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Fluid-structure interaction

QcRLd=23
x Euler. var. in

B: deformable structure domain
BiCR®", m=d,d-1

s Lagrangian var. in B 0
X(-,t) : B — B; position of the solid
X(s,t) = Xo(s) + n(s,t)

with i displacement

F deformation gradient 3

the material velocity u(x, t) is:

u(x,t) = %(s, t) where x = X(s,t)
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FSI problem

Recall:

. ou .
prus = pr <8tf + s - Vllf) = leO'f

div Uf =0

psl:ls — diV 0’5
uf — us
O-fnf — _a-sns

+ initial and boundary conditions

X(t) . B—>Bt

in Q\ By

inQ\ B
in B;

on 0B
on 0B

us(x,t) = aa)f(s, t) where x = X(s,t)
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Numerical approaches to FSI

Boundary fitted approaches The fluid problem is solved on a
mesh that deforms around a Lagrangian structure mesh, using
arbitrary Lagrangian—Eulerian (ALE) coordinate system

In case of large deformation the boundary fitted fluid mesh can
become severely distorted

Non boundary fitted approaches

» fictitious domain (Glowinski-Pan—-Périaux ‘94, Yu ’05)

» level set method (Chang-How—Merriman—Osher '96)

» immersed boundary method (Peskin '02)

» immersogeometric FSI (thin structures)
(Kamenski-Hsu-Schillinger-Evans—Aggarwal-Bazilevs—
Sacks-Hughes ’15)

» Nitsche X-FEM (Burman-Fernandez '14,
Alauzet-Fabreges-Ferndndez-Landajuela '16)

Our research originates from the immersed boundary method
IBM and moved towards a fictitious domain approach page 3



Outline

Finite element Immersed Boundary Method (FE-IBM)

Initial analysis of the FE-IBM

Approximation of FE-IBM

Mass conservation

An interface problem (towards a fully variational approach)



Initial analysis Approximation Mass conservation Interface problem

IBM - Immersed Boundary Method
(Peskin '72-'77)
(McQueen—Peskin "83-)
(Peskin '02)

» Introduced by Peskin for the simulation of the blood flow in
the heart.

» Applied to biological problems, where a fluid interacts with
a flexible structure.

» The structure is a part of the fluid with additional forces
and mass.

» The Navier-Stokes equations are solved in the whole
domain (fluid + solid) by finite differences.

» The Dirac delta function is used to localize forces and
masses in the solid domain.

» The immersed body has a fiber like structure.
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Initial analysis Approximation Mass conservation Interface problem

Model assumptions

» Incompressible fluid:
of = —Pfl+ vf Vm Uy
(Vsym =VvVu+ (V u)T)
» Visco-elastic incompressible material:
Os = 0'§ + o 2
with
0{ = —psI + Vs Vsym Us
and o7 elastic part of the stress.
The Piola—Kirchhoff stress tensor takes into account the
change of variable
P = [FloSF~ T
and is related with the potential energy density W by
ow

P(F) =

page 6



Initial analysis Approximation Mass conservation Interface problem

IBM - Immersed Boundary Method

Problem formulation

ou .
pf(at+U'VU)—VfAu+Vp:d+FFSI+t in Q x]0,T[

divu=0 in Q x 10, T[

2
d(x,t) = (ps — pr) ?9’;(5()( —X(s,t))ds  excess mass density
B

FS(x,t) = / Vs ‘P(s,t)0(x — X(s,t))ds  inner force density
B

t(x,t) = — P(s, t)N(s, t)d(x — X(s,t))ds transm. force dens.
aB
oX . .
—(s,t) =u(X(s,t),t) inBx]0,T| motion of the
ot :
immersed body
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Initial analysis Approximation Mass conservation Interface problem

FE-IBM Finite elements for IBM

(B.-Gastaldi '03)
(B.—Gastaldi-Heltai ’04-'07)
(Heltai '08)
(B.—Gastaldi-Heltai—Peskin "08)
(B.—Cavallini-Gastaldi '12)

