

Patrick Kimes, PhD

Postdoctoral Fellow Dana-Farber Cancer Institute Harvard TH Chan School of Public Health

Patrick Kimes, PhD

Postdoctoral Fellow Dana-Farber Cancer Institute Harvard TH Chan School of Public Health

Kimes PK* and Reyes A*. (2018). Reproducible and replicable comparisons using *SummarizedBenchmark*. Bioinformatics.

Patrick Kimes, PhD

Postdoctoral Fellow Dana-Farber Cancer Institute Harvard TH Chan School of Public Health

Korthauer K^{*}, Kimes PK^{*}, ..., Hicks SC. (2018). A practical guide to methods controlling false discoveries in computational biology. bioRxiv.

p-value < 0.05 cutoff

Consider the **best scenario**

100% power to detect true signal

Controlling false positives

Family-wise Error Rate (FWER)

Bonferroni correction

P(at least 1 false positive) < α

Controlling false positives

Family-wise Error Rate (FWER)

Bonferroni correction

P(at least 1 false positive) < α

False Discovery Rate (FDR)

- Benjamini-Hochberg (BH) procedure
- Storey's q-value

 $E(\frac{\text{# false positives}}{\text{# total positives}}) < \alpha$

BH and *q*-value

• all tests treated equal

BH and *q*-value

• all tests treated equal

Reality

- all tests **not** equal
 - eQTL cis vs. trans
 - RNA-seq read depth

BH and *q*-value

• all tests treated equal

Reality

- all tests **not** equal
 - eQTL cis vs. trans
 - RNA-seq read depth

- model differences in tests via covariates
- recent explosion of methods

BH and *q*-value

• all tests treated equal

Reality

- all tests **not** equal
 - eQTL cis vs. trans
 - RNA-seq read depth

- model differences in tests via covariates
- recent explosion of methods

1995	BH procedure
2001	Storey's <i>q</i> -value
2009	conditional local FDR (LFDR)
2015 2016 2017 2018	FDR regression (FDRreg) Independent Hypothesis Weighting (IHW) Adaptive Shrinkage (ASH) Boca-Leek (BL)
	Adaptive <i>p</i> -value intesholding (Adapt)

consider the two-groups model

consider the two-groups model

classic methods

$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$

- BH procedure
 Storey's *q*-value

consider the two-groups model

classic methods

$$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$$

covariate-aware methods

 $p_i | x_i \sim \pi_0(x_i) f_0 + (1 - \pi_0(x_i)) f_1(x_i)$

- BH procedure
 Storey's *q*-value

consider the two-groups model

classic methods

$$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$$

$$p_i | x_i \sim \pi_0(x_i) f_0 + (1 - \pi_0(x_i) f_0) + ($$

- BH procedure
 Storey's *q*-value

consider the two-groups model

classic methods

$$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$$

$$p_i | x_i \sim \pi_0(x_i) f_0 + (1 - \pi_0(x_i)) f_0 + ($$

- FDRreg*

consider the two-groups model

classic methods

$$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$$

$$p_i | x_i \sim \pi_0(x_i) f_0 + (1 - \pi_0(x_i)) f_0 + ($$

consider the two-groups model

classic methods

$$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$$

$$p_{i} | x_{i} \sim \pi_{0}(x_{i}) f_{0} + (1 - \pi_{0}(x_{i})) f_{0} + (1 - \pi_{0$$

consider the two-groups model

classic methods

$$p_i \sim \pi_0 f_0 + (1 - \pi_0) f_1$$

$$p_i |_{x_i} \sim \pi_0(x_i) f_0 + (1 - \pi_0(x_i)) \hat{\beta}_i |_{s_i}$$

Benchmarking for practical recommendations

- BH procedure
- Storey's q-value
- IHW
- BL
- AdaPT
- LFDR
- FDRreg
- ASH

Simulated Data

- in silico experiments
- pure simulations

Case Studies

- RNA-seq DE
- scRNA-seq DE
- 16S microbiome DA
- ChIP-seq DB
- GWAS
- Gene Set Analysis

Benchmarking for practical recommendations

- BH procedure
- Storey's q-value
- IHW
- BL
- AdaPT
- LFDR
- FDRreg
- ASH

Simulated Data

- pure simulations

Case Studies

- RNA-seq DE
- scRNA-seq DE
- 16S microbiome DA
- ChIP-seq DB
- GWAS
- Gene Set Analysis

