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Motivation: Shape similarity measures

Shape similarity measures

How big is dist ((X , f ), (Y ,g)) between two shapes?

Experimentation

Comparing cat models

Figure 4: The models cat0, cat0-tran1-1, cat0-tran1-2, cat0-tran2-1 and cat0-tran2-2 are shown
along with the values ofϕ1 andϕ2. Models are courtesy of the authors of [18].
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Figure 4: The models cat0, cat0-tran1-1, cat0-tran1-2, cat0-tran2-1 and cat0-tran2-2 are shown
along with the values ofϕ1 andϕ2. Models are courtesy of the authors of [18].
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Models courtesy of [Biasotti-Cerri-Frosini-Giorgi].
Note: No animals were harmed.
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Shape descriptors based on 1D filtrations: Filter images X by sublevel sets
Xf≤a of a measuring function f : X → R.
Record changes in topology as a increases.

Ideally, f should express features of interest
— provided by users.
Typical choices of f for testing purposes:
I Coordinate projections;
I Distance to a half-space, the gravity center, an axis of inertia, . . .,

Tomasz Kaczynski (UdeS) Multi Dim Morse Function August 6-10, 2018 3 / 22



Motivation: Shape similarity measures

Multiparameter filtration: Study several features of compared shapes at once.
Filter models X by partially ordered sublevel sets Xf�a of a measuring
function f : X → Rk .

Record changes in topology induced by inclusions

j(a,b) : Xa ↪→ Xb,

where a � b, i.e. ai ≤ bi for all i = 1,2, . . . , k .

History: Pareto optimal points in Economy, ∼ 1900’s
Problem: Simultaneously maximize several functions.
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Motivation: Shape similarity measures

Why f with values in Rk and not k separate tests for 1D functions?

Example

Using one coordinate projection per time does not permit distinguishing these
two contours:

Benefits from MultiD descriptors: More accurate shape similarity
measures.
Issues: More costly to compute. Distance (matching, Wasserstein, etc)
computation in development — at this workshop!
Explored direction: Reduce the complex representing the shape.
Reduction should be filtration-preserving.

Tomasz Kaczynski (UdeS) Multi Dim Morse Function August 6-10, 2018 5 / 22



Forman and MDM function

Morse-Forman Theory
10 TOMASZ KACZYNSKI, MARIAN MROZEK, AND THOMAS WANNER

Figure 4. The top left image shows a simplicial complex with a
sample combinatorial vector field, whose associated continuous flow
is shown in the top right image. The lower left indicates an invariant
set consisting of two vertices, one edge, and one triangle. This set
satisfies part (b) in Definition 3.4, but violates (a). As shown in the
lower right image, in the time-continuous case this set should not
lead to an isolated invariant set, since there are always internal flow
tangencies.

set in a compact isolating neighborhood, which in addition lies in the interior of
the isolating neighborhood. In the combinatorial setting, we certainly want to
make sure that a simplex which is a fixed point for V is an isolated invariant
set, such as for example the bottom edge in the left image of Figure 2. However,
the smallest closed set in the simplicial complex which contains this edge also
contains the lower left corner, which is also a fixed point for V. Thus, the maximal
invariant set in any closed set containing the bottom edge is actually larger than
this one-simplex fixed point. Notice also that the closure of the bottom edge in
this example is an isolating block for two different isolated invariant sets.

Since a direct transfer of the notion of isolated invariant set is not possible, Defi-
nition 3.4 is based on the notion of an isolating block in continuous-time dynamical
systems, which was first introduced in [2, 3]. See also the recent paper [11]. One
can easily see that under the above definition, every simplex σ in the simplicial
complex X which is a fixed point for the combinatorial vector field V gives rise to
an isolated invariant set S = {σ}. While part (a) in Definition 3.4 is immediate,
part (b) follows from the fact that no facet τ of σ can satisfy V(τ) = σ, and
therefore any solution $ of the combinatorial multivalued flow ΠV which satisfies
$(0) = τ must have $(1) ∈ Bd σ, and therefore $(1) ,∈ S.