» Variational formulation of the FSI force
» No need to approximating the Dirac delta functions

» Better interface approximation (less diffusion, sharp
pressure jump)

» The fluid equations can be approximated with standard
mixed schemes (Qy — P1, Hood-Taylor,
Bercovier-Pironneau, ...)
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Variational definition of the source term

Everything started from this simple remark (two space
dimensions, co-dimension one)

X(s, t) position of the immersed boundary B;

L 52
F(x,t):/O H%5(X—X(s,t))ds

Lemma

Assume that, for all t € [0, T], the curve By is Lipschitz continuous.
Then for all t € |0, T|, the force density F(t) is a distribution
function belonging to H=1(2)? defined as follows: for all

v e HL Q)

L 2
H1<F(t),v>Hé_/O na)(;s(;’t)v(X(s,t))ds vt €10, T[

page 9



FE-IBM Initial analysis Approximation Mass conservation Interface problem

Existence of the solution (1D)

(B.—Gastaldi '03)

Existence of the solution for a simplified 1D problem:

Findu : [a,b] x [0,T] - R and X: [0,T] — [a,b] such that

— — ple =F ina,b[x]0,T]|

F(x,t) =f(t)d(x —X(t)) Vx €la,b], t €]0,T|
X'(t) = u(X(t),t) Vte]o,T[

u(a,t) =u(b,t) =0Vt e ]0,T]|
u=upinja,b[ X(0)=Xo
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Schauder theorem

We set X = {X € C°([0,T]) : X(0) = Xo }

Given X € X, u(t) € H}(a,b) is the solution to:

jt(U(t), V) + ux(t), vx) = (F,v) - [=f(Ov(X(1))]
vv € H{(a,b) (P1)
u(0) = up in |a,b]
Then X = T(X) solves
X'(t) = u(X(t),t) Vte[0,T] X(0)=Xo (P2)

Theorem

There exists a fixed point of T in the convex and compact subset
B={YeX:Y(t) € [a,b], [Yli200,r) <K} of X
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Schauder theorem (cont’ed)

Step 1.
There exists a unique solution u to problem (P1)

If X’ € L2(0, T), then there exists a summable function ¢(t) so
that

ule, t) —uly, )] < LO)x —y| V1), (y;¢) € [a,b] x [0,T]

Step 2.
Let Xy €]a, b[. There exists a unique solution X to equation (P2)
defined in [0, T], with X’ € L?(0, T) and

X(t) E]a,b[ Vt € [07 T] ||X/HL2(0,T) S K
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Stability
(B.—Cavallini-Gastaldi '11)

Recalling that

OX (s 0) = u(X(s,6),6) Vs € B
ot
it holds
prd 2 2 d
7 (o) + | v u(0)] + SEX(0)

1 2

d ||0X
+§(Ps—0f)a Hﬁt . =0

where E is the total elastic potential energy

E(X(r)) = /B W(E(s, 1)) ds
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Finite element approximation

» Uniform background grid 7y
for the domain € (meshsize AT
hy) /
» Inf-sup stable finite element /
pair /
Vi, C HA(Q)4 $
Quw C L§(9)

» Grid Sy, for B (meshsize hy)

» Piecewise linear finite element space for X
Sp={YeC%B;N):YecPl}
Notation
» Ty, k=1,...,M, elements of Sy
> s;,j=1,...,M vertices of S

» &, set of the edges e of Sy,
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FE-IBM Initial analysis Approximation Mass conservation Interface problem
Discrete source term
Source term:
(F(t),v) = — /B]P)(Fh(s,t)) tVsv(Xp(s,t))ds Vv eV,

