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For Ω ⊂ Rd , P2(Ω) is the set of probability measures.

Definition
Let Pνn = 1

n
∑n

i=1 δνi where δνi is the dirac distribution at νi ∈ P2(Ω). We
define the regularized empirical barycenter of the discrete measure Pνn as

µγ
Pνn = argmin

µ∈P2(Ω)

1
n

n∑
i=1

W 2
2 (µ, νi ) + γE (µ)

where γ > 0 is a regularisation parameter and the penalty E is a proper,
differentiable, lower semicontinuous and strictly convex function.

Case γ = 0 : Wasserstein barycenter of [Agueh and Carlier].

Elsa Cazelles Regularization of barycenters in the Wasserstein space CMO Workshop 2 / 20



As an example, take E the negative entropy defined as

E (µ) =
{ ∫

Ω f (x) log(f (x))dx , if µ admits a pdf f
+∞ otherwise.

Advantage: It is possible to enforce the regularized barycenter to be
absolutely continuous with respect to the Lebesgue measure on Ω.
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter µγ
Pn

1 Convergence to a population Wasserstein barycenter

2 Stability of the minimizer

3 Application to real and simulated data
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter µγ
Pn

We define the population Wasserstein barycenter defined as

µ0
P ∈ argmin

µ∈P2(Ω)

∫
W 2

2 (µ, ν)dP(ν),

and its regularized version

µγP = argmin
µ∈P2(Ω)

∫
W 2

2 (µ, ν)dP(ν) + γE (µ).

where P is a probability measure on P2(Ω) and ν1, . . . , νn iid of law P.
We recall that

µγ
Pνn = argmin

µ∈P2(Ω)

1
n

n∑
i=1

W 2
2 (µ, νi ) + γE (µ)
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter µγ
Pn

The Bregman divergence DE associated to E is defined for two measures
µ, ζ as

DE (µ, ζ) := E (µ)− E (ζ)−
∫

Ω
∇E (ζ)(dµ− dζ)

where ∇E denotes the gradient of E .
Thus the symmetric Bregman divergence dE is given by

dE (µ, ζ) := DE (µ, ζ) + DE (ζ, µ).

Theorem
For Ω compact in Rd and ∇E (µ0

P) bounded,

lim
γ→0

DE (µγP, µ
0
P) = 0,

which corresponds to showing that the squared bias term d2
E (µγP, µ0

P) (as
classically referred to in nonparametric statistics) converges to zero when
γ → 0.
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter µγ
Pn

Theorem
If Ω is a compact of Rd , then one has that

E(d2
E (µγ

Pn
, µγP)) ≤

C I(1,H)‖H‖L2(P)
γ2n

where C is a positive constant,

H = {hµ : ν ∈ P2(Ω) 7→W 2
2 (µ, ν) ∈ R;µ ∈ P2(Ω)}

is a class of functions defined on P2(Ω) with envelope H, and

I(1,H) = sup
Q

∫ 1

0
(1 + logN(ε‖H‖L2(Q),H, ‖ · ‖L2(Q))︸ ︷︷ ︸

Metric entropy

)
1
2 dε

The metric entropy is of order 1
εd .
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter µγ
Pn

Remarks on the metric entropy.

Metric entropy of H
↓

Metric entropy of P2(Ω)
↓

Metric entropy of Ω
↓

Compacity of Ω
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Convergence to a population Wasserstein barycenter Complementary result in the 1D case

Theorem (1-D)
When ν1, . . . ,νn are iid random measures with support included in a
compact interval Ω,

E
(
d2

E

(
µγ
Pn
, µγP

))
≤ C
γ2n .

where C > 0 does not depend on n and γ.

Remark: Metric entropy of the space of quantiles.

