Regularization of barycenters in the Wasserstein space

Elsa Cazelles, joint work with Jérémie Bigot & Nicolas Papadakis Université de Bordeaux & CNRS

CMO Workshop - 30 April to 5 May 2017 Optimal Transport meets Probability, Statistics and Machine Learning

For $\Omega \subset \mathbb{R}^d$, $\mathcal{P}_2(\Omega)$ is the set of probability measures.

Definition

Let $\mathbb{P}_n^{\nu} = \frac{1}{n} \sum_{i=1}^n \delta_{\nu_i}$ where δ_{ν_i} is the dirac distribution at $\nu_i \in \mathcal{P}_2(\Omega)$. We define the regularized empirical barycenter of the discrete measure \mathbb{P}_n^{ν} as

$$\boldsymbol{\mu}_{\mathbb{P}_{n}^{\nu}}^{\gamma} = \underset{\mu \in \mathcal{P}_{2}(\Omega)}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} W_{2}^{2}(\mu, \nu_{i}) + \gamma E(\mu)$$

where $\gamma > 0$ is a regularisation parameter and the penalty *E* is a proper, differentiable, lower semicontinuous and strictly convex function.

Case $\gamma = 0$: Wasserstein barycenter of [Agueh and Carlier].

As an example, take E the negative entropy defined as

$$E(\mu) = \begin{cases} \int_{\Omega} f(x) \log(f(x)) dx, & \text{if } \mu \text{ admits a pdf } f \\ +\infty & \text{otherwise.} \end{cases}$$

Advantage: It is possible to enforce the regularized barycenter to be absolutely continuous with respect to the Lebesgue measure on Ω .

1 Convergence to a population Wasserstein barycenter

- Stability of the minimizer
- 3 Application to real and simulated data

We define the population Wasserstein barycenter defined as

$$\mu^{0}_{\mathbb{P}} \in \operatorname*{argmin}_{\mu \in \mathcal{P}_{2}(\Omega)} \int W^{2}_{2}(\mu, \nu) d\mathbb{P}(\nu),$$

and its regularized version

$$\mu_{\mathbb{P}}^{\gamma} = \underset{\mu \in \mathcal{P}_{2}(\Omega)}{\operatorname{argmin}} \int W_{2}^{2}(\mu, \nu) d\mathbb{P}(\nu) + \gamma E(\mu).$$

where \mathbb{P} is a probability measure on $\mathcal{P}_2(\Omega)$ and ν_1, \ldots, ν_n iid of law \mathbb{P} . We recall that

$$\boldsymbol{\mu}_{\mathbb{P}_{n}^{\nu}}^{\gamma} = \operatorname*{argmin}_{\mu \in \mathcal{P}_{2}(\Omega)} \frac{1}{n} \sum_{i=1}^{n} W_{2}^{2}(\mu, \nu_{i}) + \gamma E(\mu)$$

The Bregman divergence D_E associated to E is defined for two measures μ, ζ as

$$D_E(\mu,\zeta) := E(\mu) - E(\zeta) - \int_{\Omega} \nabla E(\zeta) (d\mu - d\zeta)$$

where ∇E denotes the gradient of E.

Thus the symmetric Bregman divergence d_E is given by

$$d_E(\mu,\zeta) := D_E(\mu,\zeta) + D_E(\zeta,\mu).$$

Theorem

For Ω compact in \mathbb{R}^d and $\nabla E(\mu^0_{\mathbb{P}})$ bounded,

 $\lim_{\gamma\to 0} D_E(\mu_{\mathbb{P}}^{\gamma}, \mu_{\mathbb{P}}^{0}) = 0,$

which corresponds to showing that the squared bias term $d_E^2(\mu_{\mathbb{P}}^{\gamma}, \mu_{\mathbb{P}}^{0})$ (as classically referred to in nonparametric statistics) converges to zero when $\gamma \to 0$.