Xy, p-w. linear = Fy, P, p.w. constant
By integration by parts

(Fy Z/Tph Vs v(X(s, t)) ds
:_Z/a PhNV )dA

that is

[P] = PTNT + P~N~ jump of P across e for internal edges
[P] = PN jump when e C 0B

page 15



FE-IBM Initial analysis Approximation Mass conservation Interface problem

The semidiscrete problem reads:
find (uy,pp) : ]0,T[ — Vi x Qp and X, : [0, T| — Sy, such that

¢

by < ((0). ) + a(un(0) ) + b(ug(0). 04 (1),
2
~(divv.pa() = = [ (= o) Gt vixs5,0)ds
_Z/Ph V(Xp(s,t))dA W eV,
ec&y
(divuy(t),q) = 0 Vg € Qn

D) = w(X0),1) Vi=1,....M

u,(0) = ugy, in Q2
Xpi(0) =Xo(si)) Vi=1,....M
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Fully discrete problem (Backward Euler)

Find (u} ™, p} ') € Vi x Qu e Xi™ € Sy, such that

E == 3 [ v o) we v,

ecé&y €
uttl —
pr | v ) Falupthv) b upt )
—(divv,pZH) = 1
X x4 X
NSA = [ = o P 9
+<FZ+1,V>h Vv eV
| (divu}*lg) =0 Vg € Qy
an‘rl o Xn»
h hi _ .n+l +1 P
lTl—uZ (X;lll ) Vl—].,...,M
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Fully discrete problem (Modified Backward Euler)

Step 1. (Fj, v}y = — > [[Pa]"-v(Xj(s,0)dA W eV,

ecé&y ¢

Step 2. find (u}*!,p*!) € V; x Qy such that

( UZ“ up 1 1 1
8 vt +a(up™, v) + b up )
—(divv,pjtt) = 1 )
XpHh — 2xp + X~
NS h h
— [ (= o) P X))
—i—(FZ,V)h Vv eV
| (divu™ q) = Vg € Q
an',-l _ Xn.
Step 3. % uti(xy) vi=1,....M
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Using Step 3 in Step 2 we get:

Step 1. ( Z/Ph . an (s,t))dA Vv eV

ecé&y

Step 2. find (u}*!,pi*!) € V; x Qy such that

yt - 1 1 1
pf <hAt V| +a@tv) + b(uft ultt v
—(divv,pitt) =
(X (s)) — up (X (s))
NSO [ (e S SR B )
B
+<FZ,V>h Vv € Vi
(divujt,q) =0 Vg € Qn
XT‘L+1 _ Xn-
Step 3. mTtm — X)) Vi=1,...,M

page 19



FE-IBM Initial analysis Approximation Mass conservation Interface problem

Discrete Energy Estimate

(B.—Cavallini-Gastaldi '11)

Artificial Viscosity Theorem

Let uj, p, and X} be a solution to the FE-IBM, then

oz (1818 = W) + e+ )l w1
! n+1 n
1 —
+ m(ps Pr) (Hun+1(Xn)”(2LB — HuZ(XZ 1”%,8) <0

CFL Conditions: p + pq > 0, ps > py (might be relaxed)
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

CFL condition

BE is unconditionally stable, while MBE requires the term p, to
be not too large

(m-2)
Ha = _Hmaxcihs d 1Ath
S

[':= max< max |X} —X}|
TrESh Sj,SiEV(Tk) hj hi

space dim. | solid dim. | CFL condition
2 1 L™ At < Chyhs
2 2 L™ At < Chy
3 2 L"At < Ch?
3 3 L"At < Ch2 /h
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Initial analysis Approximation Mass conservation Interface problem

Some numerical results

Original 2D code in Fortran 77, ported to DEAL.II (c++)
(www.dealii.org) by L. Heltai (Q2 — P1)

2D
Codimension 1

o)~ |~ [[Slie.