Our goals:
Extend Forman’s concept of discrete Morse function to
Rk -valued functions.
Construct a multifiltration-compatible discrete vector field.
Compute a reduced complex with the same persistent homology.
Use the above as a
pre-processing for the distance computation to come.
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Forman and MDM function

MD Morse function
K = {Kp} simplicial complex. Given g : K → Rk and α ∈ Kp, we set

Hg(α) = {β ∈ Kp+1 | β > α and g(β) � g(α)};

Tg(α) = {γ ∈ Kp−1 | γ < α and g(α) � g(γ)}.
H stands for heads and T for tails.

Definition

g : K → Rk is a multidimensional discrete Morse (mdm) function, if
(1) card Hg(α) ≤ 1;
(2) card Tg(α) ≤ 1;
(3) If β(p+1) > α is not in Hg(α), then g(α) � g(β);
(4) If γ(p−1) < α is not in Tg(α), then g(γ) � g(α).

Proposition

For any simplex α ∈ K, card Hg(α) · card Tg(α) = 0.

Tomasz Kaczynski (UdeS) Multi Dim Morse Function August 6-10, 2018 7 / 22



Forman and MDM function

Recall: A discrete vector field (dvf) V on K is the set of pairs{(
α(p), β(p+1)

)}
with α(p) < β(p+1)

such that each simplex of K is in at most one pair of V .

Definition

Let g : K → Rk be mdm. γ ∈ K is critical if Hg(γ) = ∅ = Tg(γ).

The sets
A = {α ∈ K | card Hg(α) = 1},
B = {β ∈ K | card Tg(β) = 1},

C = {γ ∈ K | card Hg(γ) = 0 = card Tg(γ)}.
form a partition of K. The map m : A→ B given by

m (α) = unique β ∈ Hg(α),

defines a dvf V called the gradient field of g.
(A,B,C,m ) is also called partial matching.
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Forman and MDM function

MDM function idea: back to 2012

What we could do:

Prove an analogy of the sublevel set deformation lemma.

What we could not do:

Provide a full extension of Forman-Morse theory in this setting;
Design an algorithm producing an mdm function from data on vertices.

Chosen approach:

Forget our MDM function;
Design a function f on simplices as in 1D case;
Declare unpaired simplices critical.
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Forman and MDM function

Algorithm design progress

v0 = (0, 1)

v1 = (1, 0)

f (x, y) = x

v0 = (0, 1)

v1 = (1, 0)

f (x, y) = (x, y)

(a) (b)

Figure 1: The simplicial complexS = {v0, v1, [v0, v1]} is filtered by the 1D functionf (x, y) = x in (a), and by the 2D
function f (x, y) = (x, y) in (b). Simplexes whose insertion in the filtration change the persistent homology and should
be considered as critical are marked by red circles. The matchings of simplexes that can be removed in pairs without
changing the persistent homology are represented by arrows. In (a), the distinct sublevel sets are∅ ⊂ S0

= {v0} ⊂ S1
= S.

The only critical simplex ofS, that is a simplex which contributes to the change of homology when it enters a sublevel
set, isv0. The arrow shows that the edge [v0, v1] is matched withv1. In (b), the sublevel setsS(1,0)

= {v0} andS(0,1)
= {v1}

are disjoint and they merge atα = (1, 1) when the edge [v0, v1] is added to the filtration. Thus all three simplexes should
be considered as critical.

2.3. Acyclic Partial Matchings

Let (S, κ) be anS-complex. Apartial matching(A,B,C,m ) on (S, κ) is a partition ofS into
three setsA,B,C together with a bijective mapm : A→ B such that, for eachτ ∈ B, κ(m (τ), τ) is
invertible. Observe that, in particular,m (τ) is a primary coface ofτ.

A partial matching (A,B,C,m ) on (S, κ) is calledacyclicif there does not exist a sequence

σ0, τ0, σ1, τ1, . . . , σp, τp, σp+1 (1)

such that,σp+1 = σ0, and, for eachi = 0, . . . , p,σi+1 , σi , τi = m (σi), andτi is a primary coface
of σi+1.