Theorem

If Ω is a compact of \mathbb{R}^d , then one has that

$$\mathbb{E}(d_{E}^{2}(\boldsymbol{\mu}_{\mathbb{P}_{n}}^{\gamma},\boldsymbol{\mu}_{\mathbb{P}}^{\gamma})) \leq \frac{C I(1,\mathcal{H}) \|H\|_{\mathbb{L}_{2}(\mathbb{P})}}{\gamma^{2} n}$$

where C is a positive constant,

$$\mathcal{H} = \{h_{\mu} : \nu \in \mathcal{P}_{2}(\Omega) \mapsto W_{2}^{2}(\mu, \nu) \in \mathbb{R}; \mu \in \mathcal{P}_{2}(\Omega)\}$$

is a class of functions defined on $\mathcal{P}_2(\Omega)$ with envelope H, and

$$I(1,\mathcal{H}) = \sup_{Q} \int_{0}^{1} (1 + \underbrace{\log N(\varepsilon ||H||_{\mathbb{L}_{2}(Q)}, \mathcal{H}, ||\cdot||_{\mathbb{L}_{2}(Q)})}_{\text{Metric entropy}})^{\frac{1}{2}} d\varepsilon$$

The metric entropy is of order $\frac{1}{r^d}$.

Elsa Cazelles

Remarks on the metric entropy.

```
\begin{array}{c} \text{Metric entropy of }\mathcal{H} \\ \downarrow \\ \text{Metric entropy of }\mathcal{P}_2(\Omega) \\ \downarrow \\ \text{Metric entropy of }\Omega \\ \downarrow \\ \text{Compacity of }\Omega \end{array}
```

Theorem (1-D)

When ν_1, \ldots, ν_n are iid random measures with support included in a compact interval Ω ,

$$\mathbb{E}\left(d_{E}^{2}\left(\boldsymbol{\mu}_{\mathbb{P}_{n}}^{\gamma},\boldsymbol{\mu}_{\mathbb{P}}^{\gamma}\right)\right)\leq\frac{C}{\gamma^{2}n}.$$

where C > 0 does not depend on n and γ .

Remark: Metric entropy of the space of quantiles.

It follows that if $\gamma = \gamma_n$ is such that $\lim_{n\to\infty} \gamma_n^2 n = +\infty$ then

$$\lim_{n\to\infty}\mathbb{E}(d_E^2\left(\boldsymbol{\mu}_{\mathbb{P}_n^{\nu}}^{\gamma},\boldsymbol{\mu}_{\mathbb{P}}^{\mathsf{0}}\right))=0.$$

When d > 1, the class of functions \mathcal{H} is too large, so we have to add regularity.

For Ω smooth and uniformly convex, and $(\nu_i)_{i=1,...,n}$ of law \mathbb{P} . We specify the penalty function E:

$$\mathsf{E}(\mu) = \begin{cases} \int_{\mathbb{R}^d} f(x) \log(f(x)) dx + \|f\|_{H^k(\Omega)}, & \text{if } f = \frac{d\mu}{d\lambda} \text{ and } f > \alpha \\ +\infty & \text{otherwise.} \end{cases}$$

where $\|\cdot\|_{H^k(\Omega)}$ designates the Sobolev norm associated to the $\mathbb{L}^2(\Omega)$ space and $\alpha > 0$ is arbitrarily small.

- Sobolev embedding theorem: $H^k(\Omega)$ is included in the Hölder space $C^{m,\beta}$ for $\beta = k - m - d/2$.
- Regularity on optimal maps is obtained from regularity on probability measures (e.g. [De Philippis and Figalli])

Hence we can bound the metric entropy [Van der Vaart] by

$$K\left(rac{1}{arepsilon}
ight)^{a}$$
 for any $a\geq d/(m+1).$

Hence, as soon as a/2 < 1, for which k > d - 1 is necessary, we get a rate of convergence.

Convergence to a population Wasserstein barycenter

2 Stability of the minimizer

3 Application to real and simulated data

Elsa Cazelles

Stability of the minimizer for the symmetric Bregman distance d_E .

Theorem

Let ν_1, \ldots, ν_n and η_1, \ldots, η_n be two sequences of probability measures in $\mathcal{P}_2(\Omega)$. Let $\mu_{\mathbb{P}_n^{\nu}}^{\gamma}$ and $\mu_{\mathbb{P}_n^{\eta}}^{\gamma}$ be the regularized empirical barycenters associated to the discrete measures \mathbb{P}_n^{ν} and \mathbb{P}_n^{η} , then

$$d_{\mathsf{E}}\left(\mu_{\mathbb{P}_{n}^{\nu}}^{\gamma},\mu_{\mathbb{P}_{n}^{\eta}}^{\gamma}\right) \leq \frac{2}{\gamma n} \inf_{\sigma \in \mathcal{S}_{n}} \sum_{i=1}^{n} W_{2}(\nu_{i},\eta_{\sigma(i)}),$$

where S_n denotes the permutation group of the set of indices $\{1, \ldots, n\}$.