Codimension 0

3D
Codimension 1

page 22



Initial analysis Approximation Mass conservation Interface problem
More numerical results

Fortran 90 code written by N. Cavallini (P1isoPy — P{)

Densities: ps = 21 and pr = 1

n O n O 0

=1 K01 k=01

o [SINNNES [
=1 k=01
Heart valve (Auricchio-B.—Cavallini-Gastaldi-Lefieux)
. _* W
I B i
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Mass conservation of the IBM

(B.—Cavallini-Gardini-Gastaldi '12)
Well-known and studied problem

The discrete divergence free condition is imposed in a weak
sense

/ divuyqrdx =0 Vg € Qy
Q

which is not exact unless div(Vy) C Qy

Basic remark

Discontinuous pressure schemes enjoy local mass conservation
properties (average of divergence is zero element by element)
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Our elements

JANVANNY. VN

Hood-Taylor PyisoPy — P
Enhanced Hood-Taylor Enhanced P;isoP5 —

We actually considered generalized Hood-Taylor in two and
three dimensions Py 1 — Pi k>1

Not a new idea

Local mass conservation is guaranteed by extra degree of

freedom: add piecewise constant pressures
page 25



Initial analysis Approximation Mass conservation Interface problem

Analysis of our elements

Known facts

Hood-Taylor

» Introduced in 1973 (Hood-Taylor ’73)
» First analysis (Bercovier-Pironneau ’79, Verfiirth ’84)

» Full analysis with some restrictions on boundary elements
(Scott-Vogelius ’85, Brezzi-Falk '91)

» General analysis for the Py ; — P}, element with no
restrictions (mesh contains at least 3 elements) (B.’94)

Plisopg — Pcl

» Same analysis as for the Hood-Taylor element can be
carried on (Bercovier—Pironneau ’79, Brezzi—Fortin '91)

» Error estimates are suboptimal (unbalanced spaces); ease
of implementation makes it appealing, in particular in 3D .



Initial analysis Approximation Mass conservation Interface problem

Analysis of our elements (cont’ed)

Pressure enhancement

» Numerical evidence for lowest order Hood-Taylor (triangles
and squares)

(Gresho-Lee-Chan-Leone ’80)

(Griffiths "82)

(Tidd-Thatcher-Kaye ’88)

» Proof of inf-sup for lowest order Hood-Taylor (triangles and

squares)
(Thatcher 90, Pierre '94, Quin—Zhang '05)
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Analysis of our elements (cont’ed)

Theorem (B.—Cavallini—-Gardini—-Gastaldi ’12)
The generalized enhanced Hood-Taylor scheme
Pri1 — (P +Po)
in two (k > 1) and three (k > 2) dimensions and the enhanced
PyisoPy — (P5 + Po)
in two dimensions satisfy the inf-sup condition

Minimal restriction on the mesh: each element has at least one
internal vertex.
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Mesh restrictions

2D: let us understand the restrictions

» Standard schemes: the mesh needs at least three elements

» Enhanced schemes: each element needs at least an internal
vertex

Uniform mesh Symmetric mesh
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Mass conservation and FE-IBM

Inflated balloon test case

Rcos(s/R) + 0.5
Xo(s) = ( Rsin(s/R) + 0.5

27R
(F(t),V) = —r /0 ax(gz» t) 8v<>;f,t>>

_ f k(1/R—7R), |x| <R
p(x%t) = { —k7R, |x| >R
T =101

pr=ps=1
uw=1

k=1

hy =1/32

hs = 27R/1024

) , s€[0,27R]

vt €]0,T|
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FE-IBM

Area loss w.r.t. time

Initial analysis

x10°

2.

