PENSE: a Robust Penalized Estimator

Gabriela Cohen Freue

(joint with Dr. Salibian-Barrera, Kepplinger, and Dr. Smucler)

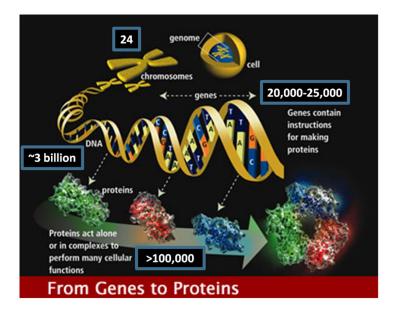
Department of Statistics, University of British Columbia

Statistical and Computational Challenges in High-Throughput Genomics with Application to Precision Medicine

November 7th, 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

When biology speaks, we listen.



(日)

... but it may get too loud, too noisy...

 Many problem in high dimensional biology can be analyzed using linear regression

$$y_i = \mu + \mathbf{x}_i^t \boldsymbol{\beta} + \varepsilon_i, \text{ for } i = 1, \dots, n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\mathbf{x}_i \in \mathcal{R}^p$ are standardized; $y_i \in \mathcal{R}$ is centered; $\mu \in \mathcal{R}$; and $\beta \in \mathcal{R}^p$ Many problem in high dimensional biology can be analyzed using linear regression

$$y_i = \mu + \mathbf{x}_i^t \boldsymbol{\beta} + \varepsilon_i, \text{ for } i = 1, \dots, n$$

where $\mathbf{x}_i \in \mathcal{R}^p$ are standardized; $y_i \in \mathcal{R}$ is centered; $\mu \in \mathcal{R}$; and $\beta \in \mathcal{R}^p$

In -omics studies p >> n, and not all p covariates are equally relevant

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

크

 Many problem in high dimensional biology can be analyzed using linear regression

$$y_i = \mu + \mathbf{x}_i^t \boldsymbol{\beta} + \varepsilon_i, \text{ for } i = 1, \dots, n$$

where $\mathbf{x}_i \in \mathcal{R}^p$ are standardized; $y_i \in \mathcal{R}$ is centered; $\mu \in \mathcal{R}$; and $\boldsymbol{\beta} \in \mathcal{R}^p$

- In -omics studies p >> n, and not all p covariates are equally relevant
- Among the p covariates available, many may be highly correlated, e.g., many genes from a common pathway
 - Do we need to listen to the whole rock band? or can we just listen to the singer?

(日)

Gabriela Cohen Freue, UBC PENSE

▲ロト▲御ト▲車ト▲車ト 車 のへで

Variable Selection

Gabriela Cohen Freue, UBC PENSE

(日)

2

Variable Selection

... to optimize the prediction of the response?

focused on Prediction Performance

Gabriela Cohen Freue, UBC PENSE

Variable Selection

... to optimize the prediction of the response?

focused on Prediction Performance

... in a complex high dimensional setting

э

Select coefficients in a continuous way by adding a bound to their size

(日)

Ξ.

Select coefficients in a continuous way by adding a bound to their size

For example,

LASSO: least absolute shrinkage and selection operator (Tibshirani, *JRSS*, 1996)

$$(\hat{\mu}, \hat{\beta}) = \operatorname*{arg\,min}_{\mu, \beta} \sum_{i=1}^{n} (y_i - \mu - \mathbf{x}_i^t \beta)^2$$

subject to

 $\|\boldsymbol{\beta}\|_1 \leq C \text{ for some } C > 0$

크

More general, one can define

$$(\hat{\mu}, \hat{\boldsymbol{\beta}}) = \operatorname*{arg\,min}_{\mu, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \mu - \mathbf{x}_i^t \boldsymbol{\beta} \right)^2 + \lambda P(\boldsymbol{\beta}) \right\}$$

where P is a penalty function and λ controls the level of penalization.

For example:

LASSO: (Tibshirani, JRSS, 1996)

$$\blacktriangleright P(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_1$$

A (10) + A (10) +

More general, one can define

$$(\hat{\mu}, \hat{\boldsymbol{\beta}}) = \operatorname*{arg\,min}_{\mu, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \mu - \mathbf{x}_i^t \boldsymbol{\beta} \right)^2 + \lambda P(\boldsymbol{\beta}) \right\}$$

where P is a penalty function and λ controls the level of penalization.