A convenient way to reformulate the definition of an acyclic partial matching is via Hasse
diagrams. TheHasse diagramof (S, κ) is the directed graph whose vertices are elements ofS,
and the edges are given by primary face relations and oriented from the larger element to the
smaller one. Given a partial matching (A,B,C,m ) on (S, κ), we change the orientation of the
edge (τ, σ) wheneverτ = m (σ). The acyclicity condition says that the oriented graph obtained in
this way, which is also called themodified Hasse diagramof (S, κ), has no nontrivial cycles. A
directed graph with no directed cycles is called a directed acyclic graph (DAG). Thus, a partial
matching (A,B,C,m ) on (S, κ) is acyclic if its correspondingmodified Hasse diagramis a DAG.

2.4. Reductions

We describe here a reduction construction which was introduced in Kaczynski et al. (1998)
for finitely generated chain complexes, also presented in (Kaczynski et al., 2004, Chapter 4).
The construction was reused in Mrozek and Batko (2009) for the purposes of the coreduction
method and, recently, in Mischaikow and Nanda (2013) for theone-dimensional filtration of
S-complexes, which is perhaps the closest reference for the purposes of this paper.

5

[King-Knudson-Mramor 2005] analogy (2015):
Too many unprocessed simplices declared critical and dropped to C.

[Robins-Wood-Sheppard 2011] analogy (2017):
More successful in reducing C thanks to processing cells of all
dimensions, not only vertices.

We now can get an f -compatible MDM function g.
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Preliminaries: Partial matching, filtration, lower stars, indexing

Partial matching

A partial matching (A,B,C,m ) on a simplicial complex K is a partition A,B,C of
K with a bijection

m : A→ B τ < m (τ).

such that m (τ) is a cofacet of τ for all τ ∈ A.

m : A→ B Forman’s discrete vector field, C critical cells

An m–path is a sequence

τ0 7→ σ0 > τ1 7→ σ1 > . . . τp 7→ σp > τp+1

A partial matching is acyclic if there is no closed m–path.
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Preliminaries: Partial matching, filtration, lower stars, indexing

Filtration, lower stars and indexing
Multifiltration is given initially on vertices f : K0 → Rk . It may be assumed that
f is component-wise injective.

We extend it to f : K → Rk on all cells:

f (σ) = (f1(σ), . . . , fk (σ)) with fi(σ) = max
v∈K0(σ)

fi(v).

The sublevel set filtration of K

Ka = {σ ∈ K | f (v) � a for all v ∈ σ}, a ∈ Rk .

The lower star of σ ∈ K is L(σ) = {α ∈ K | σ ⊆ α and f (α) � f (σ)},
The strict lower star is L∗(σ) = L(σ) \ {σ}.
Topological Sorting Algorithm ⇒ construction of an indexing map on K,
compatible with f :

A bijective map I : K → {1,2, . . . ,N}, N = K, such that

σ, τ ∈ K, σ 6= τ, σ ⊆ τ or f (σ) � f (τ) ⇒ I(σ) < I(τ).
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Matching Algorithm

Goal: build a multifiltration-compatible partition of K into A, B, and C,
m : A→ B, C declared critical.

Process all cells σ of K increasingly with indexing I.
Extra routines:
I States classified(σ)=true/ false, to avoid re-processing cells from lower

stars of other cells and sets unclass facetsσ(α), for α ∈ L∗(σ).
I Priority queues PQzero and PQone, to store cells with 0 and 1 available

unclassified facets.

