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For Q C RY, P,(RQ) is the set of probability measures.

Definition
Let P = L 577 | 5, where §,, is the dirac distribution at v; € P»(). We
define the regularized empirical barycenter of the discrete measure P, as

. 1
prd, = argmin = W5 (u, i) + vE(u)
peP2(Q) Nz

where v > 0 is a regularisation parameter and the penalty E is a proper,
differentiable, lower semicontinuous and strictly convex function.

Case v = 0 : Wasserstein barycenter of [Agueh and Carlier].
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As an example, take E the negative entropy defined as

B = Jo f(x)log(f(x))dx, if p admits a pdf f
= +oo otherwise.

Advantage: It is possible to enforce the regularized barycenter to be
absolutely continuous with respect to the Lebesgue measure on €.
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter ;:.];

@ Convergence to a population Wasserstein barycenter
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter p.];
0

We define the population Wasserstein barycenter defined as

€ argmm /W2 (, v)dP(v),
HEP2(Q

and its regularized version

i = argmin [ W3 (u,v)dB(v) + YE(n).
HEP2(L)

where P is a probability measure on P»(£2) and v, ..., v, iid of law P.
We recall that

pl, = argmin = > W3 (u, 1) + vE(n)
5 HEP2(Q) n;
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter ;:.];

The Bregman divergence Dg associated to E is defined for two measures
1 G as

De(1:€) = Ew) — E(Q) — [ VE(Q)(dp — dC)

where VE denotes the gradient of E.
Thus the symmetric Bregman divergence dg is given by

dE(M? C) = DE(,UH C) + DE(C?M)

Theorem
For Q compact in RY and VE(u3) bounded,

li D 7,0y =
vino E(MP?M]P) 07

which corresponds to showing that the squared bias term d2(ug, 1u2) (as
classically referred to in nonparametric statistics) converges to zero when
v — 0.
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter ,u.];'

Theorem

If Q is a compact of RY, then one has that

C l(17 H)HH”]LQ(]P)
¥2n

E(d2(p3,: 113))

IN

where C is a positive constant,
H=1{h,:vePQ) > Wi(u,v) €R; € Pr(Q)}
is a class of functions defined on P»(Q2) with envelope H, and

1) =sup [ (1-+ 0 Vel Moy s - @) e

Metric entropy

The metric entropy is of order gid
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Convergence to a population Wasserstein barycenter Consistency of the regularized barycenter p.];
0

Remarks on the metric entropy.

Metric entropy of H

1
Metric entropy of P»(Q)

0

Metric entropy of Q

d
Compacity of Q2
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Convergence to a population Wasserstein barycenter Complementary result in the 1D case

Theorem (1-D)

When vq,...,v, are iid random measures with support included in a
compact interval €,

C
2 (v
B (e (12,09)) = -5,
where C > 0 does not depend on n and 7.

Remark: Metric entropy of the space of quantiles.

It follows that if v =, is such that lim, . v2n = +o00 then

Jim E(dZ (py 1)) =0.
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Convergence to a population Wasserstein barycenter Complementary result with additional regularization

When d > 1, the class of functions # is too large, so we have to add
regularity.

For Q2 smooth and uniformly convex, and (v;)j=1, .., of law P. We specify
the penalty function E:

, d
E(y) = { Jra £(x) log(f(x))dx + [[fll (), if = fj—f\‘ and f > «
400 otherwise.

where || - |[1yx(q) designates the Sobolev norm associated to the L2(Q)
space and « > 0 is arbitrarily small.
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Convergence to a population Wasserstein barycenter Complementary result with additional regularization

o Sobolev embedding theorem: HX(Q) is included in the Hélder space
CmB for B =k —m—d/2.

@ Regularity on optimal maps is obtained from regularity on probability
measures (e.g. [De Philippis and Figalli])

Hence we can bound the metric entropy [Van der Vaart] by
1 a
K(g> for any a>d/(m+1).

Hence, as soon as a/2 < 1, for which k > d — 1 is necessary, we get a rate

of convergence.
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Stability of the minimizer

© Stability of the minimizer
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Stability of the minimizer

Stability of the minimizer for the symmetric Bregman distance dEg.

Theorem

Let v4,...,v, and n1,...,n, be two sequences of probability measures in
P2(Q). Let pp, and pgy be the regularized empirical barycenters

associated to the discrete measures P% and PP}, then

2 n
Y Y H .
dE (HPZ’MP;]) S % Ulg‘gn ; W2(Vn770(i)),

where S, denotes the permutation group of the set of indices {1,..., n}.
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Stability of the minimizer

Application: Let v1,...,v, be n absolutely continuous probability
measures and X = (X j)i<i<n: 1<j<p; a dataset of random variables such
that X,"j ~ vj. Then

B (c (B 1)) < 52 2 (WE0 ).

where ) is the random measure satisfying

) 1 n 1 Pi
W) = argmin = Z W2 |, — Z(Sx,d. +vE(p).
MEPQ(Q) n i=1 Pi j=1
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Application to real and simulated data Choice of the parameter ~

© Application to real and simulated data
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Application to real and simulated data 1-D case

We consider 1 < i < n = 100 random Gaussian distributions N'(u;, o?)
where

@ p; random uniform variable on [—2, 2]

e o2 random uniform variable on [0, 1].

Then we generate (Xjj)i<i<ni<j<p;, 5 < pi < 10, random variables such
that

X N/\/‘(“i,o-,?) foreach 1 < i <.
Finally, let

1 Pi
vi=— Zéx,.j for each i
pPi =
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Application to real and simulated data 1-D case

. . o K o

Dirichlet regularization Entropy regularization Dirichlet + Entropy regu-
larization
@ Dashed and black curve = density of the population Wasserstein
barycenter.

@ Blue and dotted curve = the smoothed Wasserstein barycenter
obtained by a preliminary kernel smoothing step of the discrete
measures v; that is followed by quantile averaging.

@ Warn color = regularized Wasserstein barycenters for several gamma
and regularization.
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Application to real and simulated data 2-D case
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Figure: All crimes registered in the city of Chicago (i.e. an image 137 x 88) for 6
days of January 2014.

https://data.cityofchicago.org/Public-Safety /Crimes-2001-to-present/ijzp-q8t2/data from the Chicago Police Department’s
CLEAR.
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Application to real and simulated data 2-D case

Regularized Wasserstein Kernel density estimator Kernel density estimator
barycenter (Dirichlet) gkde2 kde2d

Figure: Location of Crimes in the city of Chicago during the month of January
2014

Elsa Cazelles Regularization of barycenters in the Wasserstein space CMO Workshop 19 /20



Application to real and simulated data 2-D case
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Lepskii balancing functional

Automatic selection of the parameter + through an adaptation of Lepskii
balancing principal [Bauer and Munk].

5% o5 06

Dirichlet Entropy Dirichlet + Entropy

W w s %0 e e

Figure: Balancing functional (times 107) in solid line and
dE(pJ]p,,u;iA)/ min dE(u]p,u]};,f’\) (dotted line) are plotted as functions of A for 3

different regularizations.
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Lepskii balancing functional
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Figure: Smooth balancing functional associated to regularized barycenters for
different value of A.
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