It follows that if γ = γn is such that limn→∞ γ
2
nn = +∞ then

lim
n→∞

E(d2
E

(
µγ
Pν

n
, µ0

P)
)

= 0.
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Convergence to a population Wasserstein barycenter Complementary result with additional regularization

When d > 1, the class of functions H is too large, so we have to add
regularity.
For Ω smooth and uniformly convex, and (νi )i=1,...,n of law P. We specify
the penalty function E :

E (µ) =
{ ∫

Rd f (x) log(f (x))dx + ‖f ‖Hk (Ω), if f = dµ
dλ and f > α

+∞ otherwise.

where ‖ · ‖Hk (Ω) designates the Sobolev norm associated to the L2(Ω)
space and α > 0 is arbitrarily small.
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Convergence to a population Wasserstein barycenter Complementary result with additional regularization

Sobolev embedding theorem: Hk(Ω) is included in the Hölder space
Cm,β for β = k −m − d/2.
Regularity on optimal maps is obtained from regularity on probability
measures (e.g. [De Philippis and Figalli])

Hence we can bound the metric entropy [Van der Vaart] by

K
(1
ε

)a
for any a ≥ d/(m + 1).

Hence, as soon as a/2 < 1, for which k > d − 1 is necessary, we get a rate
of convergence.
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Stability of the minimizer

1 Convergence to a population Wasserstein barycenter

2 Stability of the minimizer

3 Application to real and simulated data
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Stability of the minimizer

Stability of the minimizer for the symmetric Bregman distance dE .

Theorem
Let ν1, . . . , νn and η1, . . . , ηn be two sequences of probability measures in
P2(Ω). Let µγPνn and µγPηn be the regularized empirical barycenters
associated to the discrete measures Pνn and Pηn, then

dE
(
µγPνn , µ

γ
Pηn

)
≤ 2
γn inf

σ∈Sn

n∑
i=1

W2(νi , ησ(i)),

where Sn denotes the permutation group of the set of indices {1, . . . , n}.
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Stability of the minimizer

Application: Let ν1, . . . , νn be n absolutely continuous probability
measures and X = (X i ,j)1≤i≤n; 1≤j≤pi a dataset of random variables such
that X i ,j ∼ νi . Then

E
(
d2

E

(
µγPνn ,µ

γ
X

))
≤ 4
γ2n

n∑
i=1

E
(
W 2

2 (νi ,νpi )
)
,

where µγ
X is the random measure satisfying

µγ
X = argmin

µ∈P2(Ω)

1
n

n∑
i=1

W 2
2

µ, 1pi

pi∑
j=1

δX i,j

+ γE (µ).
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Application to real and simulated data Choice of the parameter γ

1 Convergence to a population Wasserstein barycenter

2 Stability of the minimizer

3 Application to real and simulated data
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Application to real and simulated data 1-D case

We consider 1 ≤ i ≤ n = 100 random Gaussian distributions N (µi ,σ
2
i )

where
µi random uniform variable on [−2, 2]
σ2

i random uniform variable on [0, 1].
Then we generate (X ij)1≤i≤n;1≤j≤pi , 5 ≤ pi ≤ 10, random variables such
that

X ij ∼ N (µi ,σ
2
i ) for each 1 ≤ i ≤ j .

Finally, let

ν i = 1
pi

pi∑
j=1

δX ij for each i

.
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Application to real and simulated data 1-D case
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Dashed and black curve = density of the population Wasserstein
barycenter.
Blue and dotted curve = the smoothed Wasserstein barycenter
obtained by a preliminary kernel smoothing step of the discrete
measures ν i that is followed by quantile averaging.
Warn color = regularized Wasserstein barycenters for several gamma
and regularization.
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Application to real and simulated data 2-D case
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Figure: All crimes registered in the city of Chicago (i.e. an image 137× 88) for 6
days of January 2014.

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data from the Chicago Police Department’s

CLEAR.
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Application to real and simulated data 2-D case
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Figure: Location of Crimes in the city of Chicago during the month of January
2014
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Application to real and simulated data 2-D case
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Lepskii balancing functional

Automatic selection of the parameter γ through an adaptation of Lepskii
balancing principal [Bauer and Munk].
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Figure: Balancing functional (times 10−6) in solid line and
dE (µP, µ

1/λ
Pn

)/minλ dE (µP, µ
1/λ
Pn

) (dotted line) are plotted as functions of λ for 3
different regularizations.
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Lepskii balancing functional
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Figure: Smooth balancing functional associated to regularized barycenters for
different value of λ.
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