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Deep Learning Background

7/ tl:”_‘-}zl_:- 128 y\(x, w) — O'(ZUP U'(ZUP—I ( .. U'(ZU] )) .- ))
w* = arg min ]E'(x,y} cD z —VYi 1083717(?5; w)
w =1

» Supervised Learning; training a deep
network for image classification

FIGURE 2. MNIST
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*  Goal: minimize the empirical loss function. u »
s .

*  Normally x data, w weight. Sequel, write
f(x), x weights and suppress data. FIGURE 3. CIFAR-10
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Metastability:
Exponential time to discover nearby minima

dx(t) = =V f(x(t)) dt + /2B~ dW(t); 15
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https://wvvw.yout‘ube.com/vvatch?v:FotSm?kyLn4

Under mild assumptions for non convex functions fx), the Gibbs distribution p™ is still the vnigue steady solu

 Under n ! . | e wuque steady sols— For time O( 1), there appear
tion of (FP). However, convergence of px,f) can take an exponentially long time. Such dynamics are said to exhibi

“metastability” (Bovier and den Hollander, 200€), i.c., there may be multiple measures which are stable on time scales to be two inva riant
of order one. Kramers' formuls (Kramers, 1940) for Brownian motion in a double-well potential 15 the simplest example

of such a phenomenan: if f(x] i a donble-well with two local minima at locations x, x; € 2 with a saddle point x3 £ R measures. Real Iy ther’e is

connecting them, we have ..
one, but it is metastable.
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Conclusion: SGD for nonconvex is challenging


https://www.youtube.com/watch?v=Fot3m7kyLn4

Metastability:
Discussion

dx(t) = =V f(x(t)) dt + /2B~ dW(¢);

» Small steps: you fill find only local minima nearby

» Large steps: you may land in a better place, but how do be

sure to stay nearby!?

* Insight from Energy Landscape of f.

 Mathematics Problem: how do you learn about the geometry

of f

» Algorithm: how to modify f so that it has a better landscape!?



ldea: Continuation Methods

* ldea: replace minimization problem
with a different problem, with same
(or better) minima:

 Replace f(x) with convex envelope

u-g=0
-AMu] <0
» “Scoping”: start with a smoothed S0
version of f, and decrease
smoothing as minimization " A i
progresses. | /
N
* Problem: not practical in high an| TRAHA

dimensions.



Regularization using Viscous Hamilton-Jacobi PDE

— flx)

U (x,T)

viscous HJ

—— Unon-viscous HJ (¥, T)
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True solution in one dimension. (Cartoon in high dimensions, because algorithm only works
for shorter times.)




Spin Glasses
(statistical physics motivation)*

Ising model
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What is Local Entropy!?

- Replace f(x) with “local entropy” of f

» Algorithmic: for small gamma, can evaluate
grad f efficiently.

* Analytic: can prove that scoping with “local
entropy’’ improves the expected loss

ENTROPY-SGD: BIASING GRADIENT DESCENT INTO
WIDE VALLEYS

Pratik Chaudhari', Anna ChoromanskaZ, Stefano Soatto', Yann LeCun??, Carlo Baldassi®,
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Figure 2: Local entropy concentrates on
wide valleys in the energy landscape.



Outline

|. Introduction and Background

* 2. Math theory
- PDE interpretation and derivation of Local Entropy
* Proof of improvement

- 3.Algorithm and efficiency

4. Computational Results

(Comment) this is “Applied Math”: no new math theory.
new application of existing math theory to problem. (We
still prove theorems, but they are surprising to experts)



PDE for local entropy function and its gradient

Lemma 2. The local entropy function fy(x) is equal to u(x,7y) where u(x,t) is the solution of
for the viscous Hamilton-Jacobi equation

1
u,+ Vu| =5 Au,

along with initial data u(x,0) = f(x).

