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Principal component analysis of gene expression data: how to
interpret?

I Interpretation 1: A plot of the first 2-3
principal components (PCs) should
separate samples according to the
phenotype of interest.

I Controlled model system experiments.
I Phenotypes with large effects, such as

tissues or cancer subtypes.

I Interpretation 2: The first few PCs are
nuisance variables that should be
removed from the data.

I eQTL discovery: removing PCs improves
results.



Principal component analysis of gene expression data: how to
interpret?

I Interpretation 1: A plot of the first 2-3
principal components (PCs) should
separate samples according to the
phenotype of interest.

I Controlled model system experiments.
I Phenotypes with large effects, such as

tissues or cancer subtypes.

I Interpretation 2: The first few PCs are
nuisance variables that should be
removed from the data.

I eQTL discovery: removing PCs improves
results.



Principal component analysis of gene expression data: how to
interpret?

I Interpretation 1: A plot of the first 2-3
principal components (PCs) should
separate samples according to the
phenotype of interest.

I Controlled model system experiments.
I Phenotypes with large effects, such as

tissues or cancer subtypes.

I Interpretation 2: The first few PCs are
nuisance variables that should be
removed from the data.

I eQTL discovery: removing PCs improves
results.



Principal component analysis of gene expression data: how to
interpret?

I Interpretation 1: A plot of the first 2-3
principal components (PCs) should
separate samples according to the
phenotype of interest.

I Controlled model system experiments.
I Phenotypes with large effects, such as

tissues or cancer subtypes.

I Interpretation 2: The first few PCs are
nuisance variables that should be
removed from the data.

I eQTL discovery: removing PCs improves
results.



Principal component analysis of gene expression data: how to
interpret?

I Interpretation 1: A plot of the first 2-3
principal components (PCs) should
separate samples according to the
phenotype of interest.

I Controlled model system experiments.
I Phenotypes with large effects, such as

tissues or cancer subtypes.

I Interpretation 2: The first few PCs are
nuisance variables that should be
removed from the data.

I eQTL discovery: removing PCs improves
results.



Principal component analysis of gene expression data: how to
interpret?

I Interpretation 1: A plot of the first 2-3
principal components (PCs) should
separate samples according to the
phenotype of interest.

I Controlled model system experiments.
I Phenotypes with large effects, such as

tissues or cancer subtypes.

I Interpretation 2: The first few PCs are
nuisance variables that should be
removed from the data.

I eQTL discovery: removing PCs improves
results.



Generative model for gene expression data

I Gene expression is driven by
upstream factors that give rise
to the observed data structure.

I PCA gives us a representation of
these upstream factors but not a
one-to-one correspondence.
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General matrix decompositions applied to gene expression

I Low rank matrix approximations (such as ones given by PCA) are
effective because a limited number of upstream factors explain a large
fraction of measurement variance.

Given gene expression matrix Yg×s:

MINIMIZE ||Yg×s − Zg×k Bk×s||2F

I B contains the principal components (PCs) or more generally latent
variables (LVs). Z contains the “loadings” (effect of each LV on the
genes).

I We hope that the individual vectors Bi (latent variables) are meaningful.
SVD (PCA) only guarantees minimum error—it doesn’t guarantee
anything about the interpretability of B.

I Other methods that constrain Z to be sparse or positive may recover
more meaningful structure.

MINIMIZE ||Y − ZB||2F + λ||Z ||L1

SUBJECT TO Z > 0.
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Can we recover the data generating process from general matrix
decompositions?

I We construct an example with 7
upstream factors; can we recover them?

I We can make this problem quite hard by
making some upstream factors have low
variance

(very realistic: e.g., some
cell-types have low abundance).

I PCA is very restrictive: each component
is orthogonal.

I If we constrain the decomposition to have
sparse and positive loadings we can
recover some, but not all, variables of
interest.
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I These methods are data agnostic, they don’t make use of gene
identities!

I We want not just the most parsimonious but also the most biologically
meaningful decomposition.
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PLIER: Pathway-Level Information ExtractoR

Idea: Make use of gene identities.

SUBJECT TO rank(Z ) = k , rank(B) = k , U > 0, Z > 0.
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Prior knowledge matrix C is a binary geneset representation, where each
column is a potentially co-regulated set of genes. Number of genesets is
many times larger than k .



