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Outline

e Modeling of fluidic surfaces: surface (Navier-)Stokes equations
@ Well-posedness of surface Stokes equations
@ Stream function formulation of surface Stokes equations

@ Finite element discretization based on stream function formulation.
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Material surfaces (e.g., biomembranes)

Initialization: smooth closed surface '(0). Mass density p(x,0).
Velocity u(x, 0).
Small material subdomain: ~y(t) C '(t).
Modeling principles
o Inextensibility: & Jyp1ds =0.

@ Mass conservation: & Jyeey p(x, t) ds = 0.
e Momentum conservation:
d
— puds:/ f,,ds+/ b ds
dt J(1) (1) (1)

with line contact force f, (v: conormal), area force b.

p (area) density: constant; u: velocity (tangential and normal to I'(t)).
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Modeling of Newtonian surface fluid

Continuum mechanics on 2D surface [Gurtin, Murdoch].

P=P(x):=1—nn" (projection on tangential plane at x € I')
1
Es(u) := §P(Vu + (Vu)T)P  (surface strain tensor)

f, = orv (contact force)

or = —7mP + 2uE;(u) (Newtonian surface stress)
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Modeling of Newtonian surface fluid

Continuum mechanics on 2D surface [Gurtin, Murdoch].
P=P(x):=1—nn" (projection on tangential plane at x € I')
1
Es(u) := §P(Vu + (Vu)T)P  (surface strain tensor)
f, = orv (contact force)

or = —7mP + 2uE;(u) (Newtonian surface stress)

Combining this results in

Surface incompressible Navier-Stokes equations

pu = =V + 2udivr(Es(u)) + b + mkn
dinu =0

du
Vir =PVre. 0= —
r 7€, 0 ™
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+u-Vru (material derivative), x: mean curvature



More info: Jankuhn, Olshanskii, AR: Incompressible Fluid Problems on
Embedded Surfaces: Modeling and Variational Formulations, IFB 2018



Modeling of fluidic surfaces

More info: Jankuhn, Olshanskii, AR: Incompressible Fluid Problems on
Embedded Surfaces: Modeling and Variational Formulations, IFB 2018

Other modeling approaches:

e differential geometry [Scriven], [Arroyo,DeSimone]
@ energetic approaches [Koba,Liu et al.], [Barrett,Garcke et al.]

@ other contributions [Reuther,Voigt, et al.], [Bothe, Priiss],
[Gurtin,Murdoch], ......

Note: Resulting models agree for stationary I'.
There are differences for evolving I.
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Deleting the u - Vru term we get for the stationary case:

—2uP divr(Es(u)) + Vimr=b (Pb =Db)
dinu =0

Es(u) = 3P(Vu+ (Vu) )P =: 3(Vru+ (Vru)").

Only very few results on surface Stokes are available.



V:=H)", Hl={veV:v.-n=0}
E:={veH]: E(v)=0} (“killing fields";n = 3: dim E < 3).
V0 .= Hl/E.

Find (u,p) € VP x L3(I) st

a(u,v) + b(v, p) = f(v) for all v e V?,
b(u,q) =0 for all g € L3(T).

a(u,v) ;= 2,u/|_tr(Es(u)E5(v))ds, b(u, p) := —/I_pdivru ds
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@ Surface Korn's inequality for a(-, ).

@ Inf-sup property for b(-,-). (“easy”!)

e _b(v,p)

sup
pel2(r) vevo [Ivll1lpll 2

>c>0.




Stream function formulation
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Surface differential operators

Assumption. T is a C? connected compact oriented hypersurface in R3
without boundary.

P(x)=1—-n(x)n(x)7, x €.
For u € C(I): u® := constant extension along n.

Differential operators (based on Euclidean space operators)

Vr¢ =PV, (scalar ¢)
Vru:=PVu®P (vector u)

divru := tr(Vru), divrA:= | divr(e] A) (matrix A)

curlru := (Vr x u®) -n

curlr¢ :=n x Vr¢ (tangential vector)
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Properties, for smooth tangential u, A:

/divrugbds:—/u-vrgbds

r r

/(divrA) ‘uds = —/tr(ATVru)ds
r r

/ curlfu ¢ ds = —/u- curlr¢ ds
r r




Surface differential operators
Properties, for smooth tangential u, A:
Partial integration; Vi = — divrT, curlp = — curIrT
/r diviu ¢ ds = —/l_u -Vrods
/r(divrA) ‘uds = — /rtr(ATVru) ds

/ curlrug ds = —/u~ curlr¢ ds
-

r

Basic identities
divr(curlr¢) =
curlr(Vro) =
curlr(curlr¢) = dlvr(Vrd)) Ar¢
curlr( curlru)= P divr(Vru) — Vi (divru) — Ku

with Gaussian curvature K.
Reusken (RWTH Aachen) Surface Stokes Equations Oaxaca, July 30th 2018

11/ 22



L2(N):={uec?(N)*|n-u=0 ae onT},
Hi(M:={ueH'(N)?|n-u=0 ae onl}

Vr, curlr : HY(T) — L2(I"), defined by bounded extension.