Proof. Dcfine u(x,t) = —logv(x,t). From (11), v(x,?) solves the heat cquation

Lemma 4. The gradient of local entropy is given by

VA =7 [ =) o703 0 dy

where p™(y; x) is a probability distribution given by

0™(v: 5) = Z(x)" exp( 7o) — B2 y”z)



Background: Stochastic Differential Equations

dx(t) ==V f(x(@)) dt ++/2B 1 dW(z);

Lo=-Vf-Vo+p A9, Lo =V.(Vfp)+B AP
d 0 .
a_l;z"%“’ 5, P(x,1) = Z7p

u(x,) = E|V((T)) | x(t) =] p=(x; B) =Z(B) " le B/

Background: JKO Functional and convergence rate in
convex case

Ip)= [ £(x) pdx+B~" [ p logp ax

dy, (p(x,1), p=) <dy, (p(x,0), p~) e *.  Vf(x) > 4,



Background: Homogenization of SDEs

Pavliotis and Stuart (2008, Chap. 10, 17)

- Two scale dynamics

- Assume a unique invariant
solution of the fast dynamics

* In the limit, obtain
homogenized dynamics

- given by averaging against the
Invariant measure

» Ergodicity:

dy(s) = 7 (s, ) s+ AW (s);
2y P~ (y; x) =0;
dx(s) = h(x) ds



Derivation of Local Entropy using Homog SDEs

x(s)=—y ! (x— S
(ESGD) dx(s) }I ( y)d1 |

Entropy SGD  dy(s) = g V() +;, (y—x)| ds+ NG dW (s).

Solve the FP equation, to obtain formula for invariant measure

H(x,y; V) = f(y) + 25 llx = yII* p=(y; x) < exp(—H(x,y; 7)/€)

Apply the homogenization result (and soln of FP) to see ESGD
gives the gradient

Lemma 4. The gradient of local entropy is given by

—Vfix) = / (x—y) p=(y; ) dy

where p™ (y, x) is a probability distribution given by

o/ N pon—1 PR
p7 (s x) =Z(x)"" exp| —f(¥) T



Algorithmic Implication

Theorem 15. As € — 0, the system (ESGD) converges to the homogenized dynamics given by
dx(s) = —Vfy(x) ds.

Moreover, V fy(x) = —y~| (.Tt— (y)) where

V) / yp~(dy; X) = lim / y(s) d
where y(s) is the solution of (ESGD) with x fixed.

*  We showed that we can compute the gradient of local entropy

function using an auxiliary SDE, provided the parameter gamma
is chosen so that the function H = f + quadratic is convex

» The fast dynamics correspond to an “inner loop” of the
algorithm. In practise, can take a handful of steps. Then the
update is given by averaging the values of y from the inner loop
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Context for Improvement

In the derivation, gamma was fixed.

Better to “scope”, sending gamma Forward- backward equations
to 0 as outer loop progresses. a,u

= |vu|2 A
- We prove that scoping improves 8t 2
the expected value of a loss | ‘
function, and quantify the — _V . (Vu ) A
improvement using dynamic Pr p)TAPp,
programming )

)

» This corresponds to nonlinear

forward -backward equations P (X, O) = Po (x)

Familiar in Mean-Field-Games



Visualization of Improvement:
dimension |, PDE simulation.
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FIGURE 1. Initial density, final density SGD, final density CSGD,
Solution of HIB porward-backward equations.



Visualization of Improvement: single simulation

dimension = .67 million
0.6
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—— HEAT
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(A) All-CNN: Training loss



Review of controlled SDEs

Fleming and Rishel, _20] 2)

SDE with control
parameter

Generator depends on
the parameter

introduce cost functional
define value function
*  Value fn satisfies H|B

Use DPP to select
optimal control

dx(s) = —h(x) ds— cq a(s) ds+/2B 1 dW(s)

x(0) = x.

Ly =—(h+cqa)-V+B LA

¢ (x(), o)) =E [v<x<r>> 4 Ca

u(x,1) = min € (x(-), a(-)).
a(:)
—u; = —h-Vu— ‘o Vul?

2
u(x,T)=V(x).

a(x,t) = Vu(x,t).




Proof of Improvement

The proof of improvement uses stochastic optimal control
theory.

This is a technique to interpret local entropy as the value
function of a stochastic optimal control problem.