For example:

LASSO: (Tibshirani, JRSS, 1996)

$$\blacktriangleright P(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_1$$

A (10) + A (10) +

Penalty Functions

Other examples:

- ▶ Ridge: (Hoerl and Kennard, *Technometrics*, 1970)
 - $\blacktriangleright P(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_2^2$
- **Bridge**: (Frank and Friedman, *Technometrics*, 1993)

$$\blacktriangleright P(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_q^q$$

< ロ > < 団 > < 豆 > < 豆 > <</p>

크

Penalty Functions

Other examples:

- ▶ Ridge: (Hoerl and Kennard, *Technometrics*, 1970)
 - $\blacktriangleright P(\pmb{\beta}) = \|\pmb{\beta}\|_2^2$
- Bridge: (Frank and Friedman, *Technometrics*, 1993)
 - $\blacktriangleright P(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_q^q$

Limitations

- Ridge and Bridge do not give sparse solutions.
- If p > n, LASSO can select at most n variables out of p candidates (Efron et al., Annals of Statistics, 2004).
- If there is a group of highly correlated variables, LASSO tends to select only one covariate from the group.

Elastic Net Penalty

Zou and Hastie (JRSS, 2005) proposed

$$(\hat{\mu}, \hat{\boldsymbol{\beta}}) = \arg\min_{\mu, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \mu - \mathbf{x}_i \boldsymbol{\beta} \right)^2 + \lambda \left(\frac{1-\alpha}{2} \|\boldsymbol{\beta}\|_2^2 + \alpha \|\boldsymbol{\beta}\|_1 \right) \right\}$$

(日)

2

Elastic Net Penalty

Zou and Hastie (JRSS, 2005) proposed

$$(\hat{\mu}, \hat{\boldsymbol{\beta}}) = \operatorname{arg\,min}_{\boldsymbol{\mu}, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \boldsymbol{\mu} - \mathbf{x}_i \boldsymbol{\beta} \right)^2 + \lambda \left(\frac{1 - \alpha}{2} \|\boldsymbol{\beta}\|_2^2 + \alpha \|\boldsymbol{\beta}\|_1 \right) \right\}$$

EN combines the selection property of the L₁ penalty of LASSO with the smooth shrinkage of the L₂ penalty of Ridge

- EN can select at more variables than observations
- It preserves groups of highly correlated variables

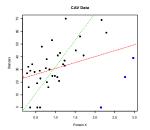
Penalized Elastic Net **PENSE**

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Gabriela Cohen Freue, UBC PENSE



Penalized Elastic Net **PENSE**



S-estimator (Rousseeuw Yohai,1984) PENSE

æ

Gabriela Cohen Freue, UBC PENSE

Are regularized estimators robust?

$$(\hat{\mu}, \hat{\boldsymbol{\beta}}) = \operatorname*{arg\,min}_{\mu, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \mu - \mathbf{x}_i^t \boldsymbol{\beta} \right)^2 + \lambda P(\boldsymbol{\beta}) \right\}$$

Regularized estimators are not necessarily robust!!

- RLARS: Khan, Van Aelst and Zamar, JASA 2007
- S- and MM-Ridge: Maronna, Technometrics, 2011
- sparseLTS: Alfons, Croux, and Gelper, Ann. Appl. Stat, 2013

過 とう ヨ とう ヨ とう

MM-Bridge and MM-LASSO: Smucler and Yohai

PENSE: Penalized Elastic Net S-Estimator

Non-robust:

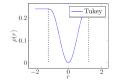
$$(\hat{\mu}, \hat{\boldsymbol{\beta}}) = \operatorname*{arg\,min}_{\mu, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \mu - \mathbf{x}_i^t \boldsymbol{\beta} \right)^2 + \lambda P(\boldsymbol{\beta}) \right\}$$

Robust:

$$(\hat{\mu}, \hat{\beta}) = \underset{\mu, \beta}{\operatorname{argmin}} \left\{ n \hat{\sigma}(\mu, \beta)^2 + \lambda P(\beta) \right\}$$

where

$$\hat{\sigma}: \ \frac{1}{n}\sum_{i=1}^n \rho\left(\frac{r_i}{\hat{\sigma}(r_i)}\right) = \delta,$$