Surface Helmholtz decomposition

L%(r) ={ue L2(r)3 In-u=0 ae onl},
HI(N) :={ue H(N)*|n-u=0 ae onTl}

Vr, curlr: HY(T) — L2(T), defined by bounded extension.
divr, curlr : L2(F) — H~Y(T) defined via duality:

(divru, ¢) : / -Vrgds V ¢ € HY(I),ue L3I,

(curlru, ¢) = f/ u-curlrpds ¥V ¢ € HY(I),u e L3I
r
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Surface Helmholtz decomposition

L%(r) ={ue L2(r)3 In-u=0 ae onl},
HI(N) :={ue H(N)*|n-u=0 ae onTl}

Vr, curlr: HY(T) — L2(T), defined by bounded extension.
divr, curlr : L2(F) — H~Y(T) defined via duality:

(divru, ¢) : / -Vrgds V ¢ € HY(I),ue L3I,

(curlru, ¢) = 7/ u-curlrpds ¥V ¢ € HY(I),u e L3I
r

Harmonic fields

H={ucl?)| div)vu=0 and curlru=0},
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dim(H) < o0




Surface Helmholtz decomposition

Lemma (application of Peetre-Tartar Lemma)

dim(H) < o0

Main Theorem
YV ouel?(N): 31v¢,¢0€ HXT) :={¢c HY(T) | Jrods=0} and
£ eH:

u=Vry+ curlr¢ + €.

The range spaces Vr(HX()) and curl-(HX(T)) are closed in L2(T).

L¥(M) = Vr(H, () @ curlr(H(T)) & H

is L2-orthogonal direct sum.
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Surface Helmholtz decomposition

Lemma (application of Peetre-Tartar Lemma)

dim(H) < o0

Main Theorem

V uel?(N): ¢, HY(T):={pe HY() | [r¢ds=0} and
£ eH:
u=Vry + curlrg + €.

The range spaces Vr(HX()) and curl-(HX(T)) are closed in L2(T).
LE(M) = Vr(H:(N) @ curlr(H (M) & H

is L2-orthogonal direct sum.

Corollary: u = curlr¢ + £ if diviu=0 (¢: stream function)
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I simply connected = dim(#) = 0. l

Proof is “elementary” (elliptic regularity theory + properties of geodesics).




I simply connected = dim(#) = 0.

Proof is “elementary” (elliptic regularity theory + properties of geodesics).

Let I be simply connected. For curlr, divr: L2(I) — H~Y(T") and
curlr, Vr 5 Hl(l') — L%(F):

ker( divr) = im( curlr),
ker(curlr) = im(Vr).




Surface Helmholtz decomposition

Theorem

I simply connected = dim(#) = 0.

Proof is “elementary” (elliptic regularity theory + properties of geodesics).
Corollary

Let I be simply connected. For curlr, divr: L2(I') — H~1(I') and
curlr, Vi@ HY(I) — L2(T):

ker(divr) = im( curlr),

ker( curlr) = im(Vr).
Corollary

Assume that [ is simply connected.

lullZs < (] divruﬂfz(r) + || curlru]\%2(r)) for all u € HL(T).
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Relation to Hodge decomposition (differential geometry)

Relation Hodge-Helmholtz
For u € L2(T):

u=Vry+ curlr¢ + £
iff wy = dy — 6(¢vE) +we

with wy (wE) the 1-form associated to u (£), v& area 2-form,
d: exterior derivative, : codifferential.

we € Hi(T) ;== {1-form w|dw =0 and dw =0} (1-harmonics)
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Relation to Hodge decomposition (differential geometry)

Relation Hodge-Helmholtz
For u € L2(T):

u=Vry+ curlr¢ + £
iff wy = dy — 6(¢vE) +we

with wy (wE) the 1-form associated to u (£), v& area 2-form,
d: exterior derivative, : codifferential.

we € Hi(T) ;== {1-form w|dw =0 and dw =0} (1-harmonics)
Fundamental results
Hy(I) = H3&(T) (first de Rham cohomology group)

First Betti number by(I') := dim(HJ&(I")) depends only on topology of I
bi1(I') =0 if [ = sphere, by(I') = 2n if [ = n-torus

Classification thm: ' homeomorphic to either a sphere or an n-torus
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Assumption. T is simply connected (essential!) = u = curlr¢.

