, j \in \mathbb{Z}$

 $\mathfrak{gr}_{j} \operatorname{HA}_{d}^{i+j}(Q, W, \sigma) \cong \operatorname{H}^{i} \left(\operatorname{\mathcal{M}}_{d}^{ss}(Q), \operatorname{\mathcal{H}}_{d}^{j}(Q, W, \sigma) \right).$

Using adjunction morphisms for pull-back and push-forwards, the Thom–Sebastiani isomorphism and properties of the vanishing cycle functor, we get maps $\oplus_* \Big(\mathcal{HA}_{d'}(Q, W, \sigma) \boxtimes \mathcal{HA}_{d''}(Q, W, \sigma) \Big) \longrightarrow \mathcal{HA}_{d'+d''}(Q, W, \sigma)$ of perverse sheaves. Summing over $d', d'' \in \Gamma_{\vartheta}$ we get an algebra in an appropriate symmetric monoidal tensor category.

Theorem (Davison-M.)

- The relative cohomological Hall algebra $\mathcal{HA}^*_{\vartheta}(Q, W, \sigma)$ is associative with unit and induces the same structure on its (hyper)cohomology.
- The collapsing spectral sequence is a spectral sequence of algebras inducing an isomorphism of algebras

 $\mathfrak{gr}_* \operatorname{\textit{HA}}^*_{\vartheta}(Q, W, \sigma) \cong \mathrm{H}^* \left(\operatorname{\mathcal{M}}^{\mathrm{ss}}_{\vartheta}(Q), \operatorname{\textit{HA}}^*_{\vartheta}(Q, W, \sigma) \right).$

Question: Why is this useful?

Definition	
We call a stability all $d', d'' \in \Gamma_artheta$ the	condition σ symmetric if for all $\vartheta \in (0, \pi)$ and bilinear pairing $\sum_{\alpha: v \to w} d'_v d''_w$ is symmetric.
, ,	$\mathbf{C} \simeq \alpha \cdot \mathbf{v} \rightarrow \mathbf{w} \mathbf{v} \mathbf{v} \mathbf{v}$

Symmetry

Integrality

Applications

The perverse filtration

is symmetric.

Quiver moduli

Theorem (Davison-M.)

Hall algebras

For a symmetric stability condition σ and any phase $\vartheta \in (0, \pi)$ the relative Hall algebra $\mathcal{HA}^*_{\vartheta}(Q, W, \sigma)$ is a symmetric algebra, i.e.

 $\mathcal{HA}^*_{\vartheta}(\mathcal{Q},\mathcal{W},\sigma) = \mathsf{Sym}(\mathcal{G}^*_{\vartheta})$

for some bi-graded perverse sheaf $\mathcal{G}^*_{\vartheta}$ on $\mathcal{M}^{ss}_{\vartheta}(Q) = \sqcup_{d \in \Gamma_{\vartheta}} \mathcal{M}^{ss}_d(Q)$.

Quiver moduli Hall algebras The perverse filtration **Symmetry** Integrality Applications

Remark: The absolute Hall algebra $HA^*_{\vartheta}(Q, W, \sigma)$ is in general not (graded) commutative even for symmetric σ . But:

Corollary

For symmetric σ and any ϑ we conclude

$$\mathfrak{gr}_* HA^*_{\vartheta}(Q, W, \sigma) \cong \operatorname{Sym} \Big(\operatorname{H}^* \big(\mathcal{M}^{ss}_{\vartheta}(Q), \mathcal{G}^*_{\vartheta} \big) \Big).$$

Question: Can we determine $\mathcal{G}_{\vartheta}^*$?

Notice: $\operatorname{Tr}_d(W) : \operatorname{Rep}_d^{ss}(Q) \xrightarrow{\mathfrak{q}} \mathcal{M}_d^{ss}(Q) \xrightarrow{t_d} \mathbb{C}$ for some function f_d .