• *in silico* experiments

FDR control Power Applicability Consistency Usability

Most covariate-aware methods control FDR

Some methods were sensitive to number of tests, null proportion

Covariate-aware methods were modestly more powerful

Some methods were sensitive to number of tests, null proportion

Summarizing FDR control and power across simulations

Some methods were sensitive to the test statistic

Not all methods could be applied to all case studies

Number of rejections in case studies

ne						RNA	-seq						scRN	A-sec	7				
3	153	75	75	3,118	3,118	30,374	28,345	23,257	23,257	23,257	23,257	23,257	23,257	13,777	13,777	13,777	13,777	13,777	13,777
						21 88%													
·	*	*	*							7.88%	6.91%	21.87%	15.83%	33.89%	33.61%	26.83%	26.8%	36.58%	
3%	13.73%							19.48%	20.67%										
	13.73%	17.33%		94.55%															
		17.33%	17.33%	94.55%	94.55%														34.31%
2	- hidu	- unq	- pidu	- und	- pidu	rain -	- 000	-det -	ean -	-det -	ean -	-det -	ean -	-det -	ean -	-det -	ean -	-det -	ean -
2	I-SUL	us-a	I-SUL	us-a	tus-I	Q	mir2	nast-	st-m	scdd-	ld-m	Icox-	m-x	nast-	st-m	scdd-	ld-m	lcox-	m-xu
200	-ger	-gen	I-ger	rt-ot	ert-o			an-r	-ma	an-9	I-SCC	M–M	-wilco	ISe-L	-ma	ISe-9	-SCC	e-Wi	-wilco
	drich	apa-	papa	Jube	hub€			hum	Iman	hum	uman	numa	nan-	nom	ouse	nom	ouse	snou	use-
	goo			SC	SC				hu		hL	<u> </u>	hun		Ĕ		Е		шо
		Ca	ase	Study	/														

Informative covariates in the case studies

Case Study	Covariate
Bulk RNA-seq	mean gene expression
Single Cell RNA-seq	mean non-zero gene expression, detection
Microbiome	mean non-zero abundance, ubiquity
ChIP-seq	mean read depth, window size
GWAS	minor allele frequency, sample size
Gene Set Analysis	gene set size

Gains relative to classic methods varied across methods

Takeaways

- Many covariate-aware methods provide consistent FDR control (IHW, BL, AdaPT)
- These covariate-aware methods typically provide modest gains in power
- Not all methods could be applied to all simulations and case studies (FDRreg, ASH)
- Some methods showed highly variable performance across simulations and case studies (AdaPT)
- Not all R packages are created equal

Korthauer K*, Kimes PK*, ..., Hicks SC. (2018). A practical guide to methods controlling false discoveries in computational biology. bioRxiv.

Benchmarking as a social exercise

Benchmarking as a social exercise

Patrick Kimes, PhD

Postdoctoral Fellow Dana-Farber Cancer Institute Harvard TH Chan School of Public Health

Kimes PK* and Reyes A*. (2018). Reproducible and replicable comparisons using *SummarizedBenchmark*. Bioinformatics.

Recall the FDR benchmark setup

- BH procedure
- Storey's q-value
- IHW
- BL
- AdaPT
- LFDR
- FDRreg
- · ASH

Simulated Data

- pure simulations

Case Studies

- RNA-seq DE
- scRNA-seq DE
- 16S microbiome DA
- ChIP-seq DB
- GWAS
- Gene Set Analysis

• *in silico* experiments

FDR control Power Applicability Consistency Usability

How the FDR benchmarking project started

```
fdr_methods <- function(dat) {</pre>
    ## keep adjusted p-values
    adj_pset <- list()</pre>
    ## Bonferroni
    adj_p <- p.adjust(dat$pval, "bonferroni")</pre>
    adj_pset$bonf <- adj_p</pre>
    ## BH
    adj_p <- p.adjust(dat$pval, "BH")</pre>
    adj_pset$bh <- adj_p</pre>
    ## qvalue (Storey)
    adj_p <- qvalue::qvalue(p=dat$pval)$qvalues</pre>
    adj_pset$qvalue <- adj_p</pre>
     • • •
    return(adj_pset)
```


hea	d(tdat	t, n	= 3)					
	H tes	st_st	atistic	effect_	size		pval	SE
1	1	-3	3.247964	-1.70	8222	4.46	5398e-03	0.5259363
2	1	-2	2.453800	-1.03	9939	2.45	54995e-02	0.4238076
3	1		1.684693	-1.89	5645	1.84	15383e-04	0.4046467
p t	able <	<- fo	dr metho	ds(tdat)				
p_t	able		—	x y				
\$bo	nf							
[1] 0.19	9489	1.00000	0.00103	1.00	0000	1.00000	
[6]] 1.00	0000	0.05170	0.11135	1.00	0000	0.68348	
•	• •							
sav	eRDS(p	o_tak	ole, fil	e = "my_	p_tal	ble.r	rds")	

typical questions

how do we organize **data + results**? what **parameters** did we use? which package version did you use?