* 王

æ

$$(\hat{\mu}, \hat{\boldsymbol{\beta}}) = \operatorname{argmin}_{\mu, \boldsymbol{\beta}} \left\{ n \hat{\sigma}(\mu, \boldsymbol{\beta})^2 + \lambda \left(\frac{1 - \alpha}{2} \|\boldsymbol{\beta}\|_2^2 + \alpha \|\boldsymbol{\beta}\|_1 \right) \right\}$$

The generalized gradient of the penalized S loss is given by

$$\nabla_{(\mu,\beta)}\mathcal{L}(\mu,\beta) = 2\left[-\frac{1}{n}\sum_{i=1}^{n}r_{i}(\mu,\beta)w_{i}(\mu,\beta)\begin{pmatrix}1\\\boldsymbol{x}_{i}\end{pmatrix} + \frac{\lambda_{S}}{2}\begin{pmatrix}0\\\nabla_{\beta}P_{\alpha}(\beta)\end{pmatrix}\right],$$

・ 同 ト ・ ヨ ト ・ ヨ

- 1. Given an initial $\hat{\mu}^{(0)}$ and $\hat{oldsymbol{eta}}^{(0)}$, compute the weights w_i
- 2. Solve an EN problem and get updated $\hat{\beta}^{(0)}$ and corresponding $\hat{\mu}^{(0)}$
- 3. Iterate until convergence (or maximum number of steps)

A (10) + A (10) +

- 1. Given an initial $\hat{\mu}^{(0)}$ and $\hat{oldsymbol{eta}}^{(0)}$, compute the weights w_i
- 2. Solve an EN problem and get updated $\hat{\beta}^{(0)}$ and corresponding $\hat{\mu}^{(0)}$
- 3. Iterate until convergence (or maximum number of steps)

Caution

 Robust objective functions are often non-convex and exhibit multiple optima

イロト イ理ト イヨト イヨト

- 1. Given an initial $\hat{\mu}^{(0)}$ and $\hat{oldsymbol{eta}}^{(0)}$, compute the weights w_i
- 2. Solve an EN problem and get updated $\hat{\boldsymbol{\beta}}^{(0)}$ and corresponding $\hat{\boldsymbol{\mu}}^{(0)}$
- 3. Iterate until convergence (or maximum number of steps)

Caution

- Robust objective functions are often non-convex and exhibit multiple optima
- Most optimization algorithms only find local optima

・ロト ・四ト ・ヨト ・ヨト

- 1. Given an initial $\hat{\mu}^{(0)}$ and $\hat{oldsymbol{eta}}^{(0)}$, compute the weights w_i
- 2. Solve an EN problem and get updated $\hat{\boldsymbol{\beta}}^{(0)}$ and corresponding $\hat{\boldsymbol{\mu}}^{(0)}$
- 3. Iterate until convergence (or maximum number of steps)

Caution

- Robust objective functions are often non-convex and exhibit multiple optima
- Most optimization algorithms only find local optima
- Where we start determines what local optima is attained

・ロト ・四ト ・ヨト ・ヨト

- 1. Given an initial $\hat{\mu}^{(0)}$ and $\hat{oldsymbol{eta}}^{(0)}$, compute the weights w_i
- 2. Solve an EN problem and get updated $\hat{\boldsymbol{\beta}}^{(0)}$ and corresponding $\hat{\boldsymbol{\mu}}^{(0)}$
- 3. Iterate until convergence (or maximum number of steps)

Caution

- Robust objective functions are often non-convex and exhibit multiple optima
- Most optimization algorithms only find local optima
- Where we start determines what local optima is attained

(本部) (本語) (本語) (二語)

Initial values play an important role

- 1. Given an initial $\hat{\mu}^{(0)}$ and $\hat{oldsymbol{eta}}^{(0)}$, compute the weights w_i
- 2. Solve an EN problem and get updated $\hat{\boldsymbol{\beta}}^{(0)}$ and corresponding $\hat{\boldsymbol{\mu}}^{(0)}$
- 3. Iterate until convergence (or maximum number of steps)

Caution

- Robust objective functions are often non-convex and exhibit multiple optima
- Most optimization algorithms only find local optima
- Where we start determines what local optima is attained
- Initial values play an important role

Topic for another talk...