Application: Let ν_1, \ldots, ν_n be *n* absolutely continuous probability measures and $\mathbf{X} = (\mathbf{X}_{i,j})_{1 \le i \le n; \ 1 \le j \le \rho_i}$ a dataset of random variables such that $\mathbf{X}_{i,j} \sim \nu_i$. Then

$$\mathbb{E}\left(d_{E}^{2}\left(\mu_{\mathbb{P}_{n}^{\nu}}^{\gamma},\boldsymbol{\mu}_{\boldsymbol{X}}^{\gamma}\right)\right) \leq \frac{4}{\gamma^{2}n}\sum_{i=1}^{n}\mathbb{E}\left(W_{2}^{2}(\nu_{i},\boldsymbol{\nu}_{p_{i}})\right),$$

where $\mu_{\pmb{X}}^{\gamma}$ is the random measure satisfying

$$\boldsymbol{\mu}_{\boldsymbol{X}}^{\gamma} = \underset{\mu \in \mathcal{P}_{2}(\Omega)}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} W_{2}^{2} \left(\mu, \frac{1}{p_{i}} \sum_{j=1}^{p_{i}} \delta_{\boldsymbol{X}_{i,j}} \right) + \gamma E(\mu).$$

Convergence to a population Wasserstein barycenter

2 Stability of the minimizer

We consider $1 \le i \le n = 100$ random Gaussian distributions $\mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\sigma}_i^2)$ where

- μ_i random uniform variable on [-2,2]
- σ_i^2 random uniform variable on [0, 1].

Then we generate $(X_{ij})_{1 \le i \le n; 1 \le j \le p_i}$, $5 \le p_i \le 10$, random variables such that

$$oldsymbol{X}_{ij} \sim \mathcal{N}(oldsymbol{\mu}_i, oldsymbol{\sigma}_i^2)$$
 for each $1 \leq i \leq j.$

Finally, let

$$\boldsymbol{\nu}_i = rac{1}{p_i}\sum_{j=1}^{p_i}\delta_{\boldsymbol{X}_{ij}}$$
 for each i

- Dashed and black curve = density of the population Wasserstein barycenter.
- Blue and dotted curve = the smoothed Wasserstein barycenter obtained by a preliminary kernel smoothing step of the discrete measures ν_i that is followed by quantile averaging.
- Warn color = regularized Wasserstein barycenters for several *gamma* and regularization.

Figure: All crimes registered in the city of Chicago (i.e. an image 137×88) for 6 days of January 2014.

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data from the Chicago Police Department's

CLEAR.

Elsa Cazelles

Regularized Wasserstein Kernel density estimator Kernel density estimator barycenter (Dirichlet) gkde2 kde2d

Figure: Location of Crimes in the city of Chicago during the month of January 2014

[1] Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 43(2):904-924, 2011. [2] Martin Burger, Marzena Franek and Carola-Bibiane Schönlieb. Regularized regression and density estimation based on optimal transport. Applied Mathematics Research eXpress, 2012(2):209-253, 2012. [3] Thibault Le Gouic and Jean-Michel Loubes. Existence and consistency of Wasserstein barycenters. arXiv preprint arXiv:1506.04153, 2015. [4] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1): 183-202, 2009.

[5] Guido De Philippis and Alessio Figalli. The Monge–Ampère equation and its link to optimal transportation. *Bulletin of the American Mathematical Society*, 51(4), 527-580, 2014.

[6] Frank Bauer and Axel Munk. Optimal regularization for ill-posed problems in metric spaces. *Journal of Inverse and Ill-posed Problems jiip*, 15(2), 137-148, 2007

Automatic selection of the parameter γ through an adaptation of Lepskii balancing principal [Bauer and Munk].

Figure: Balancing functional (times 10^{-6}) in solid line and $d_E(\mu_{\mathbb{P}}, \mu_{\mathbb{P}_n}^{1/\lambda}) / \min_{\lambda} d_E(\mu_{\mathbb{P}}, \mu_{\mathbb{P}_n}^{1/\lambda})$ (dotted line) are plotted as functions of λ for 3 different regularizations.

Figure: Smooth balancing functional associated to regularized barycenters for different value of $\lambda.$