Recall: well-posed Stokes variational problem.
E:={veH!: E(v)=0}, V?=HI/E

a(u,v) + b(v, p) = f(v) for all v € V?,
b(u,q) =0 for all g € L3(T).

Solution u*.



Stokes in stream function formulation

Assumption. I is simply connected (essential!) = u = curlr¢.

Recall: well-posed Stokes variational problem.
={veH!: E(v)=0}, V2=HL/E.
Find (u,p) € V2 x L3(T) st
a(u,v) + b(v, p) = £(v)

for all v € VY,
b(u,q) =0

for all g € L3(I).

Solution u*.

H2(T) := H*(M) N HX(T), E := curlc}(E) c HA(T),
H{ 4 == {u e H{() | diviu=0}.

Lemma

curlr : H3(IN) — thlv is an homeomorphism,
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Stokes in stream function formulation

Define for ¢, € H?():

3(¢,v) == a(curlrg, curlry) = /r %ArgbAm — KVré - Vi ds

Theorem

Take unique stream function ¢* € HX(I') such that u* = curlr¢*.
This ¢* is the unique solution of: ¢ € H?(I")/E such that

3(¢, 1) = (F, curlrp)2ry  for all ¢ € HA(T)/E.

Furthermore
9% 3y < cllfll2(ry
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Stokes in stream function formulation

Reformulation as coupled system of second order problems.
Determine ¢ € H!(I")/E, & € HY(T) such that

1 -
/Jvfg Vi + KV Ve ds = —(F, curlpy) oy ¥ o € HY(T)/E

/vr¢-vrn+gnds=o v € HY(T).
i

This problem has a unique solution given by ¢ = ¢*,& = Aro*.

This formulation is suitable for a (surface) finite element discretization.
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Stokes in stream function formulation

Reformulation as coupled system of second order problems.
Determine ¢ € HX(I)/E, & € HY(T') such that

1 -
/Jvfg Vi + KV Ve ds = —(F, curlpy) oy ¥ o € HY(T)/E

/vr¢-vrn+5nds=o v € HY(T).
i

This problem has a unique solution given by ¢ = ¢*,& = Aro*.

This formulation is suitable for a (surface) finite element discretization.
Remarks:
e Test space H(I")/E can be replaced by H'(T).
e Issue related to projection onto E (not caused by stream function).
e This difficulty vanishes for operator —P divr(Es(-)) + !
(time-dependent problem).

@ Gaussian curvature K is needed.
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Finite element discretization: TraceFEM (or SFEM)

I = zero level of g (level set function)
g ~ In(g) (piecewise P; interpolation).

[~ [y :=zero level of I(g) (planar segments).

Under reasonable assumptions: dist(I", ) < c h?.

Trace FE space

Vi :  piecewise linears on T,
Vi = {(¢n)r, | dn € Vi } € H'(Th).
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Numerical experiment

Use Galerkin technique with ', & I and trace space V| for ¢ and €.
Some technicalities related to discrete kernel E, ~ E.

I: ellipsoid with known Gaussian curvature.

Prescribed smooth solution ¢.

¢ Nlon — ¢°llizr,) | EOC
1 6.63- 101

2 2.04-1071 1.70
3 5.81-1072 1.81
4 1.50-1072 1.95
5 3.67-103 2.03
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o,
[7.7766-01

-0.16396

[—1 .105e+00
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Extension to time-dependent Stokes

u, = Cul‘|r¢h

Straightforward approach: reconstructed from ¢y,

@ Stream function formulation

P
applies (I simply connected). y/77ee!
@ Coupled parabolic equations for 2-0.163%
o(x, 1), §(x, ). i
@ Method of lines: TraceFEM in x, K1 1050400

implicit Euler (CN) in t.

Further development (error analysis): current research.
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Concluding remarks

@ Derivation of surface Navier-Stokes equations.

@ Well-posed variational formulation of surface Stokes problem.
@ Surface Helmholtz decomposition.

@ Stream function formulation of surface Stokes problem.

@ Trace FE discretization.

Further issues:
e Extension to (time-dependent) Navier-Stokes.
e Efficient reconstruction of uy from stream function ¢,.
@ Extension to evolving (simply connected) surface.
@ Linear algebra issues (preconditioner).

Reference:

A. Reusken, Stream Function Formulation of Surface Stokes Equations,
IGPM report 478, RWTH Aachen (2018)
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