■▶ ▲ ■ ▶ ▲ ■ ● � � �

Choosing Lambda: another talk!

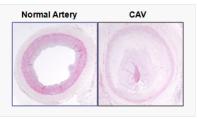


Gabriela Cohen Freue, UBC PENSE

Proteomics Case Study

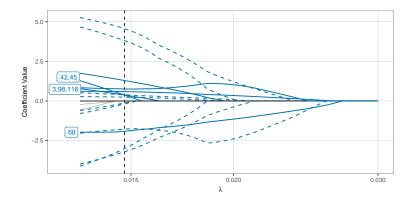
Proteomics Biomarker Study of Cardiac Allograft Vasculopathy

- Biomarkers in Transplantation: enrolled patients who received a heart transplant at St. Paul's Hospital, BC
- Around one year after transplantation, some patients presented signs of coronary artery narrowing



- BiT measured (81) protein levels in plasma 37 plasma samples
- Goal: identify potential biomarkers of CAV

PENSE(M) can be uses select the most relevant proteins is plasma to predict CAV



イロト イヨト イヨト

Potential Biomarkers

Identified by PENSEM ($\alpha = 0.6$)

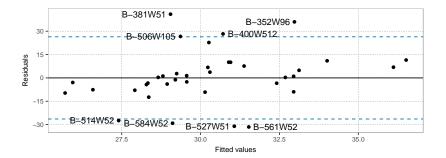
Protein ID	Gene Symbol	Protein Name
3	C4B/C4A	Complement C4-B/C4-A
20	C7	Complement component C7
42	APOE	Apolipoprotein E
45	AMBP	Protein AMBP
64	CFI	Complement factor I
68	SHBG	Sex hormone-binding globulin
103	C1QC	Complement C1q subunit C
116	APOC2	Apolipoprotein C-II
139	HBD	Hemoglobin subunit delta
161	SEPP1	Selenoprotein P
298	HBA2;HBA1;HBZ	Hemoglobin subunit alpha/zeta

Some of these were previously associated with CAV (Lin*, Cohen

Freue*, et al., 2013)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PENSE(M) can be uses to flag outlying patients



2

Validation

Independent set of 52 patients collected by BiT in the second phase of their study.

<ロト < 部ト < きと < きと < きと < 300 × 100 ×

크

- Independent set of 52 patients collected by BiT in the second phase of their study.
- A subset of 6 proteins were analyzed by a Multiple Reaction Monitoring assay (Cohen Freue and Borchers, 2012; Domanski et al., 2012).

A (B) > A (B) > A (B) >

- Independent set of 52 patients collected by BiT in the second phase of their study.
- A subset of 6 proteins were analyzed by a Multiple Reaction Monitoring assay (Cohen Freue and Borchers, 2012; Domanski et al., 2012).
- We built a proteomic score using an MM-estimator based on the resulting data.

A (10) A (10)

- Independent set of 52 patients collected by BiT in the second phase of their study.
- A subset of 6 proteins were analyzed by a Multiple Reaction Monitoring assay (Cohen Freue and Borchers, 2012; Domanski et al., 2012).
- We built a proteomic score using an MM-estimator based on the resulting data.
- Among these test samples, 12 were flagged as outlying and removed from the prediction set.

- Independent set of 52 patients collected by BiT in the second phase of their study.
- A subset of 6 proteins were analyzed by a Multiple Reaction Monitoring assay (Cohen Freue and Borchers, 2012; Domanski et al., 2012).
- We built a proteomic score using an MM-estimator based on the resulting data.
- Among these test samples, 12 were flagged as outlying and removed from the prediction set.

▲ 御 ▶ ▲ 臣 ▶

For the remaining 40 test patients, the stenosis was predicted by our model.

- Independent set of 52 patients collected by BiT in the second phase of their study.
- A subset of 6 proteins were analyzed by a Multiple Reaction Monitoring assay (Cohen Freue and Borchers, 2012; Domanski et al., 2012).
- We built a proteomic score using an MM-estimator based on the resulting data.
- Among these test samples, 12 were flagged as outlying and removed from the prediction set.
- For the remaining 40 test patients, the stenosis was predicted by our model.
- A classification based on the predicted stenosis yielded an AUC of 0.85.