σ is added to C, if L∗(σ) = ∅. Otherwise, σ is paired with the cofacet
δ ∈ L∗(σ) of minimal index I(δ).
Additional pairings interpreted as building L∗(σ) with simple homotopy
expansions or reducing it with contractions:
I α is a candidate for pairing when unclass facetsσ(α) contains exactly

one λ that belongs to PQzero.
I If no pairing of α is possible, add it to C and continue from that cell.
I When PQone 6= ∅, its front is popped out and either inserted into PQzero or

paired with its single available unclassified facet.
I When PQone = ∅, the front cell of PQzero is added to C.
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Matching Algorithm

Matching Algorithm

is possible a cell is classified as critical and the process iscontinued from that cell. A
cell α is candidate for a pairing whenunclass facetsσ(α) contains exactly one
elementλ that belongs toPQzero. For this purpose, the priority queuesPQzero and
PQone which store cells with zero and one available unclassified faces respectively are
created. As long asPQone is not empty, its front is popped and either inserted into
PQzero or paired with its single available unclassified face. WhenPQone becomes
empty, the front cell ofPQzero is declared as critical and inserted inC.

Algorithm 2 Matching

1: Input: A finite simplicial complexK with an admissible functionf : K → Rk and an
indexing mapI : K → {1, 2, . . . , N} on its simplices compatible withf .

2: Output: Three listsA,B,C of simplices ofK, and a functionm : A → B.
3: for i = 1 toN do
4: σ := I−1(i)
5: if classified(σ)=false then
6: if L∗(σ) contains no cellsthen
7: addσ to C, classified(σ)=true
8: else
9: δ := the cofacet inL∗(σ) of minimal indexI(δ)

10: add σ to A and δ to B and definem (σ) = δ, classified(σ)=true,
classified(δ)=true

11: add allα ∈ L∗(σ) − {δ} with num unclass facetsσ(α) = 0 to PQzero
12: add allα ∈ L∗(σ) with num unclass facetsσ(α) = 1 andα > δ to PQone
13: while PQone 6= ∅ or PQzero 6= ∅ do
14: while PQone 6= ∅ do
15: α := PQone.pop front
16: if num unclass facetsσ(α) = 0 then
17: addα to PQzero
18: else
19: addλ ∈ unclass facetsσ(α) to A, addα to B and definem (λ) = α,

classified(α)=true, classified(λ)=true
20: removeλ from PQzero
21: add allβ ∈ L∗(σ) with num unclass facetsσ(β) = 1 and eitherβ > α

or β > λ to PQone
22: end if
23: end while
24: if PQzero 6= ∅ then
25: γ := PQzero.pop front
26: addγ to C, classified(γ)=true
27: add allτ ∈ L∗(σ) with num unclass facetsσ(τ ) = 1 andτ > γ to

PQone
28: end if
29: end while
30: end if
31: end if
32: end for
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Algorithm 2 Matching

1: Input: A finite simplicial complexK with an admissible functionf : K → Rk and an
indexing mapI : K → {1, 2, . . . , N} on its simplices compatible withf .

2: Output: Three listsA,B,C of simplices ofK, and a functionm : A → B.
3: for i = 1 toN do
4: σ := I−1(i)
5: if classified(σ)=false then
6: if L∗(σ) contains no cellsthen
7: addσ to C, classified(σ)=true
8: else
9: δ := the cofacet inL∗(σ) of minimal indexI(δ)

10: add σ to A and δ to B and definem (σ) = δ, classified(σ)=true,
classified(δ)=true

11: add allα ∈ L∗(σ) − {δ} with num unclass facetsσ(α) = 0 to PQzero
12: add allα ∈ L∗(σ) with num unclass facetsσ(α) = 1 andα > δ to PQone
13: while PQone 6= ∅ or PQzero 6= ∅ do
14: while PQone 6= ∅ do
15: α := PQone.pop front
16: if num unclass facetsσ(α) = 0 then
17: addα to PQzero
18: else
19: addλ ∈ unclass facetsσ(α) to A, addα to B and definem (λ) = α,

classified(α)=true, classified(λ)=true
20: removeλ from PQzero
21: add allβ ∈ L∗(σ) with num unclass facetsσ(β) = 1 and eitherβ > α

or β > λ to PQone
22: end if
23: end while
24: if PQzero 6= ∅ then
25: γ := PQzero.pop front
26: addγ to C, classified(γ)=true
27: add allτ ∈ L∗(σ) with num unclass facetsσ(τ ) = 1 andτ > γ to