Definition

① For $d \in \mathbb{N}^{Q_0}$ we form the **BPS sheaf**

$$\mathcal{DT}_d(Q, W, \sigma) = egin{cases} \phi_{f_d} \left(\mathcal{IC}_{\mathcal{M}^{ss}_d(Q)}(\mathbb{Q})
ight) & ext{if } \mathcal{M}^{st}_d(Q)
eq \emptyset, \\ 0 & ext{else} \end{cases}$$

 $\mathcal{IC}_{\mathcal{M}^{ss}_d(Q)}(\mathbb{Q})$ is the intersection complex of $\mathcal{M}^{ss}_d(Q)$.

- ② $\mathcal{DT}_{\vartheta}(Q, W, \sigma) := \bigoplus_{d \in \Gamma_{\vartheta}} \mathcal{DT}_{d}(Q, W, \sigma)$ a graded perverse sheaf on $\mathcal{M}_{\vartheta}^{ss}(Q, W)$.
- H* (M^{ss}_ϑ(Q), DT_ϑ(Q, W, σ)) is the space of BPS states. Its (refined) dimension is the (refined) BPS invariant.

Theorem (M.-Reineke, Davison-M.)

For a symmetric stability condition σ and any $artheta \in (0,\pi)$ we get

$$\mathcal{G}_{\vartheta}^* = \mathcal{DT}_{\vartheta}(Q, W, \sigma) \otimes \mathsf{H}^*(B\mathbb{C}^{\times})_{vir} = \bigoplus_{i \in \mathbb{N}} \mathcal{DT}_{\vartheta}(Q, W, \sigma)[-2i-1].$$

Corollary

For symmetric σ and any ϑ the associated graded algebra $\mathfrak{gr}_* HA^*_{\vartheta}(Q, W, \sigma)$ wrt. the perverse filtration is a symmetric algebra generated by $H^*(\mathcal{M}^{ss}_{\vartheta}(Q), \mathcal{DT}_{\vartheta}(Q, W, \sigma)) \otimes H^*(B\mathbb{C}^{\times})_{vir}$.

Corollary

The commutator in $HA^*_{\vartheta}(Q, W, \sigma)$ induces a graded Lie algebra structure on $\mathfrak{gr}_1 HA^*_{\vartheta}(Q, W, \sigma) \cong H^{*-1} (\mathcal{M}^{ss}_{\vartheta}(Q), \mathcal{DT}_{\vartheta}(Q, W, \sigma)).$ Quiver moduli Hall algebras The perverse filtration Symmetry Integrality Applications Topology of moduli spaces

For
$$W = 0$$
, we get

$$\mathcal{DT}_d(Q, W, \sigma) = \begin{cases} \mathcal{IC}_{\mathcal{M}_d^{ss}(Q)}(\mathbb{Q}) & \text{if } \mathcal{M}_d^{st}(Q) \neq \emptyset, \\ 0 & \text{else.} \end{cases}$$

Thus, the BPS invariants compute intersection Euler characteristics and the refined BPS invariants the Poincaré/Hodge polynomials of the (compactly supported) intersection cohomology.

Example (Reineke): Consider the Jordan quiver $Q^{(g)}$ with g loops $\alpha_1,...,\alpha_g$ $\frown \bullet$. Then

$$\sum_{i} \dim \mathsf{IC}_{c}^{i}(\mathcal{M}_{d}(Q^{(g)}), \mathbb{C})t^{i} = t^{(g-1)d^{2}+1} \frac{1-t^{-2}}{1-t^{-2d}} \sum_{C \in U_{d}^{ap}/C_{d}} t^{-2\deg C}$$

Quiver moduli	Hall algebras	The perverse filtration	Symmetry	Integrality	Applications
Kac–Moo	dy algebra	is			

Given $Q \rightsquigarrow Q^{ex}$

with potential
$$W^{ex} = \sum_{v \in Q_0} \omega_v \Big(\sum_{\alpha: w \to v} \alpha \alpha^* - \sum_{\alpha: v \to w} \alpha^* \alpha \Big).$$

Theorem (BBS, Mozgovoy, HLR, Davison)

The refined BPS invariant is given by the Kac polynomial for Q and has positive coefficients (Kac conjecture).

Quiver moduli	Hall algebras	The perverse filtration	Symmetry	Integrality	Applications

Thank you!