 We propose robust penalized S- and MM-estimators using an EN penalty

2

- We propose robust penalized S- and MM-estimators using an EN penalty
- LASSO and Ridge penalties are particular cases of the EN penalty

・ロト ・聞 ト ・ 国 ト ・ 国 トー

크

- We propose robust penalized S- and MM-estimators using an EN penalty
- LASSO and Ridge penalties are particular cases of the EN penalty
- We propose an efficient algorithm to compute PENSE and PENSEM ('pense' available in CRAN)

<ロト <部 > < E > < E > < E > <

- We propose robust penalized S- and MM-estimators using an EN penalty
- LASSO and Ridge penalties are particular cases of the EN penalty
- We propose an efficient algorithm to compute PENSE and PENSEM ('pense' available in CRAN)
- PENSE(M) have strong robustness properties: can have a 50% BDP

イロト イヨト イヨト イヨト

- We propose robust penalized S- and MM-estimators using an EN penalty
- LASSO and Ridge penalties are particular cases of the EN penalty
- We propose an efficient algorithm to compute PENSE and PENSEM ('pense' available in CRAN)
- PENSE(M) have strong robustness properties: can have a 50% BDP

イロト イヨト イヨト イヨト

Under some conditions, PENSE(M) are consistent

- We propose robust penalized S- and MM-estimators using an EN penalty
- LASSO and Ridge penalties are particular cases of the EN penalty
- We propose an efficient algorithm to compute PENSE and PENSEM ('pense' available in CRAN)
- PENSE(M) have strong robustness properties: can have a 50% BDP
- Under some conditions, PENSE(M) are consistent
- PENSE and PENSEM showed a competitive performance compared to other existing methods

- We propose robust penalized S- and MM-estimators using an EN penalty
- LASSO and Ridge penalties are particular cases of the EN penalty
- We propose an efficient algorithm to compute PENSE and PENSEM ('pense' available in CRAN)
- PENSE(M) have strong robustness properties: can have a 50% BDP
- Under some conditions, PENSE(M) are consistent
- PENSE and PENSEM showed a competitive performance compared to other existing methods
- PENSE and PENSEM can be used to flag outlying patients

ヨト くヨトー

Thank you!

Acknowledgements

- Coauthors: Dr. Matias Salibian-Barrera, David Kepplinger (PhD candidate), Ezequiel Smucler (PDF)
- NSERC grant and CFI computational infrastructure
- Data provided by the NCE CECR PRevention of Organ Failure (PROOF) Centre of Excellence

https://gcohenfr.github.io

References

- Hoerl, A.E. and Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems. *Technometrics*, 12, 55-67.
- Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 267-288.
- Peña, D. and Yohai, V. (1999) A Fast Procedure for Outlier Diagnostics in Large Regression Problems. Journal of the American Statistical Association 94, 434-445.
- Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics.
- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 406-499.
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67, 301-320.
- Friedman, J.; Hastie, T., and Tibshirani, R. (2010) Regularization paths for generalized linear models via coordinate descent. *Journal of statistical software*, 33, 1.
- Maronna, R. A. (2011) Robust Ridge Regression for High-Dimensional Data. Technometrics 53, 44-53.
- Smucler, E. and Yohai, V. (2017) Robust and sparse estimators for linear regression models. In: Computational Statistics & Data Analysis 111, 116-130.
- Lin D*, Cohen Freue G*, et al. (2013) Plasma protein biosignatures for detection of cardiac allograft vasculopathy. The Journal of Heart and Lung Transplantation 7, 723-733. *Equal contributors.
- Gabriela V. Cohen Freue and Christoph H. Borchers. (2012) Multiple Reaction Monitoring (MRM), Principles and Application to Coronary Artery Disease. Circulation: Cardiovascular Genetics 5, 378.
- Domanski D, Percy AJ, Yang J, Chambers AG, Hill JS, Freue GV, Borchers CH. (2012) MRM-based Multiplexed Quantitation of 67 Putative Cardiovascular Disease Biomarkers in Human Plasma. Proteomics 12, 1222-1243.

イロト イポト イヨト イヨト 二日