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Deep Learning Background

• Supervised Learning: training a deep 
network for image classification

• Goal: minimize the empirical loss function. 

•  Normally x data, w weight.  Sequel, write 
f(x), x weights and suppress data.
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Metastability: 
Exponential time to discover nearby minima

https://www.youtube.com/watch?v=Fot3m7kyLn4
For time O(1), there appear 

to be two invariant 
measures. Really there is 
one, but it is metastable. 

Conclusion: SGD for nonconvex is challenging

https://www.youtube.com/watch?v=Fot3m7kyLn4


Metastability: 
Discussion

• Small steps: you fill find only local minima nearby

• Large steps: you may land in a better place, but how do be 
sure to stay nearby?

• Insight from Energy Landscape of f.  

• Mathematics Problem: how do you learn about the geometry 
of f

• Algorithm: how to modify f so that it has a better landscape?



Idea: Continuation Methods

• Idea: replace minimization problem 
with a different problem, with same 
(or better) minima:

• Replace f(x) with convex envelope

• “Scoping”:  start with a smoothed 
version of f, and decrease 
smoothing as minimization 
progresses.

• Problem: not practical in high 
dimensions.

 u - g = 0
-λ1[u] < 0

 u - g < 0
-λ1[u] = 0



Regularization using Viscous Hamilton-Jacobi PDE

• True solution in one dimension. (Cartoon in high dimensions, because algorithm only works 
for shorter times.)



Spin Glasses 
(statistical physics motivation)* 

“Local Entropy” improves the 
energy landscape of non-convex 

function. 
2016

*incomprehensible 



What is Local Entropy?

• Replace f(x) with “local entropy” of f

• Algorithmic: for small gamma, can evaluate 
grad f efficiently.

• Analytic: can prove that scoping with “local 
entropy” improves the expected loss

Jan 2017
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(Comment) this is “Applied Math”: no new math theory.  
new application of existing math theory to problem. (We 
still prove theorems, but they are surprising to experts)



PDE for local entropy function and its gradient



Background: Stochastic Differential Equations

Background: JKO Functional and convergence rate in 
convex case



Background: Homogenization of SDEs

• Two scale dynamics

• Assume a unique invariant 
solution of the fast dynamics

• In the limit, obtain 
homogenized dynamics

• given by averaging against the 
invariant measure

• Ergodicity:



Derivation of Local Entropy using Homog SDEs

• Solve the FP equation, to obtain formula for invariant measure

• Apply the homogenization result (and soln of FP) to see ESGD 
gives the gradient

(ESGD) 
Entropy SGD



Algorithmic Implication

• We showed that we can compute the gradient of local entropy 
function using an auxiliary SDE, provided the parameter gamma 
is chosen so that the function H = f + quadratic is convex

• The fast dynamics correspond to an “inner loop” of the 
algorithm.  In practise, can take a handful of steps.  Then the 
update is given by averaging the values of y from the inner loop
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Context for Improvement

• In the derivation, gamma was fixed.  
Better to “scope”, sending gamma 
to 0 as outer loop progresses.  

• We prove that scoping improves 
the expected value of a loss 
function, and quantify the 
improvement using dynamic 
programming

• This corresponds to nonlinear 
forward -backward equations

• Familiar in Mean-Field-Games



Visualization of Improvement: 
dimension 1, PDE simulation.



Visualization of Improvement: single simulation
dimension = 1.67 million



Review of controlled SDEs

• SDE with control 
parameter

• Generator depends on 
the parameter

• introduce cost functional 

• define value function

• Value fn satisfies HJB

• Use DPP to select 
optimal control



Proof of Improvement

• The proof of improvement uses stochastic optimal control 
theory.  

• This is a technique to interpret local entropy as the value 
function of a stochastic optimal control problem.

• Allows us to conclude that we improve the expected value of f



Expected Improvement Theorem

• Compares the expected value of SGD, with that of optimally controlled SGD.

• No surprise that adding a control improves the value function.

• The point is that we can interpret the scoping for local entropy as solving the 
same HJB equation, so we obtain a proof of improvement.

• The control is equal to the gradient.
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Algorithm for Local Entropy*
*will be translated into math 



Math Translation

• Scoping: this is the stochastic control interpretation, forward 
and backward equations.

• Inner and Outer Loop corresponds to Stochastic 
Homogenization of a 2-scale problem

• Langevin dynamics - we actually have momentum, which is 
ignored for the purpose of the proof (and may not be needed 
in the algorithm)

• Comment: when gamma is not strong enough to make 
objective convex, algorithm does not compute local entropy.  
So physics intuition/PDE analysis is not consistent with 
algorithm.  However, small quadratic term does not hurt.



Distributed Version of Algorithm

• many workers on parallel processors each doing SGD, 
with an “elastic” coupling

• Similar argument, combining time average with spatial 
average, shows this algorithm is equivalent to computing 
the gradient of local entropy

• The connection between these algorithms was only 
observed heuristically using stat physics Replica Theory. 
PDE/stochastic homogenization approach makes this 
very clear.
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Numerical Results



Numerical Results