PQone
28: end if
29: end while
30: end if
31: end if
32: end for

Theorem
The algorithm produces a multifiltration-compatible partial matching
(A,B,C,m ) that is acyclic.
The worst case processing cost is O(N · γ log γ), where

N := K, γ := max
σ∈K

cbd (σ), and cbd (σ) := {τ ∈ K |σ ≤ τ}.
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Matching Algorithm

Example

v0 = (0, 0) v1 = (1, 0)

v2 = (1, 1)

v3 = (2, 0)

v4 = (2, 1)

w1

w2

w4

w12

w8
e3

e5 e6

e9

e10

e13

e14

t7

t11

(a) (b)

Fig. 1. In (a), the complex and output of Algorithm 6 of [2] are displayed. Gray-shaded triangles
are those which are present in the simplicial complex. Critical simplexes are marked by red circles
and the matched simplexes are marked by arrows. In (b), the complex is modified so to satisfy the
coordinate-wise injectivity assumption. Labeling of all simplices by the indexing function and
the output of Algorithm 2 are displayed.

the latter case, the algorithm requires a function that returns the cells in the reduced
lower starL∗(σ) which is read directly from the structure storing the complex. In the
best case,L∗(σ) is empty and the cell is declared critical. SinceL∗(σ) ⊂ cb (σ), it
follows that cardL∗(σ) ≤ γ. From Algorithm 2, we can see that every cell inL∗(σ)
enters at most once inPQzero andPQone. It follows that the while loops in the al-
gorithm are executed all together in at most2γ steps. We may consider the operations
such as finding the number of unclassified faces of a cell to have constant time except
for the priority queue operations which are logarithmic in the size of the priority queue
when implemented using heaps. Since the sizes ofPQzero andPQone are clearly
bounded byγ, it follows thatL∗(σ) is processed in at mostO(γ log γ) steps. Therefore
processing the whole complex incurs a worst case cost ofO(N · γ log γ).

4 Persistent Homology Reduction

The properties of Lefchetz complexes introduced by Lefschetz in [10] are developed
further in [12] under the nameS-complex. The concept ofsublevel set filtrationof K
induced byf : K → Rk introduced in Section 2 naturally extends to Lefschetz com-
plexes (see [3]). Persistence is based on analyzing the homological changes occurring
along the filtration asα varies. This analysis is carried out by considering, forα � β,
the homomorphismH∗(j(α,β)) : H∗(Sα) → H∗(Sβ) induced by the inclusion map
j(α,β) : Sα →֒ Sβ . The image of the mapHq(j

(α,β)) is known as theq’th multidimen-
sional persistent homology groupof the filtration at(α, β) and we denote it byHα,β

q (S).
It contains the homology classes of orderq born not later thanα and still alive atβ.

4.1 Reductions

The definition of a partial matching given in Section 2 extends in a straightforward
way to any Lefschetz complex(S, κ) [2]. Let (A,B,C,m ) be a partial matching (not

i = 1 L∗(w1) = ∅, w1 ∈ C.
i = 2 L∗(w2) = {e3}, m (w2) = e3.
i = 3 e3 classified.
i = 4 L∗(w4) = {e5, e6, t7},

m (w4) = e5,
e6 ∈ PQzero, t7 ∈ PQone,
line 15, α = t7 leaves
PQone,
line 19, λ = e6, m (e6) = t7,
e6 leaves PQzero.

5, 6, 7 e5, e6, t7 classified.
i = 8 L∗(w8) = {e9}, m (w8) = e9.
i = 9 e9 classified.
i = 10 L∗(e10) = {t11}, m (e10) = t11.
i = 11 t11 classified.
i = 12 L∗(w12) = {e13, e14},

m (w12) = e13,
e14 ∈ PQzero, PQone = ∅,
line 25, γ = e14 ∈ C.

13, 14 e13, e14 classified.