1-A/A,

e PSP P,
-o-P/P

x- P4iSOP/(P,+P)
O P/P+P)

Area loss

Approximation

Mass conservation

>0
070 0--0--0--6-.0--0--4

0.1
005>-—-x---x-~-x---x---x—--x—--x---x—-§
0.0001 0.04 0.08

time

Divergence norm

Interface problem
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

An interface problem

(Auricchio-B.—Gastaldi-Lefieux—Reali '13)
(B.—Gastaldi-Ruggeri '13)

Let us consider a standard interface problem

—div(f1Vui) =f in Q4
—div(fa Vuz) =fo in Qs
up =up onTl
f1Vur-ng+PB2Vuz-ng=0 onT
up =0 on 9O \ T
u; =0 on 9 \ T’

page 32



FE-IBM Initial analysis Approximation Mass conservation Interface problem

Mixed formulation
Notation: €2 = Q1 Uy
Find u € H}(Q), up € H'(Q), and A € A = [H1(Q3)]* such that

/ﬂVu-Vvdx+<)\,v]Q2>:/fvdx W € H(Q)
Q Q

/Q(/BZ_/B)VUZ‘szdX—<)\,V2>— Q(fz —fvadx Yo € HY(Q))

<,Ua u|Qz - le) =0 Ve A

Equivalent to interface problem if 8|o, = 1 and flq, = f1

We get ulg, = ug
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Alternative mixed formulation

Find u € H}(Q), up € H'(Q3), and ¢ € H!(£2,) such that

/Bvu vvdx + ((¢,v]0,)) /fvdx W € Hy(Q)
/Q (B2 — B)Vuz - Vvadx — ((¢,v2)) = A (fo —f)vadx Wvo € HY(Qy
((QO,U|QZ —uz)) =0 Yo € Hl(Qz)

where ((-,-)) denotes the scalar product in H'(£2,)

Remark

The two mixed formulations are equivalent but give rise to
different discrete schemes
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Initial analysis Approximation Mass conservation Interface problem

Approximation of mixed formulations

Two meshes: T, for Q and 7, for EEEEN
Qo

Three finite element spaces:

V}, continuous p/w linears on 7,
Vs, continuous p/w linears on 75 p,
Ap =Vap

Several other choices are possible

Remark

First mixed formulation makes use of Vy, Vo p, and Ay,
(duality represented by scalar product in L?(23))
Second mixed formulation makes use of Vi, Vo, and Vo j,
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Matrix form of the problem

A B'
B 0O
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Stability of the approximation

We need to show the ellipticity in the kernel and the inf-sup
condition

ELKER
| avvas | (=B v alac 2 1 (M) + 2l
V(v,va) € Ky
where the kernel K}, is defined as
Ky = {(v,v2) € Vi x Vo = (11, V], —Vv2) =0V € Ap}
or, for the second formulation,

Kp = {(v,v2) € Vi x Vo p, : (¢, V], —V2)) =0V € Voy}
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Stability of the approximation (cont’ed)

INFSUP1
Vig, —V
sup (1, Vl0, —Vva) 75 = Rallulla Vi e An
(v.v2) Vi< A (HVHIZJI(Q) * HVZMI(QZ))
INFSUP2

©, V[0, —V2)
sup (( ‘ 2 ) 172 > /{;ZHQDHHl(Qz) VSO c V2,h
(v,v2) €V XV (

HvH[z{l(Q) + Hv2||12_11(92)
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Stability of the approximation (cont’ed)

Theorem

If B2 — Bla, > no > 0 then ELKER holds true for both
formulations, uniformly in h and hy

Remark

For the second mixed formulation, ELKER holds true without
assumptions on f3 if ho/h%/? is small enough and Ty, is
quasi-uniform
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FE-IBM Initial analysis Approximation Mass conservation Interface problem

Stability of the approximation (cont’ed)

Theorem

If the mesh sequence Ty is quasi-uniform, then INFSUP1 holds
true, uniformly in h and hy

Theorem

INFSUP2 holds true, uniformly in h and hy without any additional
assumptions on the mesh sequence

page 40



FE-IBM Initial analysis Approximation Mass conservation Interface problem

Conclusions (Part I)

FE-IBM allows for natural treatment of Dirac delta function

v

v

Superior CFL condition with respect to ALE formulations

v

Superior mass conservation property

v

Mixed approach for an interface problem
Towards a DLM fictitious domain formulation

v
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