Allows us to conclude that we improve the expected value of f



Expected Improvement Theorem

Theorem 7. For a deterministic time t > 0 and any terminal loss V (x), we have

E [V (roga)] < E [Vosga®)] 5 E| [ a(asga(s) )1 s

where X¢sgd(s) and x4 (s) satisfy (CSGD) and (SGD), respectively, for the same initial data x¢sgq(0) = x5g4(0) = xq, and
h(x) =V f(x),cq = 1 and B =2. The optimal control is 0.(s) and satisfies (17) where u(x,t) is the solution of the (HIB)
equation with initial data u(x,()) = V(x).

dx(s) = —h(x) ds—cq a(s) ds+1/2B~1 dW(s) fort<s<T, (CSGD)

dx(t) = =V f(x(t)) dt +1/2B~1 dW(2); (SGD)
+  Compares the expected value of SGD, with that of optimally controlled SGD.

*  No surprise that adding a control improves the value function.

+ The point is that we can interpret the scoping for local entropy as solving the
same HJB equation, so we obtain a proof of improvement.

« The control is equal to the gradient.
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Algorithm for Local Entropy™

*will be translated into math
» Two nested for-loops of SGD

Extremely effective —

1. searches parameter space in
» outer loop updates parameters the beginning of training

» inner loop estimates gradient of local entropy 2. Focusses on dense sub-clusters

towards the end

» Scoping: anneal the scoping parameter Y to search for minima

Algorithm 1: Entropy-SGD algorithm

Input : current weights x, Langevin iterations L
Hyper-parameters: scope 7, learning rate 1, SGLD step size 1’
/I SGLD iterations;

1 XU+ x;

2 for£ < Ldo

3 = sample mini-batch;

s | dY — X Vef (¥ &) -y (x—X);
5 X« xX—n'd’+/n"eN(O,I); «—— Langevindynamics
6 | U+ (1-au+ax

// Update weights; ’. only updai[e weights
7x ¢ x-ny@kx—p) M outer SGD loop




Math Translation

Scoping: this is the stochastic control interpretation, forward
and backward equations.

Inner and Outer Loop corresponds to Stochastic
Homogenization of a 2-scale problem

Langevin dynamics - we actually have momentum, which is
ignored for the purpose of the proof (and may not be needed
in the algorithm)

Comment: when gamma is not strong enough to make
objective convex, algorithm does not compute local entropy.
So physics intuition/PDE analysis is not consistent with
algorithm. However, small quadratic term does not hurt.



Distributed Version of Algorithm

Deep learning with Elastic Averaging SGD

— 1
_bp _
dx(s) o ’y Z (x yl) ds SixinL.hung_ Annal.’hol_'umansku.
i=1 Coucant Insdune, MYV o) e rarg Al
1 1 1 . . . anqLeCun
dyi(s) = — | VI (i) + ) (yi—x)| ds+ NG dWi(s); for1<i<p. Gl oD e VS A& Rk A TR

» many workers on parallel processors each doing SGD,
with an “elastic” coupling

» Similar argument, combining time average with spatial
average, shows this algorithm is equivalent to combuting
the gradient Of IOC&I entropy Unreasonable effectiveness of learning neural

netwaorks: From accessible states and robust
ensembles to basic algorithmic schemes

Carlo Baldassi*®", Christian Borgs®, Jennifer T. Chayes®, Alessandro Ingrosso®®, Carlo Lucibello®?, Luca Saglietti®?,

nd Riccardo Zacchina®4

- The connection between these algorithms was only
observed heuristically using stat physics Replica Theory.
PDE/stochastic homogenization approach makes this
very clear.
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flx)

Numerical Results
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(A) All-CNN: Training loss

% Error
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(B) AllI-CNN: Validation error
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Numerical Results

Model

ESGD

HEAT

H-ESGD

HJ

SGD

mnistfc
LeNet
All-CNN

1.08 =0.02 @ 120
0.5+0.01 @ 80
7.96 =0.05 @ 160

1.13£0.02 @ 200
0.59+0.02 @ 75
9.04+0.04 @ 150

1.15+0.03 @ 160
0.51£0.02 @ 60
7.82+:0.04 @ 200

1.17+£0.04 @ 200
0.5+0.01 @70
7.89+0.07 @ 145

1.10=0.01 @ 194
0.5=0.02 @ 67
7.94=0.06 @ 195

TABLE 1. Summary of experimental results: Validation error (%) @ Effective epochs