Problems with benchmarking computational methods

- simulation results are unstructured
 - SummarizedBenchmark class
- simulation code is unstructured
 - BenchDesign class
- code and results are disconnected
 - SummarizedBenchmark

head	l(tdat, n	= 3)				
	H test_s	tatistic	effect_siz	e	pval	SE
1	1 –	3.247964	-1.70822	2 4.46	55398e-03	0.5259363
2	1 –	2.453800	-1.03993	9 2.45	54995e-02	0.4238076
3	1 –	4.684693	-1.89564	5 1.84	45383e-04	0.4046467
p_ta p_ta \$bon [1] [6] 	ble <- f ble 0.19489 1.00000	dr_method 1.00000 0.05170 ble, fil(ds(tdat) 0.00103 1. 0.11135 1. e = "my p f	00000 000000	1.00000 0.68348	

typical questions

how do we organize **data + results**? what **parameters** did we use? which **package version** did you use?

Methods

BenchDesign

BenchDesign class

- collection of methods
 - function
 - map: data \rightarrow function parameters

Methods

BenchDesign

BenchDesign class

- collection of methods
 - function
 - map: data \rightarrow function parameters

> bd				
BenchDesign				
benchmark	data:			
NULL				
benchmark	methods	5:		
method:	<pre>bonf;</pre>	func:	p.adjust	
method:	BH;	func:	p.adjust	
method:	qv;	func:	<pre>qvalue::qvalue</pre>	

BenchDesign class

- collection of methods
 - function
 - map: data \rightarrow function parameters

<pre>> bd BenchDesign</pre>			
benchmark NULL	data:		
benchmark	methods	5:	
method:	<pre>bonf;</pre>	func:	p.adjust
method:	BH;	func:	p.adjust
method:	qv;	func:	<pre>qvalue::qvalue</pre>

- RangedSummarizedExperiment class
 - structure tying row/col data + results


```
> sb
class: SummarizedBenchmark
dim: 50 3
metadata(1): sessions
assays(1): H
rownames: NULL
rowData names(1): H
colnames(3): bonf BH qv
colData names(6): func.pkg func.pkg.vers ...
param.method session.idx
```

SummarizedBenchmark class

- RangedSummarizedExperiment class
 - structure tying row/col data + results
 - slot for performance metrics

> coll	Data(sb)				
Datal	Frame with 3	rows and 5 col	umns		
	func.pkg	<pre>func.pkg.vers</pre>	<pre>func.pkg.manual</pre>	param.p	<pre>param.method</pre>
	<character></character>	<character></character>	<logical></logical>	<character></character>	<character></character>
bonf	stats	3.5.0	FALSE	pval	"bonferroni"
BH	stats	3.5.0	FALSE	pval	"BH"
qv	qvalue	2.12.0	FALSE	pval	NA

performanceMetrics

- map: results (+ metadata) \rightarrow metrics
- e.g. FDR, TPR, #rejections

Additional Features

- iterative benchmarking
- error handling
- parallelization

Ongoing Work

- handling larger pipelines
- additional default metrics

SummarizedBenchmark

Proposed framework

- methods
- data
- results
- summaries

Kimes PK* and Reyes A*. (2018). Reproducible and replicable comparisons using *SummarizedBenchmark*. Bioinformatics.

SummarizedBenchmark

Install development version from Bioconductor

Install release version from Bioconductor

BiocManager::install("SummarizedBenchmark")

SummarizedBenchmark defines a flexible framework for benchmarking computational methods in R. Classes and functions are provided for defining, executing and evaluating benchmark experiments. The package builds on the SummarizedExperiment class to keep results organized, with outputs tied directly with important method metadata. This site is for the development version of the package. Documentation and examples for the current Bioconductor release version of the package can be found at the official release page.

If you have any suggestions on how we can improve the package, let us know!

BiocManager::install("SummarizedBenchmark", version = "devel")

Æ SummarizedBenchmark

https://www.bioconductor.org/ packages/ SummarizedBenchmark

Browse source code at https://github.com/areyesq89/ SummarizedBenchmark

Report a bug at https://github.com/areyesq89/ SummarizedBenchmark/issues

License

GPL (>= 3)

Citation

Citing SummarizedBenchmark

Developers

Alejandro Reyes Author, maintainer 🔃

Patrick Kimes Author 间

Dev status

.

Usage

Installation

Acknowledgements

FDR Benchmarking

- Keegan Korthauer*
- <u>Stephanie Hicks</u>
- Claire Duvallet
- Ayshwarya Subramanian
- Alejandro Reyes
- Chinmay Shukla
- Mingxiang Teng

SummarizedBenchmark

<u>Alejandro Reyes</u>*

Rafael Irizarry

HARVARD T.H. CHAN **SCHOOL OF PUBLIC HEALTH**