1

Red circles: Cells left in C; Left: 2015 algorithm; Right: 2017 algorithm.
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Reductions

Lefschetz complex reductions
S = {Sq} cells, τ < σ facets, κ(σ, τ) incidence ⇒ C∗(S, ∂κ) chain complex.

{Sa}a∈Rk is a multi-filtration of S if
a � b ⇒ Sa ⊆ Sb,
σ ∈ Sa, τ ≤ σ ⇒ τ ∈ Sa.

Persistent homology

Ha,b
q (S) := im Hq(j(a,b)) , j(a,b) : Sa ↪→ Sb.

(A,B,C,m ) on (S, κ), σ ∈ A ⇒ reduced complex (S, κ),
S = S \ {m (σ), σ}, and κ : S× S→ R,

κ(η, ξ) = κ(η, ξ)− κ(η, σ)κ(m (σ), ξ)κ−1(m (σ), σ).

Isomorphism Lemma H∗(Sa)
H∗(j(a,b))−→ H∗(Sb)y∼= y∼= , a � b.

H∗(S
a
)

H∗(j(a,b))−→ H∗(S
b
)
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Reductions

Iterated reductions

Ka =: Sa(0) ⊃ Sa(1) ⊃ . . . ⊃ Sa(n) = Ca .

Corollary

For every a � b, Ha,b
∗ (C) ∼= Ha,b

∗ (K). Moreover, the diagram

H∗(Ka)
H∗(j(a,b))−→ H∗(Kb)y∼= y∼=

H∗(Ca)
H∗(j(a,b))−→ H∗(Cb)

a � b.

commutes.

Worst case cost O(N γ m2), m := C.

Best results when grid is fixed (⇒ γ constant) and m small w.r.t. N.
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f -compatible mdm functions

f -compatible mdm functions g

Recall that g : K → Rk is mdm if
(1) card Hg(α) ≤ 1;
(2) card Tg(α) ≤ 1;
(3) If β(p+1) > α is not in Hg(α), then g(α) � g(β);
(4) If γ(p−1) < α is not in Tg(α), then g(γ) � g(α).

Proposition

Any f : K → Rk used as input in the Matching Algorithm satisfies conditions
(3) and (4).

In general, (1) and (2) may fail.

σ ∈ K is primary, if it is classified by Matching Algorithm at the beginning of
processing its own lower star at lines 7 or 10.
P = {σij} all primary simplices ordered increasingly by I.
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f -compatible mdm functions

Proposition

The lower stars of primary simplices L(σij ) form a partition of K.

Definition

g : K → Rk is f -compatible provided that
(1) f (α) � f (β) ⇒ g(α) � g(β); and
(2) if α, β ∈ L(σij ) for a primary σij and α is classified earlier than β, then

g(α) � g(β).

Theorem

Let g : K → Rk be f -compatible. Then g is an mdm function, and its partial
matching coincides with that produced by Matching Algorithm.

Theorem
There exist f -compatible functions g.
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Experiments

Interpretation of retrieved critical cells

Left and center: gradient vector fields of two scalar functions f1, f2.

Right: critical cells of dimension 0 in yellow, dimension 1 in blue and
dimension 2 in red for f = (f1, f2) as retrieved by Matching Algorithm.
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Experiments

Pareto: smooth and discrete

Left: Pareto critical curves for two projection maps.
Right: Critical cells retrieved by the algorithm: vertices - yellow, edges - blue,
triangles - red.
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Future work

Future work

Improve construction of f -compatible mdm functions g.
Continue developing extension of the combinatorial Morse theory to
multidimensional functions.
Further experiments, applications, and optimization.

M. Allili, TK, and C. Landi, Reducing complexes in multidimensional
persistent homology theory, J. Symb. Comp. 78 (2017), 61–75.

—, —, —, and F. Masoni, Algorithmic construction of acyclic partial
matchings for multidimensional persistence, in DGCI 2017.

—, —, —, —, Acyclic Partial Matchings for Multidimensional Persistence:
Algorithm and Combinatorial Interpretation , preprint 2018.

Gracias por su atención!
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