Implementation Details

I Non-convex optimization problem is solved by block-coordinate
minimization

I All constants are set automatically

I Running time depends on the size of the data and size of C

I We pre-compute the inverse of C and use it to find a set of active
genesets in each iteration to be optimized with the elastic-net penalty
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Recovering the pathway effects with PLIER

Revisit the toy example
composition variables
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prior information database of 1000
pathways
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How do we use PLIER?
Example on real human blood dataset (35 samples) with directly measured
by Cytof
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U matrix for a large dataset (DGN)

I How do we know the pathways are real? we zero-out a random 1/5 of the genes
for every pathway before optimization and check if we get them back in the
loading.

I We can see many cell types.

I 3 kinds of CD8 T cells.
I Naive and memory B-cells.
I Very high frequency cell-types have multiple LVs.
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for every pathway before optimization and check if we get them back in the
loading.
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I 3 kinds of CD8 T cells.
I Naive and memory B-cells.
I Very high frequency cell-types have multiple LVs.
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How do we use PLIER?

PLIER latent variables can be plugged into any downstream analysis that
would normally be done at the gene level–for example eQTLs.

LV id LV name snps cis-Gene(s) corrected p-value
44 Mega/platelet 1 rs1354034 ARHGEF3 < 1.45e-10

133 Mega/platelet 2 rs1354034 ARHGEF3 0.01547
120 Histones rs1354034 ARHGEF3 0.01889

97 Zinc fingers, pseudogenes rs1471738 SENP7 < 1.45e-10
56 PLAGL1 associated, myeloid rs9321957 PLAGL1 3.6e-05

42* IKZF1 associated, myeloid rs10251980 IKZF1 < 1.45e-10
17 NEK6 associated, myeloid rs16927294 NEK6 0.00360
67 Neutrophils rs13289095 PKN3,SET,ZDHHC12 0.01888

55* NFE2 associated, erythrocyte rs35979828 NFE2 < 1.45e-10
21 Interferon-gamma rs3184504 SH2B3 5.9e-05
40 NFKB/TNF rs12100841 PPP2R3C 0.00204
16 Myeloid/ILC rs1138358 BCL2A1,MTHFS,ST20 0.00025

Interferon-gamma LV21 uses 3 pathways:
I REACTOME INTERFERON GAMMA SIGNALING
I GSE19182 Ifng
I SANA RESPONSE TO IFNG UP
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LV133 (Mega/platelet LV early) genes are expression in megakaryocyte
precursors.
LV44 (Mega/platelet LV late) genes are megakaryocyte specific.
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LV133 (Mega/platelet LV early) genes are expression in megakaryocyte
precursors.
LV44 (Mega/platelet LV late) genes are megakaryocyte specific.
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Pleitropy of the ARGEF3 locus
I rs1354034 is known to be pleitropic: it

affects both mean platelet volume
(MPV) and platelet counts (PLT).

I MPV and PLT are negatively
correlated due to the tight control on
total platelet volume.

I Hypothesis: LV133 (early) is
associated with platelet number and
LV44 (late) is associated with volume.

I We have data from large GWAS
studies of blood count variables that
show some loci regulate PLT and
MPV independently. How are these
associated with our latent variables?

phenotype reported SNP Close gene LV 133 p-value LV44 p-value proxy SNP
PLT rs2911132 ERAP2 2.4417e-05 0.13817361 rs2549803

MPV rs10876550 COPZ1 0.69933 1.1847e-05 rs10876550

Table: Raw p-values. 80 platelet related SNPs tested.

Furman-Niedziejko A. et al. Relationship between abdominal obesity, platelet blood count and mean platelet volume in patients with
metabolic syndrome.
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PLIER models transfer across datasets

Two human whole blood datasets:

I DGN: RNAseq US cohort
I NESDA: Affy European cohort

PLIER decompositions performed independently
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Correlation with phenotypes is more consistent in LV space



Some fun results

I Dataset from a collaborator: melanoma RNAseq , immunotherapy
reponse (8 progressors, 11 responders).

I Very similart to the published Hugo et al. dataset ∗ (13 progressors, 15
responders). How do they compare?
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∗Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma



Usoskin et al. dataset
scRNAseq of mouse sensory neurons.



PLIER summary

I PLIER returns a set of latent variables that are both maximally
independent from each other and maximally aligned with prior
information.

I Minimally supervised method: selects relevant pathways and discards
thousands of irrelevant ones.

I Additional output matrix U provides the mapping between pathways and
LVs for quick interpretation.

I Pathway-level estimates can be used in any subsequent analysis
yielding mechanistic hypotheses.
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Questions and future directions

I Group-level regularization on samples: not every LV exists in every
sample.

I Looking for LVs that maximize objectives other than variance.

I When are positivity constraints on the loadings necessary?
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